
TYPE Methods

PUBLISHED 11 April 2023

DOI 10.3389/fcomp.2023.1125055

OPEN ACCESS

EDITED BY

Ali Shoker,

King Abdullah University of Science and

Technology, Saudi Arabia

REVIEWED BY

Fernando Alves,

Vortex-CoLab, Portugal

Savio Sciancalepore,

Eindhovenx University of Technology,

Netherlands

Jorrit Olthuis,

Eindhoven University of Technology,

Netherlands, in collaboration with reviewer SS

*CORRESPONDENCE

Federico Lucchetti

federico.lucchetti@uni.lu

SPECIALTY SECTION

This article was submitted to

Computer Security,

a section of the journal

Frontiers in Computer Science

RECEIVED 15 December 2022

ACCEPTED 14 March 2023

PUBLISHED 11 April 2023

CITATION

Lucchetti F, Graczyk R and Völp M (2023)

Toward resilient autonomous driving—An

experience report on integrating resilience

mechanisms into the Apollo autonomous

driving software stack.

Front. Comput. Sci. 5:1125055.

doi: 10.3389/fcomp.2023.1125055

COPYRIGHT

© 2023 Lucchetti, Graczyk and Völp. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Toward resilient autonomous
driving—An experience report on
integrating resilience mechanisms
into the Apollo autonomous
driving software stack

Federico Lucchetti*, Rafal Graczyk and Marcus Völp

Critical and Extreme Security and Dependability Group (CritiX), Interdisciplinary Centre for Security

Reliability and Trust, University of Luxembourg, Luxembourg, Luxembourg

Autonomous driver assistance systems (ADAS) have been progressively pushed

to extremes. Today, increasingly sophisticated algorithms, such as deep neural

networks, assume responsibility for critical driving functionality, including

operating the vehicle at various levels of autonomy. Elaborate obstacle detection,

classification, and prediction algorithms, mostly vision-based, trajectory planning,

and smooth control algorithms, take over what humans learn until they are

permitted to control vehicles and beyond. And even if humans remain in the loop

(e.g., to intervene in case of error, as required by autonomy levels 3 and 4), it

remains questionable whether distracted human drivers will react appropriately,

given the high speed at which vehicles drive and the complex tra�c situations

they have to cope with. A further pitfall is trusting the whole autonomous driving

stack not to fail due to accidental causes and to be robust against cyberattacks

of increasing sophistication. In this experience report, we share our findings in

retrofitting application-agnostic resiliencemechanisms into an existing hardware-

/software-stack for autonomous driving—Apollo—as well as where application

knowledge helps improve existing resilience algorithms. Our goal is to ultimately

decrease the vulnerability of autonomously driving vehicles to accidental faults

and attacks, allowing them to absorb and tolerate both, as well as to come out

of them at least as secure as before the attack has happened. We demonstrate

replication and rejuvenation on the driving stack’s Control module and indicate

how this resilience can be extended both downwards to the hardware level, as

well as upwards to the prediction and planning modules.

KEYWORDS

autonomous driving, resilience, fault and intrusion tolerance, Apollo, SVL simulator

1. Introduction

Over the years, autonomously driving vehicles (ADVs) have been progressively

equipped with increasingly elaborate features to enhance driving experience and autonomy,

ranging from high-resolution sensors to deep neural networks. Today, this increasing

sophistication forms the backbone of indispensable computer vision algorithms, enabling

precise obstacle perception, optimized trajectory planners, and smooth control algorithms,

and has effectively been successful to asymptotically poke the level of driving automation to

a higher standard. On the contrary, increasing complexity goes hand in hand with increasing

vulnerability in any cyber-physical system (CPS). New pathways for malicious intrusions are

opened up and the appearance of new faults becomes more probable, consequently resulting

in dangerous and sometimes fatal outcomes.

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2023.1125055
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2023.1125055&domain=pdf&date_stamp=2023-04-11
mailto:federico.lucchetti@uni.lu
https://doi.org/10.3389/fcomp.2023.1125055
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2023.1125055/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Lucchetti et al. 10.3389/fcomp.2023.1125055

Unfortunately, over the last 20 years, there has been no shortage

of bad outcomes involving ADVs, many of which have been

caused by unintended accelerations (UA) which killed 89 people

(cbs, 2010). Erroneous behaviors such as UAs that are related

specifically to the components that enable the autonomy of ADVs

and independent from the human driver can potentially have two

origins, either accidental due to an internal fault and/or absent fail-

safe mechanism or provoked due to the presence of a malicious

attacker (Lima et al., 2016).

Only by convincing the human driver of its trustworthiness can

automation take over. In this regard, resilience of ADVs has to play

a crucial role in triggering an effective adoption of ADVs by the

general public at scale. In other words, because we expect that faults

at any level will occur inevitably, infusing ADVs with mechanisms

that enable tolerating those faults is of utmost importance. In the

presence of faults, the notion of a responsibility gap arises naturally.

