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Addressing uncertainty in the
safety assurance of
machine-learning

Simon Burton* and Benjamin Herd

Fraunhofer Institute for Cognitive Systems, Munich, Germany

There is increasing interest in the application of machine learning (ML)

technologies to safety-critical cyber-physical systems, with the promise of

increased levels of autonomy due to their potential for solving complex perception

and planning tasks. However, demonstrating the safety of ML is seen as one of the

most challenging hurdles to their widespread deployment for such applications.

In this paper we explore the factors which make the safety assurance of ML such

a challenging task. In particular we address the impact of uncertainty on the

confidence in ML safety assurance arguments. We show how this uncertainty is

related to complexity in the ML models as well as the inherent complexity of the

tasks that they are designed to implement. Based on definitions of uncertainty

as well as an exemplary assurance argument structure, we examine typical

weaknesses in the argument and how these can be addressed. The analysis

combines an understanding of causes of insu�ciencies in ML models with a

systematic analysis of the types of asserted context, asserted evidence and

asserted inference within the assurance argument. This leads to a systematic

identification of requirements on the assurance argument structure as well as

supporting evidence. We conclude that a combination of qualitative arguments

combined with quantitative evidence are required to build a robust argument for

safety-related properties of ML functions that is continuously refined to reduce

residual and emerging uncertainties in the arguments after the function has been

deployed into the target environment.

KEYWORDS

machine learning, safety, assurance arguments, cyber-physical systems, uncertainty,

complexity

1. Introduction

Recent advances in the field of artificial intelligence (AI), and in particular Machine

Learning (ML), have led to increased interest in the application of ML to cyber-physical

systems such as autonomous vehicles and industrial robotics. Such systems have the potential

to increase safety through increased automation, for example by reducing the number

of human-induced accidents, or allowing systems to operate in hazardous environments

without direct human control. However, the malfunctioning of such systems can lead

to severe harm to users, bystanders and the environment. There is therefore a clear

need to demonstrate that safety-critical systems that utilize ML are acceptably safe. As a

consequence, the field of trustworthy and safe AI is also receiving attention from a regulatory

and standards perspectives. Examples of which are the EU proposal for regulations on AI1

and ongoing standardization efforts on safe AI2. Within the context of these regulations and

1 https://artificialintelligenceact.eu

2 https://www.iso.org/standard/81283.html and https://www.iso.org/standard/83303.html
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standards, assurance arguments can be used to demonstrate that

safety requirements have been met with sufficient confidence.

However, there is still significant debate regarding whether or

not a convincing argument for safety can be made at all for

complex ML-based functions such as those used for camera-

based obstacle detection in automated vehicles. In this paper,

we provide a systematic examination of the underlying factors

that make arguing the safety of ML so challenging. In doing so

we build upon general definitions of complexity and uncertainty

and demonstrate how these can be instantiated to explain the

root causes of specification and performance insufficiencies of

ML models and the resulting assurance uncertainty. We align

our terminology with that of the standard ISO 21448 “Safety of

the intended functionality” which provides a valuable conceptual

perspective for reasoning about performance insufficiencies of

complex, automated systems. We combine these viewpoints with

notions of confidence in assurance cases to highlight which aspects

of the safety argument contribute to assurance uncertainty and

how the confidence in the argument can be increased. The result

is a framework for reasoning about the residual uncertainty

within assurance arguments for ML that can be used to provide

a stronger foundation for determining for which applications

and technical approaches a convincing safety argument can be

made. The contributions of the paper can thus be summarized

as follows:

• We provide a set of definitions with which safety assurance

gaps for ML can be categorized and their severity evaluated.

• We apply these concepts to an assurance argument structure

for ML based on previous work to identify which aspects

of the argument contribute in which manner to assurance

uncertainty.

• This leads us to identify measures for resolving these

uncertainties which could form the focus of future research

into ML safety assurance.

The paper is structured as follows: The following section

provides an overview of previous work on assurance arguments

for ML-based safety-critical functions and confidence in

assurance arguments. In Section 3 we introduce a number of

definitions of complexity and uncertainty that are used within

this paper. Section 4 demonstrates how these definitions can

be used to describe the manifestations of uncertainty with

respect to the assurance of safety-critical ML functions in

autonomous open-context systems. Section 5 introduces a

safety assurance argument structure inspired by the previous

work cited in Section 2 that addresses common areas of

specification and performance insufficiencies. In Section 6,

we apply notions of assurance confidence to examine areas

of residual uncertainty in the assurance evidence as well

as the argumentation structure itself. This leads to a set of

conclusions regarding the current debate on safety of ML and

the identification of areas of future research. The examples used

to illustrate the concepts in this paper relate to supervised ML

such as deep neural networks (DNNs). However the concepts

could be extended as part of future work to other classes of

ML techniques.

2. Background and related work

2.1. Safety assurance for machine learning

ISO (2019) defines assurance as grounds for justified confidence

that a claim has been or will be achieved. A claim is defined as

a true-false statement about the limitations on the values of an

unambiguously defined property—called the claim’s property—and

limitations on the uncertainty of the property’s values falling within

these limitations. ISO (2019) also defines an assurance argument

as a reasoned, auditable artifact that supports the contention that

its top-level claim is satisfied, including systematic arguments and

its underlying evidence and explicit assumptions that support

the claim(s). As such, the assurance argument communicates the

relationship between evidence and the safety objectives. A model-

based graphical representation of the assurance argument can aid

its communication and evaluation. Within this paper we make

use of the Goal Structuring Notation (GSN)3 to visualize the

assurance argument.

Previously, functional safety standards have not addressed

the unique characteristics of ML-based software. Salay et al.

(2017) analyze the standard ISO 26262 (functional safety of

electrical/electronic systems for road vehicles) and provide

recommendations on how to adapt the standard to accommodate

ML. Burton et al. (2017) addressed the challenges involved in

arguing the safety of ML-based highly automated driving systems

and proposed a contract-based approach for demonstrating the

fulfillment of a set of safety-related requirements (guarantees)

for an ML function under a given set of assumptions. The

Guidance on the Assurance of Machine Learning in Autonomous

Systems (AMLAS) (Hawkins et al., 2021) provides an overview

of different ML-lifecycle stages and guides the development of

assurance cases for ML components by examining each stage in

turn. The guideline emphasizes that the development of an effective

safety argument requires an iterative process involving a large

number of stakeholders. Furthermore it stresses the importance

that the safety considerations are meaningful only when scoped

within the wider system and operational context. Such an iterative

approach is further developed in Burton et al. (2021) where a safety

assurance argument for a simple ML-based function is discussed.

The simplicity of the function and choice of ML technology (an

adaptive approach to generalized learning vector quantization Sato

and Yamada, 1995) allowed the authors to develop a convincing and

comprehensive case by exploiting properties of the environment

and model that could be determined with high certainty. Burton

et al. (2022) present a safety assurance methodology for more

complex ML-based perception functions. A particular focus is put

on how evidences should be chosen, and how to show that the

mitigation of insufficiencies was successful.

A diverse set of evidences based on constructive measures,

formal analysis and test, are typically required to support the

claims in the assurance case for complex software-based system.

Work that has focused on the effectiveness of specific metrics and

measures on providing meaningful statements regarding safety-

related properties of ML models includes (Cheng et al., 2018,

3 https://scsc.uk/gsn
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2021; Henne et al., 2020; Schwaiger et al., 2021). In reality, an

assurance argument will include amixture of quantitative evidences

as well as qualitative arguments. It is therefore not always obvious

which level of residual risk has in fact been argued and is often

dependent on expert judgement and the use of well-established

chains of argument as laid out in safety standards. Although this

paper references a number of works to illustrate various methods of

evidence collection, we do not claim to provide a complete review

in this area. For a more thorough review of evidences to support

the safety of ML, we refer to dedicated survey papers such as Huang

et al. (2020), Ashmore et al. (2021), and Houben et al. (2022).

