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Introduction:To foster usefulness and accountability ofmachine learning (ML), it is

essential to explain a model’s decisions in addition to evaluating its performance.

Accordingly, the field of explainable artificial intelligence (XAI) has resurfaced as

a topic of active research, o�ering approaches to address the “how” and “why”

of automated decision-making. Within this domain, counterfactual explanations

(CFEs) have gained considerable traction as a psychologically grounded approach

to generate post-hoc explanations. To do so, CFEs highlight what changes to a

model’s input would have changed its prediction in a particular way. However,

despite the introduction of numerous CFE approaches, their usability has yet to

be thoroughly validated at the human level.

Methods: To advance the field of XAI, we introduce the Alien Zoo, an engaging,

web-based and game-inspired experimental framework. The Alien Zoo provides

the means to evaluate usability of CFEs for gaining new knowledge from an

automated system, targeting novice users in a domain-general context. As a proof

of concept, we demonstrate the practical e�cacy and feasibility of this approach

in a user study.

Results: Our results suggest the e�cacy of the Alien Zoo framework for

empirically investigating aspects of counterfactual explanations in a game-type

scenario and a low-knowledge domain. The proof of concept study reveals that

users benefit from receiving CFEs compared to no explanation, both in terms

of objective performance in the proposed iterative learning task, and subjective

usability.

Discussion: With this work, we aim to equip research groups and practitionerswith

the means to easily run controlled and well-powered user studies to complement

their otherwise often more technology-oriented work. Thus, in the interest of

reproducible research, we provide the entire code, together with the underlying

models and user data: https://github.com/ukuhl/IntroAlienZoo.

KEYWORDS

explainable AI, human-grounded evaluation, user study, experimental framework,

counterfactual explanations, usability, human-computer interaction

1. Introduction

In a step toward accountable and transparent machine learning (ML), the European

Union mandates safeguards against automated decision-making with the General Data

Protection Regulation (GDPR) 2016/679 (European Union, 2016). Specifically, the GDPR

states that a person subjected to automated decision-making may obtain an explanation of

the given decision. As a result, there has been an upswing of technical explainable artificial

intelligence (XAI) approaches on how to make ML explainable (Arrieta et al., 2020; Chou

et al., 2022).
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Alongside novel explainability approaches, authors have

proposed evaluation criteria and guidelines to systematically

assess XAI approaches in terms of their usability (Doshi-

Velez and Kim, 2017; Arrieta et al., 2020; Davis et al., 2020;

Sokol and Flach, 2020a). This theoretical groundwork sparked

several practical validation frameworks, commonly evaluating

explanations in terms of accuracy and fidelity (White and d’Avila

Garcez, 2020; Pawelczyk et al., 2021; Sattarzadeh et al., 2021;

Arras et al., 2022), or robustness (Artelt et al., 2021). However,

while XAI taxonomies repeatedly emphasize the need for human-

level validation of explanation approaches (Doshi-Velez and

Kim, 2017; Sokol and Flach, 2020a), user evaluations of XAI

approaches often face limitations concerning statistical power and

reproducibility (Keane et al., 2021).What is more, counter-intuitive

findings underscore the importance of acknowledging the human

factor when evaluating XAI approaches (Byrne, 2019). For instance,

participants easily simulate predictions of clear models with few

features, however, this does not lead users to adjust their behavior

more closely in line with the model’s predictions, or enable them to

detect faulty predictions (Poursabzi-Sangdeh et al., 2021). Similarly,

introducing a theoretically motivated plausibility constraint on

generated explanations may actually decrease usability for users in

certain settings (Kuhl et al., 2022).

Driven by this shift toward a user-centered focus on

explainability (Miller, 2019), counterfactual explanations (CFEs)

receive special attention as a supposedly useful, human-friendly,

and psychologically comprehensible solution (Byrne, 2019; Miller,

2019; Keane et al., 2021). CFEs for ML correspond to what-if

scenarios, highlighting necessary changes in a model’s input that

trigger a desired change in the model’s output (i.e., “if you earned

US$ 200 more per month, your loan would be approved”).

The contrastive nature of CFEs, emphasizing why a specific

outcome occurred instead of another, strongly resembles human

cognitive reasoning (Hilton and Slugoski, 1986; Lipton, 1990;

Lombrozo, 2012; Byrne, 2019; Miller, 2019). Humans routinely

and automatically engage in counterfactual thinking (Roese,

1997; Goldinger et al., 2003), mentally changing the internal

representation of relevant facts to simulate a counterfactual

scenario, while maintaining the factual representation in

parallel (Byrne, 2016). When doing so, they tend to mentally undo

events that are exceptional, controllable, recent, actionable, and

plausible (see Byrne, 2019, for a recent review on psychological

aspects of CFEs for XAI).