This gap is characterized by situations in which it is unclear who

can justifiably be held responsible for an unintended catastrophic

outcome. The width of this gray zone is even more amplified

by the over-reliance of modern-day ADVs’ modules on artificial

neural networks (NN). Not only are the safety and reliability

of these modules rarely studied in cooperation with the whole

ADV software stack (Peng et al., 2020) but they also inherited the

connectionist bug of non-explainability.

In addition to their black-box nature, NNs are subject to usual

faults which can reside in software or due to hardware issues

(Torres-Huitzil and Girau, 2017). In the former, NNs can be

reprogrammed (Elsayed et al., 2018), evaded (Eykholt et al., 2018),

and data-poisoned (Aghakhani et al., 2021) by malicious intruders

during the inference and/or the training phase, not to forget that

NNs are subject to faults originating at the hardware level. Either

transitory or permanent faults, such as stuck-at or bit-flip types,

can alter the parameter space of the NN or lead to an erroneous

computation of the hidden layer activation function (Arad and

El-Amawy, 1997).

Similarly, sensors are not spared from attacks. Bad actors can

modify the lane-keeping system by installing dirty road patches

and ultimately causing the ADV to drift away from its lane (Sato

et al., 2021). Jamming the cameras’ modules (Panoff et al., 2021) or

LIDAR spoofing attacks (Zhou et al., 2021) to inject false obstacle

depth lead to false sensor data and hence causes the ADV data

processing chain to compute erroneous control commands. In

these cases, the health of the sensors is not compromised hence

remain undetected by traditional fault detection schemes.

Common ADV software stacks, like Apollo Baidu (2017),

are typically composed of a chain of interlocked modules that

process information starting from the perception module down

to the control algorithms, where the planned trajectory is

transformed into ECU instructions. Because of this downstream

interdependence and where the computation and safe execution

of control commands are all causally interlinked, failure of an

intermediary module can propagate through this information

processing chain and lead to unexpected behaviors.

Efforts have been made to overcome the existence of single

point of failures where, for example, perception information is

rendered redundant by gathering raw data from independent

modalities (RGB cameras, LIDAR, and RADAR) and fused to

dilute the presence of a possible faulty device (Darms et al., 2008).

However, redundancy implies that additional computational cost

and certain modules that comprise GPU-resource greedy NNs

cannot cheaply be replicated. Geng and Liu (2020) have focused

their efforts on designing a model adaptive control algorithm

for robust path tracking control and equipped the sensor fusion

module with fault detection capabilities to enhance the overall fault

tolerance of the ADV. Validating ADV software in a real physical

environment is costly and does not scale sufficiently to cover

all possible driving scenarios. Moreover, deploying ADV software

directly on-road can be dangerous. Hence, interfacing physics

simulators, such as SVL (Rong et al., 2020), with ADV software

stacks is of fundamental importance to guarantee quality assurance

in the automotive sector, as required by the evolving standard ISO

21448: Safety of the Intended functionality (Iso, 2019). Relevant to

the study presented herein, Ebadi et al. (2021) have stress tested the

autopilot enabled by the Apollo ADV software stack inside the SVL

simulation environment by generating a set of edge cases where

the Perception module was unable to detect pedestrians. Similarly,

Seymour et al. (2021) created 576 test cases in the SVL simulator

to assess the safety of the Apollo ADV software stack and observed

that the perception modules failed to detect pedestrians in 10 % of

the total number of scenarios tested.

1.1. Related work

Darms et al. (2008) studied fault tolerance when fusing different

sensor modalities to mask eventual faulty sensor outputs. Geng and

Liu (2020) designed a model adaptive control algorithm for robust

path tracking control and equipped the sensor fusion module with

fault detection capabilities to enhance the overall fault tolerance of

the ADV. Ebadi et al. (2021) tested the Apollo ADV software stack

in conjunction with SVL and generated a set of driving scenarios

where the Perception module was unable to detect pedestrians.

Seymour et al. (2021) created test cases in the SVL simulator

where the Perception modules failed to detect pedestrian. Abad

et al. (2016) studied the set of sufficient conditions under which

recovery of software-faulty modules in cyber-physical systems can

be deemed safes. Abdi et al. (2018) leverage the fact that due to

the inertia of certain cyber-physical systems, an intruder cannot

destabilize the physical system hence they were able to implement

a safe and fast system-wide restart. Chu and Wah (1990) applied

redundancy in trained NNs on individual neurons. Khunasaraphan

et al. (1994) developed a NN weight-shifting technique which

after fault detection restores weights and subsequently recovers the

entire NN in a short amount of time.

This study documents our work in designing fault and

intrusion tolerant (FIT) mechanisms applied to ADVs where we

demonstrate the feasibility of applying those mechanisms into the

sub-components of the Apollo ADV software stack and testing

them in different driving scenarios generated by the SVL simulator.

In particular, we give a qualitative description of a novel recovery

scheme which enables the ADV, in the presence of a detected fault

at the sensor level, to maintain a stable trajectory by leveraging

the availability of predicted future sensor values which upon

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1125055
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Lucchetti et al. 10.3389/fcomp.2023.1125055

verification are fed back to the Prediction module while the

Perception module is rebooting.