There is currently no industry consensus for which set of

methods are sufficient for evaluating the performance of an

ML function in a safety critical context, with safety standards

for ML still in development. This poses additional challenges

when building an assurance case, as the validity of the evidences

themselves can be called into question (Burton et al., 2019).

2.2. Assurance confidence arguments

Assurance confidence estimation aims to reduce uncertainties

associated with validity of the assurance argument itself. Qualitative

approaches to improving confidence in the assurance case aim

to decrease uncertainty by strengthening the argument itself,

e.g., through additional confidence-specific claims, sub-claims,

and evidences. Hawkins et al. (2011) present the concept of

assured safety arguments, an extension of conventional safety

arguments as described above that separates safety argumentation

from confidence argumentation. To this end, an assured safety

argument consists of two separate components: (1) a conventional

safety argument that is purely causal in nature, i.e., it only links

claims, contextual information, and evidence without providing

confidence values, and (2) a confidence argument that establishes

confidence in the structure and context of the safety argument.

Safety arguments and confidence arguments are connected through

assurance claim points (ACPs) in the structural notation of the

argument. ACPs can be assigned to the following types of assertions

regarding the argument’s confidence:

1. Asserted context: confidence in the validity of context

information.

2. Asserted solution: confidence in the validity and integrity of

evidence.

3. Asserted inference: confidence in the appropriateness of the

deductive logic of the argument.

Confidence arguments aim to provide confidence in three

particular aspects of the assertion:

1. There are grounds to support the probable truth of the assertion.

2. Residual uncertainties (termed assurance deficits) in the

assertion have been identified.

3. Residual uncertainties in the assertion are insufficient to cause

concern.

Whilst this approach aims to provide confidence in the overall

safety argument through a separate set of confidence arguments,

it does not allow for the assignment of a quantitative confidence

metric for the whole safety argument, e.g., to quantify the risk of

the overall claim being falsely stated as true. A range of quantitative

approaches to assurance confidence have been presented, e.g., using

eliminative induction and Baconian probabilities (Goodenough

et al., 2013), Dempster-Shafer belief functions (Ayoub et al., 2013;

Wang et al., 2019), or Bayesian inference (Guo, 2003; Denney et al.,

2011; Hobbs and Lloyd, 2012). However, since these approaches

depend on the availability of reliable confidence values that can

be assigned to elements of the assurance argument and combined

into an overall confidence score, they are themselves subject to

uncertainty and subjective judgement.

3. Definitions of complexity and
uncertainty

3.1. From complexity to uncertainty

In Burton et al. (2020), the authors discussed the notion of

the semantic gap and its impact on the safety assurance of ML-

based autonomous systems, in particular to express the difficulty of

defining an adequately complete set of safe behaviors of the system.

The authors make use of the following definition “Semantic gap:

The gap between intended and specified functionality—when implicit

and ambiguous intentions on the system are more diverse than the

system’s explicit and concrete specification” (Bergenhem et al., 2015).

The semantic gap was described as a direct consequence of the

following factors:

• the complexity and unpredictability of the environment in

which the system operates,

• the complexity and unpredictability of the system as well as the

system’s interactions with other technical systems and human

actors (including operators, users, and bystanders), and

• the increasing transfer of the decision-making responsibility

from a human actor to the system, as the system will not have

the semantic and contextual understanding of the decisions

that the human does. This can also be considered as an

expression of the inherent complexity and ambiguity of the task

itself.

Complexity science would define a system as complex if some

behaviors of the system are emergent properties of the interactions

between the parts of the system, where it is not possible to predict

those behaviors from knowledge of the parts and their interactions

alone. The lack of knowledge about the causes of emergent behavior

within complex systems is strongly related to the concept of

uncertainty as illustrated in the following definition: “Any deviation

from the unachievable ideal of completely deterministic knowledge

of the relevant system” (Walker et al., 2003). Increasing levels of

complexity severely limit the amount of a-priori knowledge about

the system’s behavior and thus the ability to model and predict its

dynamics. Since emergent phenomena exist on a different semantic

level than the system components themselves, their existence

cannot be easily deduced from within the system, resulting in

ontological uncertainty (Gansch and Adee, 2020). For example,

from the perspective of an image represented as a set of pixel values,

the concept of a “pedestrian” is an emergent phenomenon.
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FIGURE 1

Dimensions of uncertainty.

3.2. Dimensions of uncertainty

A number of taxonomies for uncertainty have been presented

in the literature; for example, as provided in the surveys of

Lovell (1995) and Rocha Souza et al. (2019). The work of Knight

(1921) can be seen as the starting point for a formal treatment of

uncertainty. Knight (1921) distinguished three types of decisions:

decisions under certainty (type I) where the consequences of all

options are known; decisions under risk (type II) where possible

futures are known, probability distributions are known, and

statistical analysis is possible; and decisions under uncertainty (type

III) where the future states are known but the probabilities are

unknown. The role of safety assurance can be seen as striving to

facilitate decisions of type II wherever type I is not possible, whilst

avoiding type III decisions.

Lovell (1995) proposes a taxonomy of uncertainty in the context

of decision making. He classifies sources of uncertainty into the

following categories, where complexity increases uncertainty in all

three dimensions. However, for the purposes of this paper we will

adapt the terminology to better align with language associated with

cyber-phyiscal systems:

1. World: Uncertainty arising from the natural world (e.g.,

complexity, disorder, stochastic regularity, dynamism)

and from actors within this world (e.g., actions, group

decisions, unpredictable behavior). We will refer to this

category of uncertainty within this paper as uncertainty in

the environment.

2. Evidence: Uncertainty arising from data measurement

(e.g., imprecision, incompleteness), from linguistic evidence

(ambiguity, fuzziness), and from evidence from actors (possible

error, possible deception). To avoid confusion with the term

from the perspective of safety assurance, we will refer to this

category from hereon as uncertainty of observations.

3. Decision maker: Uncertainty arising from processing

capabilities (memory failure, time/resource limits), the ability to

interpret evidence (linguistic ability, knowledge of context), and

from mental models (incorrectness, incompleteness, conflicts).

As we are concerned with assurance of technical systems

rather than human behavior, we will refer to this category of

uncertainty as uncertainty in the technical system.

For cyber-physical systems operating within an open context,

the relationships between the categories can be summarized

as follows: The environment (e.g., urban traffic) is inherently

complex, unpredictable and difficult, if not impossible to

completely model. This environment is observed via a set of

imperfect sensors with inevitable limitations (e.g., resolution, field

of view, signal noise, etc.). The system then attempts to make

sense of these observations and decide on appropriate actions using

a combination of algorithms, heuristics, and ML. Each of which

include models with the potential for epistemic uncertainty.

Within the context of this paper we are primarily concerned

with assurance uncertainty which is related to a lack of knowledge

and thus confidence regarding the completeness and/or validity of

an assurance argument for critical properties of the system. This

can include a lack of confidence in the validity (including statistical

confidence) of evidence supporting the assurance argument as well

as the chain of reasoning itself. Assurance uncertainty can also

include a lack of confidence in the validity and appropriateness of

the overall claim of the assurance argument as well as the continued

validity of the argument over time. Assurance uncertainty can

thus be interpreted as a form of observation uncertainty regarding

the determination of residual uncertainty in the technical system,

which in turn can be a product of the inherent complexity of the

environment, the task, and the system itself. The various categories

of uncertainty used within this paper and their relationships are

summarized in Figure 1.