Building on extensive psychological research on counterfactual

thinking in humans, Epstude and Roese (2008) emphasize

its beneficial role for regulating one’s behavior to improve

future performance. According to their Functional Theory of

Counterfactural Thinking, disparities between the current state

and an ideal goal state triggers spontaneous counterfactual

thought (Roese and Epstude, 2017). In the same vein, Markman

and McMullen (2003) argue that this type of comparative thought

mode may help to prepare for the future by guiding the formation

of intentions, thus changing prospective behavior.

Based on these an similar accounts, XAI research often treat

explanations formulated as counterfactuals as intuitively useful,

and readily human-usable (Guidotti et al., 2018; Stepin et al., 2019;

Artelt and Hammer, 2020; Dandl et al., 2020). However, it is not

clear whether these encouraging insights from psychology may be

exactly transferred for the use of CFEs in XAI, making it imperative

to validate technical CFEs approaches providing explainability

for ML models at the user level (Doshi-Velez and Kim, 2017;

Offert, 2017). Yet, according to a recent review, only one in three

counterfactual XAI papers include user-based evaluations, often

with limited statistical validity and little opportunity to reproduce

the presented results (Keane et al., 2021).

Studies that do examine CFE approaches from a user-

perspective give cause for cautious confidence in their usability.

van der Waa et al. (2021) demonstrate that CFEs, compared

to example based and no-explanation control variants, enable

users interacting with a hypothetical decision support system

for diabetes patients to correctly identify features relevant for a

system’s prediction. Additionally, their data suggest that CFEs

have a positive effect on perceived system comprehensibility

compared to no explanation. In a scenario similarly inspired

by real-life, Warren et al. (2022) present participants with a

simulated AI system predicting whether an individual meets the

legal blood alcohol content limit to be still allowed to drive. In this

setting, users initially presented with either counterfactual or causal

explanations of the system’s decisions, show greater prediction

accuracy themselves, compared to no-explanation controls. While

receiving CFEs in contrast to causal explanations provided only

a small advantage in terms of objective performance, participants

judged counterfactual explanations to be more satisfying and

trustworthy than causal ones (Warren et al., 2022). This is in line

with earlier work revealing that participants judge counterfactual

style explanations to be subjectively more intuitive and useful than,

e.g., visualizing feature importance scores (Le et al., 2020).

However, this positive evidence is not unanimous. Users

tasked to learn how an automatic system behaves indeed show

some understanding of the types of rules governing said system

after receiving counterfactual-style explanations, as compared to

receiving no-explanation (Lim et al., 2009). Yet, only participants

that are presented with explicit feedback stating why the system

behaved in a certain way perform consistently better across

several metrics, including perceived understanding. In a recent

experiment, participants tasked both with prediction and diagnosis

show similar performance patterns in both agricultural and abstract

domains, independent of receiving CFEs, pre-factual explanations,

or mere control descriptions (Dai et al., 2022). Strikingly, user

ratings of helpfulness were also comparable across all explanation

conditions, at odds with the presumed advantage of CFEs in

terms of their usability. Lage et al. (2019) demonstrate that users

show consistently higher response times when asked to answer

counterfactual-style questions, indicating increased cognitive load

for this type of task, a factor that may actually hinder usability.

Even though user evaluations are essential to evaluate the

efficacy of explanation modes, designing an effective user study is

no easy feat. A well-designed study closely considers the respective

explainees, and the reason for explaining (Adadi and Berrada,

2018; Sokol and Flach, 2020a), simultaneously taking into account

confounding factors and available resources (Doshi-Velez and Kim,

2017). Further, researchers need to ensure comparable conditions

across participants, while systematically varying XAI approaches,

underlying ML models, or data distributions.

On top of these methodological challenges, XAI user

evaluations often suffer from a series of limitations. While

there is general agreement that one explanation mode fitting all

scenarios is unlikely to exist (Sokol and Flach, 2020b), not all
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studies clearly formulate the given explanation purpose and target

group (Le et al., 2020). Without an explicit classification of the

experimental context, however, research runs the risk to reach

all-too-general conclusions like declaring one mode of explaining

universally superior to another. Further, a commonmethodological

limitation concerns limited statistical power due to low participant

numbers (Lim et al., 2009; Akula et al., 2020), often driven by the

effortful nature of user studies. For reasons of simplicity, some

approaches provide participants with explanations that follow a

certain XAI approach, but were actually designed by the researchers

themselves (Narayanan et al., 2018; Lage et al., 2019; van der Waa

et al., 2021). Such a Wizard of Oz approach, with a human behind

the scenes playing the role of an automatic system (Dahlbäck

et al., 1993), allows perfect control over materials encountered by

participants. However, it fails to account for potential variability

in the results of ML algorithms, imperfectly mimicking the user

experience “in the wild.”