The recovery scheme proposed herein positions itself in the

class of shallow recovery, which entails methods that repair

compromised sub-component of a CPS with minimal or no

operation on the system states. For example, Abad et al. (2016)

developed a technique that restarts a failed component and

substitutes it with a healthy one, whereas Shin et al. (2018) propose

to leverage redundancy to fuse the output ofmultiple replicas where

upon attack detection isolate and restart the origin of the faulty

contribution. Much more reminiscent of the recovery method

described in this work has been evaluated by Kong et al. (2018)

where a checkpointing scheme is put in place to store historical

state data and its correctness is verified before restoring it for the

recovery of compromised sensors.

1.2. Organization of this article

• We lay out the system architecture of a popular ADV software

stack and give a description of how to embed it in a simulated

physics environment using SVL.

• We highlight some vulnerabilities of Apollo and describe the

threat model.

• We describe the FIT mechanisms that we implemented in

three Apollo modules.

• We showcase and validate two of these mechanisms by

interfacing the Apollo ADV software stack with the SVL

simulation environment.

2. Apollo ADV software stack
architecture

2.1. Description

Apollo is an industrial intelligent-ADV open-source software

stack maintained by Baidu (2017) and is currently deployed in

autonomous taxi services in different cities around the world.

The code architecture follows a standard logic found in other

ADV software stacks, in which various software and hardware

components are integrated together following a complex logic.

The architecture (see Figure 1) of Apollo can be simplified as

a hierarchical processing chain of information starting from the

perception module and trickling down to the CANbus as follows:

• Perception contains the different sensor drivers and the

trained machine-learning tools for sensor fusion and obstacle

detection.

• Prediction receives the recognized obstacles from the

Perception module and predicts, via a collection of trained

ML sub-modules, their probable trajectory with a prediction

horizon of 8 s.

• Planning, upon gathering localization information from the

localization system, routing information and the predicted

obstacle trajectories from the Prediction module, computes

the safest and shortest trajectory to be taken by the ego car.

• Control translates via path tracking control algorithms

the received spatio-temporal trajectory coordinates of the

Planning module into steering, braking, and throttling

commands.

• CAN (or similar field busses or in-car networks)

communicates the control commands from the Control

module to the relevant ECUs and the actuators they control.

The Perceptionmodule is scheduled recurringly with a fixed period.

Prediction, Planning, and Control are event-triggered as new data

frames come in.

2.2. Simulator

The SVL simulator is a multi-robot simulator for ADVs

maintained by LG Electronics America R&D Lab (Rong et al.,

2020). SVL is able to generate a whole range of different

maps and obstacles, such as road vehicles and pedestrians.

It allows customizing driving scenarios and publishing them

to an ADV software stack, such as Apollo, via the CyberRT

bridge connection.

2.3. Implementation

Apollo leverages containers to isolate and protect its

components. Containers offer a restricted execution environment

with container-to-container communication possibilities and

are hosted in Apollo on top of a Linux-based operating system.

We assume for a deployed system that the containers of

critical components (such as control) will be hosted directly

on top of a real-time operating system (RTOS) that is capable

of offering the required isolation. Of course, the RTOS in

such architectures forms a single point of failure, which must

be addressed in future [e.g., as demonstrated in the Midir

architecture (Gouveia et al., 2022)].

For the above-mentioned reason, we implemented the

resilience mechanisms discussed in this study at container-level,

replicating, and restarting containers to tolerate faults and to

rejuvenate replicas, but also to isolate voters and the trusted storage

system. However, this leaves, when it comes to communicating

agreed-upon trajectories, the underlying driver infrastructure as a

single point of failure, which we address next.

2.4. Vulnerabilities

A first-order analysis of the ADV architecture (see Figure 1)

reveals that every module is a single point of failure. That is, a

fault, triggering an error in any one module along the information

processing chain can either produce an erroneous computation of

subsequent modules or impede the latter from receiving timely

information, which disrupts the generation of correct and timely

control commands to the ECU.We address this lack of redundancy

in the following sections and demonstrate how FIT designs can

mitigate the risks of component failures.

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1125055
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Lucchetti et al. 10.3389/fcomp.2023.1125055

FIGURE 1

Apollo software architecture and bridge connection with SVL.

3. FIT and resilience mechanisms for
autonomous vehicles

3.1. Threat model

In this work, we are primarily concerned about mitigating

negative effects from accidental faults and cyberattacks on

autonomous vehicle driving functions. As such, our fault model

concentrates on the interior components. We consider sensor-

level attacks as well as model extraction and adversarial machine-

learning attacks.

We follow the fault model introduced by Sousa et al. (2009).

That is, during any time window of length TA, most f components

may fail for accidental or malicious reasons. TA thereby considers

the time adversaries require to overcome the fault threshold f

of simultaneous faults that the system should tolerate. In case of

accidental faulty components, TA includes as well the time needed

to adjust to these accidental faults for exploiting them in their

attack.