3.3. Relative definitions of uncertainty

Uncertainty is not a binary property and when comparing

different approaches to safety assurance, we would like to compare
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TABLE 1 Levels of uncertainty according to the Dow hierarchy (Dow,

2012).

Level Definition

Level 4 Knowledge K of structural relationships of the system under

consideration can not be assumed. It may, however, be possible to

rank K subjectively such that higher uncertainty is entailed in a

lower ranking of K.

Level 3 Uncertainty refers to the completeness of the evidence on which

the judgement of probability is reached.Weight is a measure of

completeness of relevant evidence. On this level, subjective

probabilities or evidence theory may be useful. It can thus be seen

as referring to the validity of available evidence.

Level 2 Uncertainty is represented as a matter of belief and is inversely

proportional to the probability measure, i.e., it is greater, the

lower the probability measure becomes. It can thus be measured

by 1− p where p is the degree of belief in the argument a

conditional on evidence h. An important measure here are

statistical confidence intervals. Levels 1 and 2 can be viewed as

referring to the integrity of available evidence.

Level 1 Uncertainty is inherent in reality and can be captured in a

stochastic term ǫ. The degree of uncertainty is then measured by

the variance of ǫ, i.e., σ (ǫ).

relative strengths of an argument. The taxonomies discussed so

far refer to differences between types of uncertainty in purely

qualitative terms. As much of the safety argument for ML will

be based on quantitative properties and associated evidence, an

obvious question is when quantifiability is possible and when it

is not.

For example, probability theory is only applicable if probability

is measurable and plausible distributions (or sets of distributions)

can be given. As Dow (2012) clarifies, “for probability to be

measurable, the range of possible outcomes must be known with

certainty and the structure which generates these outcomes must

also be known, either by logic or by empirical analysis.” Any

probabilistic statement can thus be questioned in terms of its

statistical significance. Any statement about significance can, in

turn, be questioned in terms of the knowledge of the underlying

structure. However, how much confidence can be associated with

that knowledge itself? In theory, we may thus end up with an

infinite “uncertainty escalator” (Williamson, 2014).

To structure this problem, Dow (2012) presents a taxonomy

of uncertainty against the background of measurable and

immeasurable probability. Table 1 summarizes the first four levels

of the hierarchy. Each level can itself be subject to varying grades

of uncertainty which, with increasing strength, indicate a transition

to the next higher level in the hierarchy. For example, at level 2, the

confidence interval around a data point might be narrower or wider

depending on the grade of uncertainty associated with it. We refer

to this orthogonal grade of uncertainty as severity, i.e., the difficulty

of the judgement being made as originally proposed by Bradley and

Drechsler (2014) and summarized in Table 2.

According to this scale, the difficulty of a judgement is defined

by how much information is available to the decision maker. At

levels 1 and 2 in the Dow hierarchy where probabilistic statements

are possible, the severity of uncertainty is measured by the variance

or the confidence interval associated with a data point, i.e., by the

integrity of available evidence. At level 3, uncertainty is measured by

TABLE 2 Definition of uncertainty severity classes according to Bradley

and Drechsler (2014).

Severity Definition

Ignorance Not enough information to make any judgement

Severe Enough information to make a partial or imprecise (subjective)

judgement

Mild Enough information to make a precise (e.g., probabilistically

correct) judgement

Certainty Full knowledge about the real-world system under consideration

the validity of evidence. At level 4, reliable quantitative statements

are no longer possible and uncertainty management largely relies

on qualitative judgement. Thus severe uncertainty or ignorance

related to the knowledge reference at level 4 can be seen as a

representation of unknown unknowns, ignorance or ontological

uncertainty. This level of uncertainty is not possible to manage

within the perspective of the system due to a fundamental lack of

knowledge or availability of observations of relevant aspects of the

system. It can therefore be termed unmanageable (Schleiss et al.,

2022) and can only be resolved from an external perspective that

has access to other knowledge of the system and its environment.

The Dow hierarchy in combination with the Bradley &

Drechsler severity scale provide a useful guideline as to how

different levels of uncertainty in assertions within an assurance

argument can be assessed, by reasoning about the confidence that

can be achieved within each level. For example, if confidence

in quantitative evidence for robustness of the trained model

could only be asserted at levels 1 and 2, then the robustness

would be measured with a known statistical confidence interval.

However, the relation of these measurements to the claim being

investigated as well as the appropriateness of assumptions (such

as i.i.d. assumptions on the sampled input space) that support

the statistical relevance of the evidence cannot be demonstrated,

thus undermining the assurance confidence. The hierarchy also

illustrates that quantifiability of the uncertainty decreases with

increasing levels until eventually only qualitative judgements will

be possible, thus increasing the risk of severe uncertainty and

ignorance. We will revisit the hierarchy when the question of

assurance confidence is discussed in Sections 5, 6. A safety

assurance argument with high confidence can therefore be defined

as consisting of a number of assertions that are associated with only

mild uncertainty within each of the first 4 levels of Dow’s hierarchy.

4. Impact of complexity and
uncertainty on ML safety assurance

The standard ISO 21448 “Road vehicles—Safety of the intended

functionality (SOTIF)” addresses safety in terms of the absence of

unreasonable risk due to functional insufficiencies of the system or

by reasonably foreseeable misuse. The SOTIF approach considers

hazards that are caused by latent insufficiencies of the function

that are uncovered by triggering conditions in the operating

environment at runtime. In comparison to functional safety, as

defined by related standard ISO 26262, SOTIF does not require
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an explicit fault such as a systematic software bug or random

hardware failure to trigger hazardous behavior. Instead, the focus

of the standard is on inherent limitations of the system based

on its specification or technical implementation. The standard

requires the definition of acceptance criteria for each safety goal,

which in turn are refined and allocated to subsystems such

as perception or decision functions. Acceptance criteria can be

expressed quantitatively, such as in terms of acceptable accident

rates. Although originally motivated by safety issues associated with

driving assistance systems, the concepts within the standard can

be applied to a wide range of scenarios where insufficiencies of the

functionality could lead to hazardous behavior.

The SOTIF model describes the task of risk reduction as

maximizing the number of triggering conditions that are known

to potentially lead to hazardous behavior (known unknowns)

such that they can be made safe whilst minimizing the number

of potentially hazardous residual unknown triggering conditions

(unknown unknowns). In the context of ML, known triggering

conditions could be considered as inputs that are known to reveal

an insufficiency in the trained model, whilst unknown triggering

conditions relate to inputs that were not considered within the

training and test set, e.g., due to features considered irrelevant

or distributional shift in the environment. SOTIF appears well

suited as a basis for discussing the safety of ML functions where

hazardous behaviors are caused by inaccuracies in the trained

model itself rather than by faults during its execution. It therefore

forms the basis of ISO PAS 8800 “Road vehicles - Safety and

Artificial Intelligence,” currently in development.

Burton et al. (2019) express the task of assuring the safety of

ML (according to the SOTIF model) in terms of demonstrating the

fulfillment of a safety contract based on the following definition.

∀i ∈ I.A(i) ⇒ G(i,M(i)) (1)

Where, for all inputs i that fulfill the set of assumptions A on

the operational design domain and system context, the output of

model M must fulfill a set of conditions defined by guarantees G.