Moreover, some evaluations exclusively focus on assessing

perceived usability. Using questionnaires and surveys is a

prominent approach to ask participants how well they like or

understand a certain explainability method, but may be affected

by response bias and the difficulty of capturing the complexity

and nuances of user experiences. Additionally, it is unclear

whether subjective evaluations translate into tangible behavioral

effects (Hoffman et al., 2018). In fact, a recent study fails to

show a correlation between perceived system understandability

and any objective measure of performance (van der Waa et al.,

2021). Therefore, while surveys are valuable tool to assess users’

satisfaction with and trust in an XAI approach in a systematic

and quantitative manner, complementing them with behavioral

measures is key to draw comprehensive conclusions.

Further, experimental designs in XAI typically let participants

passively study pre-selected examples of a system’s input and output

values, together with a corresponding explanation (Lim et al., 2009;

Le et al., 2020; van der Waa et al., 2021). However, evidence

from educational science shows that interactive activities grant

deeper understanding (Chi and Wylie, 2014), suggesting greater

efficacy of designs prompting user action. Last, many designs

reported are difficult to exactly reproduce as experimental code,

ML models, and underlying data are not openly available. This

lack of shared resources severely hampers replication studies and

adaptation of frameworks according to novel research purposes

near to impossible.

Overall, the lack of openly accessible and engaging user study

designs that enable direct comparisons between different CFE

implementations, models, and data sets motivates the current work.

To advance the field of XAI, we introduce the Alien Zoo, an

engaging, web-based and game-inspired experimental framework.

The Alien Zoo provides means to evaluate the usability of a

specific and very prominent variant of post-hoc, model agnostic

explanations for ML, namely CFEs (Artelt and Hammer, 2019),

targeting novice users in a domain-general context. Presenting

this game-type scenario in a low-knowledge domain, we aim to

equip research groups and practitioners with an easily adaptable

design. Within the constraints concerning the explanation target

(i.e., novice users), and the abstract explanation setting, it is

suitable for empirical evaluations of various research questions

concerning usability of CFE for XAI. Thus, we aspire to narrow the

gulf between the increasing interest in generating human-friendly

explanations for automated decision-making, and the limitations

given current user-based evaluations.

As a proof of concept, we demonstrate the efficacy and

feasibility of the Alien Zoo approach in a user study, showing a

beneficial impact of providing CFEs on user performance in the

proposed iterative learning task. Providing the entire code, together

with the underlying data and scripts used for statistical evaluation,1

our hope is that this framework will be utilized by other research

groups and practitioners.

2. Materials and methods

2.1. The Alien Zoo framework

The increasing number of user studies in the domain of XAI is

met by an increasing number of recommendations and guidelines

concerning design principles to be taken into account (Davis

et al., 2020; Mohseni et al., 2021; van der Waa et al., 2021).

When constructing the Alien Zoo framework, we closely follow the

recommendations put forward by van der Waa et al. (2021).

2.1.1. Use case and experimental context
The effectiveness of an explanation decisively depends

decisively on the reason for explaining, and the intended target

audience (Adadi and Berrada, 2018; Arrieta et al., 2020; Mohseni

et al., 2021). Both aspects determine the choice of an appropriate

use case, and thus the experimental context.

On the one hand, the user’s explanation needs may vary

dramatically across individuals. Users who already possess a lot

of applicable domain knowledge may find more sophisticated

explanations more useful than novice users (Doshi-Velez and

Kim, 2017). Prior domain knowledge and user beliefs may

impact how and even if users meaningfully engage with provided

explanations (Lim et al., 2009). Moreover, explainees equipped

with AI expertise perceive and evaluate provided explanations

differently than users that lack this kind of knowledge (Ehsan et al.,

2021). On the other hand, the explanation’s purpose profoundly

affects requirements a given XAI approach ought to meet. For

instance, users tasked to compare different models may benefit

from different explanation modes than those who want to gain

new knowledge from a predictive model or the data used to build

it (Adadi and Berrada, 2018). Consequently, generalizability of

conclusions beyond a given use case, context, and target group is

limited and needs to be treated with upmost caution (Doshi-Velez

and Kim, 2017; Sokol and Flach, 2020a).