As Sousa identified, rejuvenating all n replicas faster than TA

(i.e., with a rejuvenation time
⌈

n
k

⌉

. TR < TA, where k replicas are

rejuvenated simultaneously) maintains the healthy majority over

extended periods of time.

As usual, we assume replicated components to be properly

isolated and sufficiently diverse (e.g., through obfuscation) so

that they can be assumed to fail independently with high

coverage. Indeed, we cannot avoid equivocation between replicated

components that read from the same input buffer, we can

nevertheless mitigate equivocation by letting them copy out

the original input and comparing this input together with the

respective processed outputs through a trusted voting mechanism

Alternatively, a trusted operating system (which we assume is in

place and establishes containers as fault containment domains)

copies the proposed value to all replicas, avoiding equivocation in

the process.

Our design is a hybrid architecture. That is, we differentiate the

fault model of our trusted components: state storage and voters (see

next section). While normal components can fail in an arbitrary

TABLE 1 Resource consumption per Apollo module in terms of a RAM

and video RAM.

Module RAM [GiB] VRAM [GiB]

Perception <0.1 6.71

Prediction <0.1 3.21

Planning 0.40 None

Control 0.07 None

Byzantine manner, state storage and voters must not fail, which

we justify through their simplicity in terms of the number of lines

of code (<100) and are implemented as trivial state machines. In

particular, for state storage, we assume that techniques such as ECC

and scrubbing are in place to correct the effects of accidental faults

in the stored data.

3.2. Control module replication

For deciding which module could benefit from a state machine

replication scheme, we monitored the resource consumption

during a test drive of every Apollo module in terms of memory

(RAM and video VRAM) with the use of the system-monitor

process viewers HTOP and NVTOP. We report the maximal

amount of resource consumption in Table 1. Since the Control

module is the lightest in terms of resource consumption, it lends

itself optimally well for N-fold state machine replication. Control

receives trajectories from planning, validates them, and forwards

control commands to the ECU, by sending commands over the in-

car networks. Since ECUs are, in general, not aware of the replicated

nature of control, a trusted voting mechanism suggests itself to

consolidate the control outputs of the individual replicas to a single

command stream, masking up to f faults behind a f + 1 majority

of correct outputs (see Figure 2). For a given vote, we only consider

control commands that are timestamped inside the same temporal

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1125055
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Lucchetti et al. 10.3389/fcomp.2023.1125055

FIGURE 2

Triple control module replication with voter module.

window of size 5 ms. If no majority is reached, the time window

is skipped.

3.3. Perception module rejuvenation

In this FIT scheme, we consider sensor-level attacks that are

detected by Apollo leading to a shutdown of the Perceptionmodule.

The complex comprised of the Prediction, and the Perception

forms the most GPU-resource intensive component (see Table 1)

as it heavily relies on NN-powered functions during the feed-

forward stage. Therefore, a module replication would be too costly.

A different route to implement an intrusion tolerant mechanism

is to repair the Perception module and reboot it fast enough

to remove adversaries and ensure that the Planning module is

supplied with timely obstacle predictions to compute a safe ego-

car trajectory. Indeed, the large NNmatrices that need to be loaded

into GPU memory, leading to boot-up times of up to 4 s in Apollo,

make the prospects for a fast and safe Perception module reboot

impossible. While the failed Perception module is restarting, it

is effectively non-operational and therefore unable to supply the

Predictionmodule with fresh processed sensor data. The Prediction

module estimates the future trajectory of every detected obstacle,

hence a one-time instance of the batch of future spatio-temporal

trajectory coordinates can be used to temporarily substitute missing

Perception output frames. This can be achieved by designing a

State Storage module (see Figure 3) acting as a buffer to record and

save the predicted obstacle trajectories and make them available to

the Prediction module whenever the Perception module is non-

responsive.

The temporal logic of this mechanism is illustrated in Figure 4.

We denote hi as the data frame produced by the Perception module

at time i; hj = hj,0, ..., hj,i, ..., hj,N is the batch of predicted obstacle

trajectories produced at time instance j, referred to as states. One

batch is composed ofN samples where one sample hj,i is the spatio-

temporal trajectory coordinate corresponding to the future instance

at time ti = i · 1t and hj,0 = hj. We save hj in the State Storage

module. We denote by tF the onset time of the Perception module

reboot. At time tF + ti we restore hF,i = hj and continue until

the Perception module reboots and starts supplying the Prediction

module with fresh data.

Moreover, not all states can be deemed safe for restoration,

because of the two following scenarios:

1. A possible misbehavior in the Perception module leading to

wrong output either due to a sensor sampling error, jamming

and spoofing attack, or a processing error at the level of the

neural net modules.

2. Saved states contain future-detected obstacle trajectories that

have been predicted based on past events (before tF). It would be

dangerous to restore states that have been stored when the ego-

car, at time tF , transitions from a relatively predictable situation

(highway with little traffic) to a chaotic unpredictable situation

(intersection crossing with pedestrians).