For realistic ML-based applications, residual errors in the model

will inevitably remain. Assurance thus involves demonstrating that

the probability with which this contract is fulfilled is in accordance

to the risk acceptance criteria. Under these circumstances, the ML

system can be considered “acceptably safe" under the following

condition which also considers the probability distribution of

potential triggering conditions (i) in the environment:

∑
i∈I,A(i)∧G(i,M(i)) IPODD(i)∑

i∈I,A(i) IPODD(i)
≥ AC (2)

Where IPODD : I → [0, 1] is the input probability distribution

function of the ODD that assigns every input i ∈ I with a probability

value, with the condition that
∑

i∈I IPODD(i) = 1. In Equation 2, the

left-hand side characterizes the probability of an input satisfying

the guarantee G, conditional on the constraint that assumption A

holds. Equation 2 states that so long as the failure rate (where the

probability of (G(i,M(i)) = false) is small enough, the system

is considered to be acceptably safe as defined by AC (acceptance

criteria). This formulation of the assurance condition is related

to type II uncertainty (decision under risk) according to Knight

(1921), with the objective of demonstrating an acceptably low level

of residual risk with high certainty related evidence in at least the

first four levels of the Dow hierarchy.

The SOTIF standard defines functional insufficiencies in terms

of specification insufficiencies and performance insufficiencies,

both of which can be described in terms of the uncertainty model

introduced in Section 3. These insufficiencies can be seen as

manifestations of uncertainty that eventually lead to uncertainty

in the assurance argument and can then be classified along the

following three dimensions:

1. Input space and task: uncertainty resulting from the complexity

of the input space that data points are sampled from, and the

inherent complexity of the tasks that the model is designed to

perform (related to environment uncertainty from Figure 1),

2. Data: uncertainty resulting from potential inaccuracy or

incompleteness of the sampled data points themselves that are

used either in the training or verification of the model (related

to observation uncertainty from Figure 1) and

3. MLmodel: uncertainty resulting from the complexity of the ML

model, e.g., architecture or number of parameters (related to the

system uncertainty from Figure 1).

4.1. Specification insu�ciencies

Specification insufficiencies are related to the validity and

completeness of appropriate safety acceptance criteria and

the definition of acceptably safe behavior in all situations

that can reasonably be anticipated to arise within the target

environment. Specification insufficiencies can also be rooted

in competing objectives and stakeholder-specific definitions of

acceptable residual risk leading to unresolved questions related

to ethical/socially acceptable system behavior. The inability to

provide a complete specification of the (safe) behavior of the

system is inherently linked to both the semantic gap and emergent

properties of complex systems and can be broken into the following

components based on the definitions in Equations 1 and 2:

• Uncertainty in the definition of a complete model of the input

space I and associated assumptions A(i) which can also be

used to reason about completeness and representativeness of

training and test data.

• The guarantees G(i,M(i)), representing safety requirements

allocated to the ML model, will typically be refined into

a conjunction of safety-related properties P that may be

quantitatively defined using associated metrics and target

values. System-level safety goals (e.g., avoidance of collisions)

must be refined into a set of ML-specific properties (e.g.,

precision, recall, bias, robustness, etc.). This set of properties

should be derived based on an understanding of the potential

performance insufficiencies and their causes (see below) of the

ML model, which may only become apparent during test and

operation. Identifying and refining safety requirements into

measurable properties of the ML model and associated target

values is a non-trivial task. Furthermore, for each property,

a validation target derived from the acceptance criteria must
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be defined in terms of a quantitative threshold that can be

measured during development.

• When operating within an open context, the assumptions A(i)

made regarding the input space during design of the system

may lose their validity over-time, either as the environmental

context of the system changes, the system is adapted to

different tasks, or a deeper understanding of the context is

achieved through experience in the field (e.g., new sources of

triggering conditions are discovered).

4.2. Performance insu�ciencies

MLmodels work inductively by learning general concepts from

sampled training data. The complexity of the learning task is a

function of the complexity of the mapping between data points in

the input or feature space (= the syntactic level) and concepts to

be learned (= the semantic level). The idea of task complexity is

thus closely related to the concept of learnability (Valiant, 1984).

Based on this concept, one way to quantify the complexity is to

revert to sample complexity, i.e., the number of samples required

for a problem to be efficiently learnable. As, for example, discussed

by Usvyatsov (2019), sample complexity depends on the underlying

model complexity (described by the Vapnik-Chervonenkis (VC)

dimension or VC density) which is itself a function of the number

of weights in the model4. The relation between task complexity and

required model complexity/expressiveness constitutes the achieved

complexity of the trained model.

Performance insufficiencies relate to a lack of predictability

in the performance of the technical system components. An

example of performance insufficiencies in ML models are the

unpredictable reaction of a system to previously unseen events (lack

of generalization), or differences in the system behavior despite

similar input conditions (lack of robustness). We argue that an ML

model can only achieve optimal performance if task complexity,

model expressiveness and achieved model complexity are in

alignment. For example, using a highly complex model architecture

(e.g., a DNN) and/or too much data for a comparatively simple

task (e.g., low-dimensional polynomial regression), may cause the

trained model to show high variance, i.e., to overfit to irrelevant

noise; on the other hand, using a simple model (e.g., a shallow

neural network) and/or too little data for a significantly more

complex task (e.g., object detection) may cause the trained model

to exhibit bias, i.e., to ignore relevant relations between features and

target outputs.

Since the formal requirements of probably approximately

correct (PAC) learning (Valiant, 1984) (e.g., iid samples, invariance

between training and target distribution, or sufficiently large

sample sizes) are often not satisfied in practice, the model output

may be subject to prediction uncertainty. Predicted probabilities

4 Measuring the actual VC dimension of a model is hard and an area of

active ongoing research. For example, Li et al. (2018) use measures such as

intrinsic dimensions to compare the relative complexity of di�erent ML tasks

and Li et al. (2022) identify low dimensional properties of training trajectories

with the goal of reducing the number of parameters required to achieve a

particular level of performance and robustness.

(e.g., softmax output value of a DNN-based classification task)

may thus not necessarily be indicative of the actual probability of

correctness and further confidence in the probabilities needs to

be obtained.

In order to assess the performance of an ML model, the

manner in which insufficiencies express themselves with respect

to a set of measurable properties P (such as robustness, bias,

prediction certainty etc.) needs to be expressed. The relevance of

these properties to the fulfillment of guarantees G of the safety

contractmay be highly application and context specific. In addition,

the root causes of these insufficiencies may depend on a number of

factors and their presence may further exacerbate the difficulties in

assessing the safety of the model.

4.3. Assurance uncertainty

Equation 2 was used to define an “acceptably safe” ML system.

However, the input distribution function IPODD can never be

perfectly characterized for complex systems such as autonomous

driving due to input space uncertainty. This highlights one of the

challenges in calculating realistic failures rates for such systems,

as any measurements will ultimately be sensitive to the potentially

unknown distribution of events (triggering conditions) in the input

space. Any measurement of failure rates for such systems will

therefore only ever be an approximation of the actual failure

rates experienced during operation and sensitive to a number of

assumptions made on the distribution of triggering conditions and

the extrapolation of the properties observed using specific data

samples (data uncertainty). This requires an inductive approach

based on evidence that is collected regarding the design and

performance of theMLmodel, which is the inherent nature of most

forms of safety assurance.

Given that the conditions given in Equation 2 cannot be proven

with absolute certainty, the assurance challenge therefore is to

find a set of conditions that can be demonstrated with sufficient

confidence from which we can infer that these conditions are met.

This includes the concept of estimated failure rate λM of the ML-

based system, where if we demonstrated that 1 − λM ≥ AC we

might infer that the failure rate of the MLmodel represented by λM

is sufficiently low. λM can be defined as follows:

λM =
#{j ∈ I :A(j) ∧ ¬G(j,M(j))}

#{j ∈ I :A(j)}
(3)

Where j represents the unique observations or measured

samples of the input space, which represent only a subset of the

entire input space that could be theoretically experienced during

operation. Here λM represents the estimated probability of failure

on demand under the assumption that all inputs in the domain

may occur with equal probability, which may not necessarily hold.