The first concern can be mitigated by recognizing that a missing

or spoofed time frame should be, to some degree, detectable by

a lack of continuity in the recorded data stream. This can be

mathematically formulated by means of a continuity check based

on the Lipschitz’ λ-continuity definition applied to a sequence of

past recorded Perception module outputs. That is, if there exists

a function f , which admits a finite λ ∈ R such that ‖f (hj,0) −

f (hj+1,0)‖ ≤ λ‖hj,0 − hj+1,0‖ ∀j = 0, ..., F then all hj,0 are deemed

continuous.

The second concern can be avoided by adding a constraint to

state restoration by estimating the entropy or the temperature of

the predicted scene and setting a threshold under which a state is

deemed safe to be restored. Intuitively, these statistical measures

are directly related to the notion of predictability. For instance, a

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1125055
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Lucchetti et al. 10.3389/fcomp.2023.1125055

FIGURE 3

Perception module recovery. Parameters tF and TRB denote the onset of the reboot and reboot time of the prediction module, respectively. hk is the

stored state corresponding to the future time instance k and 1t is the sampling period of the prediction module output.

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1125055
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Lucchetti et al. 10.3389/fcomp.2023.1125055

FIGURE 4

Temporal logic schematic of Perception module rejuvenation.

proximal fast-moving truck is considered to be a greater concern

than a distant slow-moving pedestrian. Hence, we can intuitively

sketch the general trend for such a measure. Predictability H(t)

should:

• decrease as a function of the prediction time,

• decrease with the ego-car speed because in a fast varying

environment, new obstacles enter and/or leave the detection

range,

• decrease with the relative speed of the ego-car with respect to

the detected obstacles as the latter are more likely to pose a

collision threat,

• increases with the relative distance between the ego-car and

the detected obstacles, as the likelihood of a collision, is

reduced.

Finally, the design of a fault recovery scheme that

repairs a compromised Perception module and allows

the ADV to continue to operate seemingly in the

presence of an intrusion is bounded by the inequalities

(TRB ≤ N1t) &

(

TRB ≤ max

(

arg
t
{H(t) ≤ Hth}

))

, where

Hth is the threshold value which controls how many potentially

unsafe states are tolerated for restoration. That is, the prediction

horizon needs to be long enough to give the Perception module

enough margin to recover but at the same time the latter has to

reboot faster than the last and sufficiently predict internal state

to avoid feeding back samples to the Prediction module with low

confidence scores.

3.4. Toward device-driver replication

In addition to protecting the high-level components of the

software stack (perception, prediction, and control), we must also

address faults at lower-level software components, which interact

with ECUs (e.g., by sending messages over the CAN bus) or which

otherwise interact with hardware.

Operating-system code interacts with devices through

memory-mapped registers (MMIO) and interrupts, triggered by

the device on a CPU. Writes to certain device registers may have

side effects, such as the sending of a packet over the network.

Therefore, to interact with devices in a fault-tolerant manner, we

ultimately need to systematically forward interrupts to all replicas

for interrupt handling and vote on all critical register writes.

We approach consensual OS-to-device interaction by

replicating the SPI driver, leveraging Linux’s user-level driver

support, which in our setup communicates with the CAN-bus

controllers on the PICAN Raspberry-PI hat. That is, before

commands are sent to the CAN hat, consensus must be reached

and all direct MMIO writes be redirected through voters.

Of course, this is only a partial solution, since some devices may

have side effects on reads and delicate timing requirements in their

interface, which need a more elaborate investigation of the voter

interface, which interposes device access. We will investigate such

interfaces as part of our future work.

In a pure simulation environment without the necessary

hardware, it is impossible to validate the behavior of a

CANbus replication. We can nevertheless put forward a few

ways on how this could be practically implemented. Indeed a

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1125055
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Lucchetti et al. 10.3389/fcomp.2023.1125055

FIGURE 5

(A–C) Three di�erent CANbus replication schemes in conjunction with a Control module replication.

TABLE 2 CANbus replication FIT properties.

Scheme NRounds Scalability Fault tolerance

A 2 O(n) CANbus i state depends

on control i state

B 3 O(n) All nodes can fail

independently

C 3 O(n2) All nodes can fail

independently

CANbus replication could feasibly be integrated inside the Apollo

software stack architecture in conjunction with a Control module

replication. Three obvious schemes are depicted on Figure 5, each

varying by number of communication rounds NRounds, scalability

of the number of exchanged messages, and their capacity to tolerate

faults summarized in Table 2.

4. Evaluations

4.1. Setup

We evaluate the FIT schemes by running simulations on a

desktop PC with the following specification:

• Ubuntu 20.04

• AMD Ryzen 7 3700X 8-Core Processor @ 3.6GHz X 16

• 62,7 GiB of RAM

• NVIDIA GeForce RTX3090

• Baidu Apollo 6.0

• SVL simulator 2021.1 interfaced with Apollo via CyberRT

bridge

• Cuda 11.4, Nvidia Docker 20.10.8

4.2. Control replication

We duplicated the original Control module resulting in three

instances and monitored the three main control commands;

steering angle, brake, and throttling intensities. We simulated a

worst-case instance of one faulty replica by adding white noise to

its output stretching over the whole range of values that each of

the control commands can take. Each of the replicas published

the computed control commands to the Voter Control module

via the CyberRT channel which were subsequently submitted

to a vote if they belonged to the same temporal window (5

ms). Whenever a majority of 2 was reached, the result of the

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1125055
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Lucchetti et al. 10.3389/fcomp.2023.1125055

FIGURE 6

Top: High predictability, low risk for accident scenario. Bottom: Low predictability high risk for accident scenario.

voting was published back to the SVL simulator for actuation,

otherwise the vote was skipped. We simulated in SVL a 2-min

driving scenario involving crossing 10 intersections with high

traffic and pedestrians. We report a stable trajectory execution

despite the presence of one faulty Control module replica, with

an overhead of 70 MiB RAM per additional replica, 16 Mib

RAM for the added Voter module, and an added 2 ms latency.

Less than 0.05 % of votes have been skipped due to a delayed

replica response. We measured the relative error between the

output of a healthy replica and the output of the voter. We

observed an error rate of less than 0.1% for the three monitored

control commands.

4.3. Perception module rejuvenation

We deployed the Perception module rejuvenation scheme

in multiple simulation runs, in which we triggered a reboot

of the Perception module. The prediction horizon for every

obstacle was 8 s, the reboot time was consistently 3.7± 0.1 s.

In a high predictability scenario (see the top part of Figure 6),

during the reboot phase, the State Storage module could reliably

supply the Prediction module with enough verified stored internal

states before depletion (8 s) and we observed no disruption

in the ego-car planning behavior. We evaluated the internal

state verification procedure laid out in Section 3.4 by creating a

driving scenario in SVL where the ego car Perception module

is rebooted 1 s before arriving at a busy intersection crossing

(see the bottom part of Figure 6). Through its state verification

feature, the State Storage was able to predict the high entropy

(low predictability) of the situations. Through fine-tuning the Hth

value to a relatively conservative level, the ego car effectively

avoided replaying invalid internal states to the Prediction module

hence bringing the car to a complete stop before waiting for a

fresh instance of the Perception module to reboot and continue

its course.

5. Discussion

In this study, we reported on the results and findings of

a case study, retrofitting an autonomous driving software stack

with fault and intrusion tolerance mechanisms. We laid out

a powerful methodology to design, test, and validate those

mechanisms in interaction with the complex logic of the Apollo

ADV software stack, which we embedded inside the SVL

simulator. We were able to not only study the feasibility of

the developed schemes but could also showcase their efficacy by

measuring relevant metrics. We hereby stretch the importance

of validation through simulation which is fundamental to prove

quality assurance before deploying software in conventional on-

road testing.

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1125055
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Lucchetti et al. 10.3389/fcomp.2023.1125055

In Apollo, we already found a rudimentary preparation

for retrofitting resilience, by encapsulating large subsystems in

containers. This way, some of the resilience mechanisms could

be provided in an application agnostic manner, at container

level, whereas others (in particular, for perception and planning)

required considering application-specific knowledge. Ideal designs

should allow for flexible, fine-grain decomposition of components,

with clear interfaces and the possibility to isolate components

individually, if necessary, and to combine them into a single fault-

containment domain, if not.

5.1. Limitations and future work

Our Control module replication scheme inherits the same

limitation as the generic state machine replication technique. First,

creating n exact copies of the original Apollo Control module,

calls for enhancing diversity and the implied costs to generate this

diversity, e.g., initially through n-version programming and over

time through obfuscation. Second, for a total of f faulty replicas,

maintaining FIT properties comes at a 2f+1-replication cost which

is exacerbated by our reliance on containers for isolation combined

with our dependency on the OS.

Regarding the Perception module recovery scheme, we did

not perform a thorough evaluation. Nevertheless, we were able

to retrofit it into Apollo and demonstrate it qualitatively inside a

simplistic simulation environment. Given the current design, we

can only trigger a full perception recovery in relatively predictable

driving scenarios such as straight lanes with low traffic and high

visibility. Future work would include investigating the effect of

different threshold predictability values Hth on the recovery of the

ADV in diverse unpredictable andmore complex driving scenarios.

Additional resilience mechanisms could be envisioned for

the other Apollo modules such as the Prediction and Planning

modules. As for the latter, we could easily and economically apply

the same state machine replication technique as it is relatively

low overhead. Being succeeded by an already replicated Control

module, planning outputs should be consolidated by the same

voting scheme that we discussed for the Control-Canbus complex

where the same trade-offs apply among scalability, communication

rounds, and capacity to tolerate faults.

Due to its high GPU resource requirement, the Prediction

module could benefit from a similar recovery scheme as the

Perception module. Less obvious, however, the Planning module

requires the full batch of Prediction outputs to compute a safe

trajectory, i.e., buying time by buffering prediction outputs and

supplying them one-by-one to the the Planning module while the

Prediction module is restarting is bound to fail.