Furthermore, it may not be possible to directly measure whether

or not the conditions outlined in G are fulfilled, but instead these

would be inferred by estimating a set of conditions P(j,M(j)) related

to set a observable properties of M that are hypothesized to be

related to the ability of the model to fulfill its guarantees G(j,M(j)).

An expression of the assumption underlying this approach to safety

assurance can therefore be expressed as follows.
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FIGURE 2

Manifestations of uncertainty in ML and objectives of ML safety assurance.

#{j ∈ I :A(j) ∧ P(j,M(j))}

#{j ∈ I :A(j)}
≈

∑
i∈I,A(i)∧G(i,M(i)) IPODD(i)∑

i∈I,A(i) IPODD(i)
(4)

Assurance uncertainty can thus manifest itself as a lack of

knowledge of the difference between the estimated failure rate λM

and the actual failure rate that occurs during operation (the left and

right side of Equation 4). This “assurance gap” will typically need

to be closed based on a combination of quantitative (e.g., related to

statistical confidence) and qualitative arguments (e.g., based on the

appropriateness of certain assumptions). As we will show later, the

assurance gap is particularly sensitive to uncertainties at the levels

3 and 4 of the Dow model. In the definition above, the selection of

samples is still restricted by a set of assumptions A over the input

space. By loosening this definition, the robustness of the model

against inputs outside of these constraints can be evaluated as well

as the appropriateness of the assumptions themselves.

Based on the set of definitions defined within this Section,

we can now express the objectives of ML safety assurance by

adapting the definitions from Section 3 as described in Figure 2.

In the following section we describe a typical assurance argument

structure for addressing functional insufficiencies before examining

assurance uncertainties within such an argument in more detail in

Section 6.

5. Assurance argument structures

Figure 3 describes the structure of an assurance argument for

a safety-relevant function implemented using supervised ML. The

structure is based on a synthesis of previous work in this area in

both structuring the assurance argument and defining associated

evidences, including Burton et al. (2017), Ashmore et al. (2021),

Burton et al. (2021), Hawkins et al. (2021) and Houben et al. (2022).

This structure is used to reason about which manifestations of

uncertainty are addressed by such arguments, whilst an evaluation

of the effectiveness of this structure is provided in Section 6.

G1 and its associated elements represents the safety contract

as expressed by Equation 1. The guarantees G are represented by

C1 and C2 which define the functionality and associated safety

requirements, e.g., “locate hazardous objects with a tolerance of

+/- 20 cms” including a definition of an acceptable failure rate

with respect to those requirements, e.g., how often a detection

outside of the tolerance interval is permitted. A1 and A2 define

the assumptions A on the input space related to the operating

environment (e.g., distribution and types of critical objects to

be identified, environmental constraints, etc.) and the system

context (e.g., quality of sensor readings) respectively. Note, that the

argument structure in Figure 3 does not reflect an argument over

systematic faults or random hardware faults which are out of scope

of this paper and would be covered by an additional argumentation

strategy, as stated by A3. The assurance argument covers the

functionality implemented by the ML model, which could also

include pre- and post-processing operations such as data cleaning

and output anomaly detection implemented using traditional (non-

ML) approaches. This is referred to in the argument as the

“ML system”.

Given these pre-requisites, the assurance strategy (S1) involves

demonstrating that functional insufficiencies and their causes have

been identified and either minimized or mitigated. Context C3

defines the set of potential causes of insufficiencies that are used

to drive this argumentation strategy.

5.1. Addressing insu�ciencies of the
specification

The objective of claim G2 is to demonstrate that a complete

and consistent set of safety requirements on the ML model has

been derived and is sufficient to ensure that the residual risk of

system-level hazardous behavior due to residual errors is acceptably

low. This section of the argument is focused on resolving semantic

gaps and the reducing specification insufficiencies resulting from

input space and task uncertainty. Figure 4 shows the development
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FIGURE 3

Top-level safety assurance argument for supervised machine learning.

of G2 to illustrate how the GSN notation can be used to elaborate

the assurance argument to the level of individual evidences. G2 is

further refined into the subclaims:

• G2.1: The input domain is sufficiently well defined

to ensure completeness of derived safety requirements,

training and test data. Evidence to support this claim

can include standardized ontologies for describing the

semantic input space and known triggering conditions from

previous experience.

• G2.2: The derived safety requirements are complete and

consistent with respect to the safety requirements allocated

to the AI system. Challenges associated with this claim

include demonstrating that the selected set of safety-relevant

properties (P in the formal definition given above) are

sufficient to guarantee the overall requirements as well as

selecting an appropriate set of metrics and thresholds to define

measurable target values of the properties. An example of

such a property could be robustness against sensor noise,

with thresholds defined according to the L-infinity norm. The

specification of such properties has been explored by a number

of Bergenhem et al. (2015), Gauerhof et al. (2018), Hu et al.

(2020), and Ashmore et al. (2021). The identification of safety-

relevant properties ofML functions can be supported by causal

safety analyzes to determine root causes of insufficiencies

and therefore desirable properties of the function, as well

as measures to minimizse or mitigate the insufficiencies to

prevent them from leading to hazards. Salay et al. (2019)

propose a novel safety analysis method—Classification Failure

Mode Effects Analysis (CFMEA)—as a systematic way to

assess the risk due to classification under adversarial attacks

or varying degrees of classification uncertainty. Evidence to

support this claim can include the results of safety analyzes

to identify safety-relevant properties of the ML model and

systematic (e.g., checklist-based) review.

• G2.3: The performance limitations of the AI system are

sufficiently well defined such that a safe behavior at the

system level can be ensured. This claim is critical to ensure

that performance insufficiencies can be compensated for at

the system level in order to avoid hazardous behavior, and
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FIGURE 4

Assurance argument pattern for su�ciency of the specification.

correspond to a definition of the known unknowns associated

with the trained model. Supporting evidence includes the

results of performance analyzes against the derived safety

requirements (e.g., tests and formal verification) and the

results of safety analysis activities.

5.2. Addressing insu�ciencies in the data

The objective of claim G3 is to demonstrate that the data

used for training and verification of the ML model is sufficient

to achieve and demonstrate the required performance of the ML

model with respect to its derived safety requirements. This claim

also addresses a form of specification insufficiency as defined by

ISO 21448. However, in comparison toG2, this claim addresses the

implicit specification as defined by the selected datasets. As such,

the objective is to address observation uncertainties as defined in

Section 3. The claim is further refined into the following subclaims:

• G3.1: The datasets consist of suitable selections of

observations from the overall input space. This includes

subclaims regarding the representativeness of the datasets

regarding overall coverage of the input space, suitability of

the dataset sources (e.g., are there potential geographical

differences between where datasets were collected and the

intended environment of use), the inclusion of sufficient

data capable of revealing triggering conditions, as well as

the independence between training and verification datasets.

Evidence includes a specification of desirable properties of

the datasets, a data selection policy, traceability between

the specified dataset properties and the derived safety
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requirements on the ML model, dataset balance validation

and a coverage analysis of the input space definition and

known triggering conditions.

• G3.2: The metadata associated with the datasets is

sufficiently accurate. This includes addressing insufficiencies

in the labeling of ground truth data used for supervised

learning and testing purposes. Manual labeling may lead to

a high error rate in the metadata which in turn will impact

the performance and accuracy of the verification of the ML

model. It may also be affected by unconscious bias where

specific classes of inputs are disproportionately impacted by

the labeling errors. Insufficiencies may also be introduced

by pre-processing techniques such as automated scaling and

transformation in order to convert data from multiple sources

into a common form.