A better scheme would involve triggering a fail-safe mechanism

that upon detecting a failed Prediction module would trigger a

separate and much simpler Planning module. The purpose of the

latter would be to compute a pull-over trajectory steering the car

into a proximal safe spot where a fresh Prediction module can be

re-instantiated.

Going further, through the advent of cooperative autonomous

driving, the pull-over scenario could be triggered by a nearby

trusted car or a group of cars acting as external replicas. By relying

on a distributed communication protocol, these replicas would

compute and vote on a safe pull-over trajectory in a consensual

fashion and communicate it to the failed car for execution.

Simulating this scenario would entail running multiple Apollo

instances in parallel, where an additional custom Apollo network

module would ensure the vehicle-to-vehicle communication.

In addition, we plan to investigate more application-specific

solutions to secure autonomous driving against accidental faults

and cyberattacks to eliminate further single points of failures

(like the RTOS and complex drivers). Finally, another direction

of future work includes reducing the dependency on learning-

based components and in turn mitigate the attack vectors they are

exposed to.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

FL, RG, andMV contributed to conception, design of the study,

and wrote sections of the manuscript. FL wrote the first draft of the

manuscript. All authors contributed to manuscript revision, read,

and approved the submitted version.

Funding

This research was part of a partnership project funded by

Huawei Technologies Co., Ltd.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1125055
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Lucchetti et al. 10.3389/fcomp.2023.1125055

References

Abad, F. A. T., Mancuso, R., Bak, S., Dantsker, O., and Caccamo, M.
(2016). “Reset-based recovery for real-time cyber-physical systems with temporal
safety constraints,” in 2016 IEEE 21st International Conference on Emerging
Technologies and Factory Automation (ETFA) (IEEE) 1–8. doi: 10.1109/ETFA.2016.773
3561

Abdi, F., Chen, C.-Y., Hasan, M., Liu, S., Mohan, S., and Caccamo, M. (2018).
“Guaranteed physical security with restart-based design for cyber-physical systems,”
in 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS)
(IEEE) 10–21. doi: 10.1109/ICCPS.2018.00010

Aghakhani, H., Meng, D., Wang, Y.-X., Kruegel, C., and Vigna, G. (2021). “Bullseye
polytope: A scalable clean-label poisoning attack with improved transferability,” in 2021
IEEE European Symposium on Security and Privacy (EuroS and P) (IEEE) 159–178.
doi: 10.1109/EuroSP51992.2021.00021

Arad, B. S., and El-Amawy, A. (1997). On fault tolerant training of feedforward
neural networks. Neur. Netw. 10, 539–553. doi: 10.1016/S0893-6080(96)00089-5

Baidu (2017). Apollo: Open source autonomous driving.

CBS. (2010). Toyota “unintended acceleration” has killed. 89.

Chu, L.-C., and Wah, B. W. (1990). “Fault tolerant neural networks with hybrid
redundancy,” in 1990 IJCNN International Joint Conference on Neural Networks (IEEE)
639–649. doi: 10.1109/IJCNN.1990.137773

Darms, M., Rybski, P., and Urmson, C. (2008). “Classification and tracking
of dynamic objects with multiple sensors for autonomous driving in urban
environments,” in 2008 IEEE Intelligent Vehicles Symposium (IEEE) 1197–1202.
doi: 10.1109/IVS.2008.4621259

Ebadi, H., Moghadam, M. H., Borg, M., Gay, G., Fontes, A., and Socha,
K. (2021). “Efficient and effective generation of test cases for pedestrian
detection-search-based software testing of baidu apollo in svl,” in 2021 IEEE
International Conference on Artificial Intelligence Testing (AITest) (IEEE) 103–110.
doi: 10.1109/AITEST52744.2021.00030

Elsayed, G. F., Goodfellow, I., and Sohl-Dickstein, J. (2018). Adversarial
reprogramming of neural networks. arXiv preprint arXiv:1806.11146.

Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., et al. (2018).
“Robust physical-world attacks on deep learning visual classification,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition 1625–1634.
doi: 10.1109/CVPR.2018.00175

Geng, K., and Liu, S. (2020). Robust path tracking control for autonomous vehicle
based on a novel fault tolerant adaptive model predictive control algorithm. Appl. Sci.
10, 6249. doi: 10.3390/app10186249

Gouveia, I. P., Völp, M., and Esteves-Verissimo, P. (2022). Behind the last
line of defense: Surviving soc faults and intrusions. Comput. Secur. 123, 102920.
doi: 10.1016/j.cose.2022.102920

Iso, I. (2019). “Pas 21448-road vehicles-safety of the intended functionality,” in
International Organization for Standardization.

Khunasaraphan, C., Tanprasert, T., and Lursinsap, C. (1994). “Recovering faulty
self-organizing neural networks: By weight shifting technique,” in Proceedings of 1994
IEEE International Conference on Neural Networks (ICNN’94) (IEEE) 1513–1518.

Kong, F., Xu, M., Weimer, J., Sokolsky, O., and Lee, I. (2018). “Cyber-physical
system checkpointing and recovery,” in 2018 ACM/IEEE 9th International Conference
on Cyber-Physical Systems (ICCPS) (IEEE) 22–31. doi: 10.1109/ICCPS.2018.00011

Lima, A., Rocha, F., Völp, M., and Esteves-Veríssimo, P. (2016). “Towards
safe and secure autonomous and cooperative vehicle ecosystems,” in Proceedings
of the 2nd ACM Workshop on Cyber-Physical Systems Security and Privacy 59–70.
doi: 10.1145/2994487.2994489

Panoff, M., Dutta, R. G., Hu, Y., Yang, K., and Jin, Y. (2021). On sensor security in
the era of iot and cps. SN Comput. Sci. 2, 1–14. doi: 10.1007/s42979-020-00423-5

Peng, Z., Yang, J., Chen, T.-H. P., and Ma, L. (2020). “A first look at the
integration of machine learning models in complex autonomous driving systems,”
in Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering 1240–1250.
doi: 10.1145/3368089.3417063

Rong, G., Shin, B. H., Tabatabaee, H., Lu, Q., Lemke, S., Možeiko, M., et al.
(2020). SVL simulator: a high fidelity simulator for autonomous driving. arXiv e-prints,
arXiv:2005.03778. doi: 10.1109/ITSC45102.2020.9294422

Sato, T., Shen, J., Wang, N., Jia, Y., Lin, X., and Chen, Q. A. (2021). “Dirty road can
attack: Security of deep learning based automated lane centering under $Physical −
World$ attack,” in 30th USENIX Security Symposium (USENIX Security 21) 3309–3326.
doi: 10.14722/autosec.2021.23026

Seymour, J., Ho, D.-T.-C., and Luu, Q.-H. (2021). “An empirical testing
of autonomous vehicle simulator system for urban driving,” in 2021 IEEE
International Conference on Artificial Intelligence Testing (AITest) (IEEE), 111–117.
doi: 10.1109/AITEST52744.2021.00031

Shin, J., Baek, Y., Lee, J., and Lee, S. (2018). Cyber-physical attack detection
and recovery based on rnn in automotive brake systems. Appl. Sci. 9, 82.
doi: 10.3390/app9010082

Sousa, P., Bessani, A. N., Correia, M., Neves, N. F., and Verissimo, P. (2009).
Highly available intrusion-tolerant services with proactive-reactive recovery. IEEE
Trans. Parallel Distrib. Syst. 21, 452–465. doi: 10.1109/TPDS.2009.83

Torres-Huitzil, C., and Girau, B. (2017). Fault and error tolerance in neural
networks: A review. IEEE Access 5, 17322–17341. doi: 10.1109/ACCESS.2017.2742698

Zhou, C., Yan, Q., Shi, Y., and Sun, L. (2021). Doublestar: Long-range attack towards
depth estimation based obstacle avoidance in autonomous systems. arXiv preprint
arXiv:2110.03154.

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1125055
https://doi.org/10.1109/ETFA.2016.7733561
https://doi.org/10.1109/ICCPS.2018.00010
https://doi.org/10.1109/EuroSP51992.2021.00021
https://doi.org/10.1016/S0893-6080(96)00089-5
https://doi.org/10.1109/IJCNN.1990.137773
https://doi.org/10.1109/IVS.2008.4621259
https://doi.org/10.1109/AITEST52744.2021.00030
https://doi.org/10.1109/CVPR.2018.00175
https://doi.org/10.3390/app10186249
https://doi.org/10.1016/j.cose.2022.102920
https://doi.org/10.1109/ICCPS.2018.00011
https://doi.org/10.1145/2994487.2994489
https://doi.org/10.1007/s42979-020-00423-5
https://doi.org/10.1145/3368089.3417063
https://doi.org/10.1109/ITSC45102.2020.9294422
https://doi.org/10.14722/autosec.2021.23026
https://doi.org/10.1109/AITEST52744.2021.00031
https://doi.org/10.3390/app9010082
https://doi.org/10.1109/TPDS.2009.83
https://doi.org/10.1109/ACCESS.2017.2742698
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Toward resilient autonomous driving—An experience report on integrating resilience mechanisms into the Apollo autonomous driving software stack
	1. Introduction
	1.1. Related work
	1.2. Organization of this article

	2. Apollo ADV software stack architecture
	2.1. Description
	2.2. Simulator
	2.3. Implementation
	2.4. Vulnerabilities

	3. FIT and resilience mechanisms for autonomous vehicles
	3.1. Threat model
	3.2. Control module replication
	3.3. Perception module rejuvenation
	3.4. Toward device-driver replication

	4. Evaluations
	4.1. Setup
	4.2. Control replication
	4.3. Perception module rejuvenation

	5. Discussion
	5.1. Limitations and future work

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