Synthetic and augmented data (Shorten and Khoshgoftaar,

2019) can reduce the risk associated with data labeling (G3.2)

but can increase the risk that the fidelity or distribution does not

sufficiently match that of the target operating environment and

therefore requires additional argumentation in G3.1. In particular,

this can increase the risk of previously unknown triggering

conditions remaining undetected during development. The use of

publicly available and, therefore widely scrutinized datasets (e.g.,

Cordts et al., 2016; Kotseruba et al., 2016, can help to address

potential issues of completeness and integrity of the datasets.

However, where used in safety-critical applications, arguments

would be required to demonstrate the integrity of the metadata

associated with such datasets (Northcutt et al., 2021) as well as their

representativeness of the actual target domain.

5.3. Addressing performance insu�ciencies
in the design

The objective of claim G4 is to demonstrate that the selected

AI technology and design, including the selection of a suitable

set of hyperparameters is inherently capable of meeting the

safety requirements by minimizing the number of performance

insufficiencies in the ML model. This can include reference to

design measures that are identified in an iterative manner during

the development of the system and informed by performance

evaluation and subsequent safety analysis. As such, the objective is

to address technical system uncertainties as defined in Section 3. The

claim is further refined into a number of subclaims as follows:

• G4.1: The choice of ML technology and system design is

inherently sufficient to fulfill the safety requirements. This

claim includes a consideration of all necessary properties

of the ML model as well as the relationship between the

inherent task complexity, model expressiveness and achieved

model complexity as described in Section 4.2. For example,

if interpretability is required to achieve sufficient confidence

in the model, models should be inherently interpretable by

design (Rudin, 2019). Evidence to support this claim could

include analytical and empirical analysis as well as reference

to well-documented benchmarks for similar classes of tasks.

• G4.2: Measures during development are selected that

reduce safety-relevant performance insufficiencies in

the trained model. This claim includes reference to a

set of measures during development, that given sufficient

training data, minimize the occurrence of insufficiencies.

Optimization of the hyperparameters (Feurer and Hutter,

2019) of the model and its training procedure can reduce

insufficiencies, including a lack of robustness against

adversarial perturbations (Wang et al., 2021). Model

extensions such as reliable uncertainty estimation (Henne

et al., 2020) may enable runtime mechanisms to better

mitigate residual errors. Further measures may include the

avoidance of overfitting to improve generalization properties

(Anguita et al., 2012). Visual analytics (Haedecke et al., 2022)

can be a powerful tool during development to explore the

behavior on the trained model and to identify elements of the

inputs space where performance insufficiencies still need to

be addressed.

• G4.3: Architectural measures are defined to mitigate the

impact of known residual insufficiencies in the model. For

most realistic applications, it will not be possible to reduce

the insufficiencies in the ML model to an acceptable level.

Therefore, additional architectural measures may be necessary

to mitigate remaining errors. These measures can include

monitoring and plausibility checks based on redundant

calculations or semantic knowledge of the input space (e.g.,

maximum rate of movement for detected objects from

frame to frame). In addition, out-of-distribution detection

(Hendrycks et al., 2021) can be used to detect inputs during

runtime that are likely to lead to an erroneous result in the ML

model. Evidence associated with this claim should include an

evaluation of the effectiveness of the architectural measures in

terms of the types and proportion of residual errors that can

be mitigated.

• G4.4: Evaluation of the impact of the development

environment and tool chain. This claim argues that the level

of performance achieved and evaluated during development

is representative of the performance that will be achieved

during deployment within the technical system. This includes

an investigation into the impact of target execution hardware

on performance insufficiencies (e.g., due to differences

in mathematical precision or pruning of the DNN due

to resource restrictions). The claim will also include the

evaluation of confidence in the development tools themselves

to ensure that errors during training and deployment do not

lead to performance insufficiencies that are difficult to detect.

Supporting evidence may include target testing as well as tool

qualification and certification.

5.4. Evaluation of performance

The objective of claim G5 is to demonstrate that the

performance of the trained model is sufficient to meet the

requirements and to do so with as much certainty as possible.

As for claim G4 described above, this aims to address technical

system uncertainty as defined in Section 3. In its simplest form,

this step may consist of performing black-box testing against the
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safety requirements using a set of representative test data. However,

due to limitations described in Section 4 this is unlikely to lead

to a sufficient level of confidence without additional claims. G5 is

therefore further structured as follows:

• G5.1: Evaluation has demonstrated that all safety

requirements allocated to the ML have been met. This

involves demonstrating direct compliance to requirements

allocated to the ML model and can include executing the

model within either a simulated or its target system context

and typically involves black-box testing based on carefully

selected datasets. However, due to properties such as (lack of)

robustness, non-linearity, as well as complexity of the input

space and potential deficiencies in the datasets themselves,

the ability to extrapolate the results of the tests to all possible

inputs may be limited. Nevertheless, requirements-based

testing is essential also to validate that the derived safety-

related properties used to drive the design and verification

(see claims G5.x) of the model do indeed lead to a fulfillment

of the safety requirements.

• G5.x: Evaluation has demonstrated that safety-related

property X is fulfilled. This set of claims evaluates the

individual properties P that are required in order to minimize

the safety-related performance insufficiencies in the model.

The estimated failure rate with respect to different properties

P may be estimated using testing techniques or with formal

verification (Huang et al., 2020; Abrecht et al., 2021).

Formal verification can include an exhaustive exploration of

a bounded hypersphere defining the vicinity of particular

samples to demonstrate local robustness properties (Cheng

et al., 2017; Huang et al., 2017) and several techniques have

been put forward to apply constraint solving to this problem.

In general, formal verification may provide a more complete

estimation of specific properties but is currently limited in

its scalability and may only be realistically applied to a small

subset or an abstraction on the input space I. The selection

of representative samples for the basis of verification is also

reliant on a number of assumptions on and abstractions of the

input space, thus increasing uncertainty at Dow’s levels 3 and

4 for this type of evidence.

A number of test case generation techniques have been

proposed for generating efficient test data to verify specific

properties of the model. These techniques can be directed

by specific coverage metrics (Odena et al., 2019), making use

of Generative Adversarial Networks (GANs) for synthesizing

realistic scenarios (Zhang et al., 2018). Furthermore, test

adequacy can be evaluated using both structural (Sun et al.,

2018) and input space metrics (Gladisch et al., 2020).

5.5. Addressing insu�ciencies during
operation

The objective of claim G6 is to ensure that emerging

insufficiencies during operation are adequately addressed.

This can include addressing environmental/input space

uncertainty, e.g., in the form of detecting distributional shift

(Moreno-Torres et al., 2012) as well as observational/assurance

uncertainty by addressing previously unknown triggering

conditions detected during operation. Failures detected during

operation can be due to both specification and performance

insufficiencies. This claim is further structured as follows:

• G6.1: Technical measures are sufficient to detect and

mitigate residual and emerging insufficiencies during

operation. This claim involves justifying the effectiveness of

technical measures for detecting effects such as distributional

shift during operation. This may involve architectural

measures specific to the ML approach that extend (G4.3)

with the notion of resilience to previously unknown triggering

conditions, such as anomaly detection (Schorn and Gauerhof,

2020). The claim could also be supported by technical

measures at the system level such as fallback strategies upon

receiving indications of insufficiencies or high uncertainty in

the outputs of the model.

• G6.2: Procedural measures are sufficient to resolve residual

and emerging insufficiencies during operation. This claim

involves justifying the effectiveness of the operational response

to discovering unacceptable safety risk during operation. This

can include procedures for monitoring and data recording,

halting or restricting the use of the system, as well as ensuring

that updates to the model are implemented and deployed in

a safe fashion. This includes a demonstration of monotonic

safety improvements, i.e., changes in the model to improve

specific properties do not lead to an unacceptable degradation

in other properties.

6. Evaluating confidence in the
assurance argument

In this section, we apply the principles of Hawkins et al. (2011)

to identify areas of uncertainty within the argument itself. As

proposed in their paper, assurance claim points can be identified

within the assurance argument structure to indicate where an

additional confidence argument is necessary for asserted context,

solutions (related to evidences) and inference (related to the

assurance strategy itself). The definitions of uncertainty with

respect to the Dow hierarchy levels of Table 1 can be used to

determine how much confidence has been achieved for each type

of assertion. We illustrate this methodology by examining the

three types of assertions applied to several aspects of the assurance

argument as outlined in Section 5. Table 3 demonstrates how these

types of analysis could be applied to the assurance argument for a

DNN-based pedestrian recognition function.

6.1. Confidence in the reduction of
specification insu�ciencies

Specification insufficiencies are addressed within claim G2.

Confidence in the related assurance argument can be evaluated

as follows:
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TABLE 3 Analysis of confidence in assurance claims and potential improvement measures for ML-based pedestrian recognition task.

Claim Assertion
type

Issue Severity of uncertainty Improvement measures

G2.1: The input space is sufficiently

well defined...

Solution Incomplete understanding of what

constitutes a pedestrian (semantic

gap)

Only qualitative, definition of the

input space possible (E2.1.1)

leading to potential of severe

uncertainty and possibly ignorance

(level 4) of relevant characteristics

of pedestrians or the environment.

Simplification of safety

requirements to detect all obstacles

regardless of human or

non-human, more restrictive

assumptions on the environment,

continuous assurance to improve

confidence in observational

evidence (E2.1.2, E2.1.3)

G2.2: The derived safety

requirements are complete and

consistent...

Inference The safety-related properties of the

derived requirements do not reflect

insufficiencies that can lead to a

violation of the safety requirements

Uncertainty in the completeness

and validity of the safety-related

properties (level 3)

Systematic safety analysis based on

the results of (quantitative)

performance evaluation

G4.3: Architectural measures are

sufficient to mitigate residual

insufficiencies...

Context Difficulty in defining

out-of-distribution (OoD) inputs

due to a lack of confidence in G2.1

See G2.1 and lack of

interpretability of the DNNmodel

See G2.1

G4.3: Architectural measures are

sufficient to mitigate residual

insufficiencies...

Solution Difficulty in determining the

effectiveness of OoD detection

Confidence in quantitative

evidence to confirm the

effectiveness of the OoD detection

limited to Dow levels 3 and 4 due

to uncertainty in the definition of

OoD and the rarity of OoD events

Dedicated tests, including the use

of synthetic and augmented data

G4.3: Architectural measures are

sufficient to mitigate residual

insufficiencies...

Inference Uncertainty regarding the

relevance and the impact of OoD

inputs on the overall failure rate

Uncertainty in the definition of the

safety-related properties due to

insufficient insight into the true

causes of performance

insufficiencies (severe observational

uncertainty of the system)

Systematic safety analysis

supported by targeted experiments

to determine relevance of OoD on

erroneous outputs as well as the

probability of their occurrence in

the operating environment

• Asserted context: A prerequisite to the formulation

of sufficient set of detailed specifications on the ML

model is a sufficient understanding of the system

context and requirements allocated to the ML model as

well as all associated assumptions. This corresponds to

assumptions A1..A3 and contexts C1..C2. Insufficiencies in

this asserted context would undermine the confidence

in all subclaims of G2. The confidence with which

these assertions can be stated will depend highly on

the availability and nature of evidence provided at the

system level.

• Asserted solution: Figure 4 proposes a number of evidences

to support the subclaims of G2. Subclaim G2.1 expresses that

the input space of the ML model is sufficiently well defined

to ensure the completeness of derived safety requirements as

well as training and test data. This corresponds to expressing

that the input space uncertainty has been sufficiently reduced.

Proposed evidence includes the use of standardized definitions

to describe the semantic input space (E2.1.1), a set of

known triggering conditions (E2.1.2) as well as empirical

observations used to confirm the understanding on the

input space (E2.1.3). Confidence arguments associated with

these asserted solutions will involve demonstrating both the

trustworthiness and appropriateness of the evidence as well

as ensuring that potential deficits in the evidence have been

identified and are found to be acceptable (Hawkins et al.,

2011). E2.1.1 is inherently qualitative in nature leading to

the potential for Level 4 uncertainty in the Dow hierarchy.

In order to achieve confidence in the definition of the

input space, evidences E2.1.2 and E2.1.3 should therefore

ensure that direct observations can be called upon to confirm

this definition, thus increasing the level of knowledge of

structural relationships within the system. However, due to

environmental complexity, it may be challenging to achieve

confidence in these evidences unless sufficiently restrictive

assumptions on the input space and system context can

be made. Otherwise, the resulting ontological uncertainty

would need to be resolved via external measures in the

system or more extensive evidence in the form of E2.1.2

and E2.1.3 collected over a longer period of time as part of

continuous assurance activities (see below) in order to reduce

observational uncertainty.

• Asserted inference: Subclaim G2.2 claims the completeness

and consistency of the derived safety requirements on the

model, based on strategy S2.2 which makes use of a set

of common properties associated with the safety of ML

models (Context C4). Confidence in the validity of this

strategy will depend upon determining that the fulfillment

of the safety requirements can indeed be guaranteed by

this set of properties. As described in Section 4, the

identification of derived safety requirements and a suitable

set of measurable properties depends on the task complexity.

As above, achieving a confidence to Dow levels 1..4 of this

assertion may require either restricting the complexity of

the environment and task at the system level or collecting

sufficient observations through continuous assurance in

the target environment to argue confidence in the choice

of properties.
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6.2. Confidence in out-of-distribution
detection to reduce performance
insu�ciencies

Subclaim G4.3 includes the definition of a number of

architectural measures to minimize the impact of performance

insufficiencies including out-of-distribution detection (OoDD) to

detect to previously unseen inputs that lead to high uncertainty in

the outputs of the model. The following conditions are of particular

importance in ensuring confidence in this claim.

• Asserted context: The choice of OoDD as a measure depends

on the assumptions that OoD inputs may be present during

the operation phase of the ML model, and that these may

lead to a measurable impact on the fulfillment of safety

requirements. This requires two conditions to be fulfilled: the

potential for OoD inputs to occur in the field, which itself

requires confidence in the definition of in-distribution (ID)

inputs and the contribution of such inputs to the overall

system failure rate.

• Asserted solution: Evidence to confirm the effectiveness of the

OoDDmeasure can include empirical experiments performed

under well-defined conditions. However Dow levels 3 and 4

will be harder to achieve due to the difficulty in justifying the

set of conditions under which the measurements are made.

This is due to the need for a sufficiently precise specification

of ID and OoD inputs as well as the ability to distinguish

between failures caused by OoD inputs and failures caused by

other insufficiencies present in the model. This can be seen as

another manifestation of observational uncertainty.

• Asserted inference: Confidence in the assertion that the use

of OoDD in itself is a relevant strategy can be undermined

by the difficulty in demonstrating causalities between errors

in the outputs of the ML and their respective causes. This

is exacerbated by the difficulty in providing a sufficient

definition of OoD inputs (see above) as well as the rarity of

their occurrence.

6.3. Closing the assurance gaps

As described above, there are significant challenges involved in

achieving a sufficient level of confidence in the assurance argument

for ML models. This lack of confidence can be eventually traced

back to the manifestations of uncertainty described in Figure 2

and Section 3. This inevitably leads to the question of whether or

not it is realistic to expect that a sufficiently convincing assurance

argument can be made for complex cyber-physical systems that

make use ofML such as automated driving systems, mobile logistics

robots or medical devices. We argue that the key to answering this

question is to understand and acknowledge the uncertainties in

the assurance argument by applying the definitions and approach

described in this paper, combined with restricting the complexity

of the conditions in which the system is deployed in order to

counteract the resulting residual risk.

To operationalise this approach we propose an inherently

iterative process of safety assurance as described in Figure 5.

The process should be seen within the context of wider system

development and deployment procedures, which are not detailed

here. The ML safety lifecycle begins with the derivation of a set of

safety requirements on theMLmodel based on the allocated system

level requirements. The “inner” loop of the process follows repeated

cycles of data collection, training, evaluation, and optimisation.

This process is extended with an explicit safety analysis step to

evaluate the impact and causes of performance insufficiencies

on the safety requirements. The analysis can be deductive or

inductive in nature or a combination of both and has the objective

to analyze insufficiencies in the model that could lead to the

violation of safety requirements and their underlying causes.

Based on the result, a set of additional safety properties may

be defined to extend safety requirements as well as additional

measures for data selection, design and evaluation of theMLmodel.

The safety analysis is therefore a key driver for understanding

specification and performance insufficiencies and reducing the

corresponding uncertainty. If a convergence on evidence to support

the safety requirements cannot be achieved, a renegotiation of

safety requirements themselves may be necessary. This includes

communication of known residual insufficiencies in the ML

model to the system integrator such that compensatory measures

can be designed at the system level. For example, performance

requirements on the ML model may be relaxed based on the

introduction of redundant perception or planning mechanisms

at the system level. The inner loop of the process is repeated

until sufficient evidence is collected to form the safety assurance

argument, as outlined in Section 5. Once complete, confidence in

the assurance analysis can then be evaluated, e.g., based on the

method described above. If deficits are identified in the argument,

this could lead to a re-evaluation of the requirements and more

repetitions of the inner loop. Once the confidence in the assurance

argument has been confirmed, the ML model can be deployed

within its operational context.

The “outer” loop is triggered by knowledge gained during

operation which can take the following form. Observations

are collected that either reduce environmental/input space and

observational/data uncertainty or increase them, e.g., by observing

previously unknown triggering conditions or contradictions in

assumptions made regarding the environment or system context.

In the former case, increased confidence in the assurance of the

system and reduced uncertainty could allow for a loosening of

operating restrictions and assumptions on the environment to

increase utility of the system. This would nevertheless require

a repetition of the assurance lifecycle and re-evaluation of the

assurance argument. In the latter case, changes within the system

or its context could lead to an increase in the actual achieved

residual risk. Assurance arguments and evidence supporting the

claim could lose their credibility over time if contradicting evidence

comes to light, or assumptions under which claims were made no

longer hold true. This could result in the removal from service or a

restriction in the operating conditions until an assurance argument

that takes this new knowledge into account can be constructed with

sufficient confidence.

7. Discussion and future work

In this paper, we presented a framework for reasoning about

confidence in the assurance of ML-based safety-critical functions.
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FIGURE 5

Iterative development and continuous assurance.

By applying a set of definitions of uncertainty to this problem we

can evaluate which statements can be made about the safety of

ML for a particular application and which cannot. In particular we

show that certain claims of an assurance argument can be made

with more confidence than others. ML itself is based on statistical

modeling techniques, whilst the occurrence of properties of the

input space (triggering conditions) that can lead to failures can

often only be reasoned about in a restricted probabilistic manner

due to the complexity of the environment and uncertainties in

the observation. It should therefore come as no surprise that the

safety assurance of ML will require statistical arguments regarding

the residual failure rates of the system, but the strength of these

statistical arguments rely on a number of qualitative assumptions.

A safety assurance argument therefore inevitably needs to consist of

a combination of quantitative and qualitative assertions all of which

may be subject to different levels of uncertainty. An awareness of

sources of uncertainty in the assurance argument is key to closing

these gaps asmore evidence is collected and a deeper understanding

of the system and its environment is gained.

Arguing the absence (or sufficiently low probability) of

specific manifestations of performance insufficiencies, e.g.,

lack of robustness to slight perturbations in the input, can

rely on quantitative evidence collected during development.

However, sufficient confidence across the Dow hierarchy

is required to be able to make decisions under risk [as

defined by Knight (1921)]. This can only be achieved if

certain assumptions are met. On the other hand, arguing the

absence of specification insufficiencies, including the absence

of unknown unknowns in the definition of the input space

might only be arguable qualitatively during development with

indirect quantitative evidence (e.g., residual accident rates) being

collected during operation to indicate the presence or absence of

residual insufficiencies.

The level of achievable confidence for such arguments will

inevitably be dependent upon the actual (rather than perceived

or assumed) complexity of the environment, system and task

itself. Specification insufficiencies also have a direct impact

on the selection of training and testing data. As specification

uncertainty is an expression of the semantic gap (Burton et al.,

2020) and thereby complexity of the environment, the system

and the inherent complexity of the task to be performed,

restricting these factors will inevitably reduce the potential

for resulting uncertainty in the assurance argument. Residual

uncertainty in the assurance argument will, however inevitably

remain. Therefore we describe the role of continuous assurance

with a targeted focus on resolving assurance uncertainties to

increase confidence in the system, thus allowing the restrictions

on the environmental, task and system complexity to be

incrementally lifted.

Based on these reflections, for which classes of ML systems

can reliable safety assurance claims be made? The analysis in

this paper leads to the unsurprising conclusions that where

there is high uncertainty in the environment and task, but a

high level of certainty in understanding the system behavior, a

systematically and continuously developed and evaluated assurance

argument may eventually lead to a sufficient level of confidence.

Likewise, where there is low uncertainty in the specification but

high uncertainty in understanding the system behavior (e.g., a

DNN with an inherent lack of interpretability is used to learn

a well defined, relatively low complexity task), a convincing

assurance argument might also be developed. However, where

there is a high level of uncertainty in the environment, task

and the system itself, a convincing safety assurance argument

in an acceptably low level of residual risk is not conceivable

based on current methods and technologies. This also implies

that there will be no “one size fits all” solution to safety

assurance arguments for ML. This paper should therefore

provide useful guidance when developing robust assurance

arguments for ML and determining under which conditions such

arguments cannot be made for specific applications and choice of

ML technologies.

We see this paper an initial step in a systematic treatment

of uncertainty in the safety assurance of ML-based systems and

identify a number of areas of potentially interesting research.
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Firstly, a better definition and understanding of the inherent

task and environmental complexity and environmental would

provide means to determine whether or not an assurance argument

for a specific problem can be conceivably achieved. This might

include providing criteria for comparative evaluation of tasks to

determine to which extent demonstratively successful assurance

strategies can be transferred to new domains. This work could

be supported by the application of the framework to a number

of use cases with variations in environmental, task and system

complexity to better understand the factors impacting confidence

in the assurance argument. Secondly, we see the need to consider

the problem of asserted inference when proposing new metrics

or methods for providing evidence for the safety of ML. When

developing innovative techniques, e.g., for improving robustness,

OoD detection or prediction certainty, the set of assumptions on

the impact of these properties on the safety requirements and

means to demonstrate both the relevance and effectiveness of the

techniques should be explicitly considered. Otherwise uncertainty

in the assurance arguments making use of this evidence will

inevitably remain. Lastly, we see potential for the extension and

application of existing techniques for a quantitative evaluation of

assurance argument confidence (see Section 2, but not applied

here). A combination of these approaches with the categories

and severity of uncertainty used in this paper may allow for

improved tool support for constructing and evaluating assurance

arguments. This may include support for impact analysis and

automated re-evaluation based on newly collected observations

during operation.
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