In the Alien Zoo framework, we focus on an abstract

experimental context: Participants act as zookeepers for a fictional

alien species called shubs (Figure 1A). The participants’ main task

is to determine the best combination of plants to feed them

(Figure 1B). Importantly, for a user starting the game, it is not clear

what plants (or which plant combination) makes up a nutritious

1 Available at: https://github.com/ukuhl/IntroAlienZoo.
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diet, causing their pack to thrive. In regular intervals, participants

receive CFEs together with their past choices, highlighting an

alternative selection that would have led to a better result. Thus,

the current use case is that of assisting novice users without

any prior experience to gain new knowledge from a predictive

model about the data used to build it. Consequently, Alien Zoo

user studies correspond to human-grounded evaluations, with

participants engaging in “counterfactual simulation” (Doshi-Velez

and Kim, 2017). Thus, our setting falls into the “explaining to

discover” category for explainability, evaluating whether providing

CFEs to novice users enhances their ability to extract yet unknown

relationships within an unfamiliar dataset (Adadi and Berrada,

2018).

2.1.2. Constructs and their relations
Clear definitions of utilized constructs and their interrelations

are crucial to enrich XAI user evaluations with a solid basis

for scientific theory (van der Waa et al., 2021). Alien Zoo user

evaluations focus on three constructs: subjective usability, system

understanding, and task performance. Figure 2 depicts a causal

diagram showing the expected relations between these constructs.

Specifically, we posit that providing CFEs positively impacts a

user’s system understanding, as well as their subjective usability.

Consequently, increased system understanding will enable users to

better perform the task at hand.

The given proof of concept study described in Section

2.2 compares user performance when receiving CFEs with

a no explanation a control. When provided with CFEs, we

expect participants to gain a better understanding of decisive

features, and the best combination thereof, in the underlying

data. Consequently, we anticipate increased system understanding

to improve task performance. Given how humans engage in

counterfactual thinking automatically on a day-to-day basis (Sanna

and Turley, 1996; Roese, 1997; Goldinger et al., 2003), we expect

that explanations formulated as counterfactuals also have a positive

impact on subjective understanding.

Finally, it is crucial to consider subjective usability as a

construct separate from system understanding. A participant’s

action does not necessarily correspond to their perceived system

understanding, strongly suggesting that user behavior and self-

report do not measure the same construct (van der Waa et al.,

2021).

2.1.3. Measurements
The Alien Zoo framework assesses the constructs subjective

usability, system understanding, and task performance through

objective behavioral and subjective, self-report measures

(Figure 2). Given evidence of a disparity between perceived

system understanding and objective performance (van der Waa

et al., 2021), addressing both aspects may provide a holistic

usability assessment of CFE for ML.

First, we expect participants to recall and apply the information

provided by CFEs to improve their feeding choice. Ultimately,

this translates to an increase in the participant’s capacity to

correctly identify the decisive factors in the data used to train the

shub growth model, both in the study game and survey phase.

While this capacity is not directly measured during the game, we

acquire corresponding self-reports via the post-game survey, also

determining to what extent users develop an explicit understanding

of the data structure.

Second, we expect that system understanding has a positive

effect on task performance. Measures assessing task performance

include the number of aliens in the pack over the duration

of the game (henceforth referred to as pack size). This value

indirectly quantifies the extent of user’s understanding of relevant

and irrelevant features in the underlying data set, as a solid

understanding leads to better feeding choices. Similarly, we expect

time needed to reach a feeding decision over trials to be indicative

of how well-participants can work with the Alien Zoo (henceforth

referred to as decision time). As we assume participants to become

more automatic in making their plant choice, we expect this

practice effect to be reflected as decreased decision time (Logan,

1992).

Third, self-reports acquired via the post-game survey assess

different aspects of how participants judge the subjective usability

of explanations provided (for a full list of all survey items, see

Supplementary Table 1).

2.1.4. System implementation
The implementation of the Alien Zoo realizes a strict separation

of the front end creating the game interface participants interact

with, and the back end providing the required ML functionality,

a webserver hosting the study, and databases for data acquisition.

The web interface employs the JavaScript-based Phaser 3, an

HTML5 game framework.2 The back end of the system is Python3-

based (Python Programming Language; RRID:SCR_008394), with

the sklearn package (RRID:SCR_019053; Pedregosa et al., 2011)

supporting ML processes. An underlying ML model trained

on synthetic plant data to predict the alien pack’s growth rate

determines the behavior of the game. This model receives input

from the user end to update the current number of shubs. To

ensure flexibility in terms of potential models, we employ the

CEML toolbox (Artelt, 2019) to compute CFEs.3 CEML is a

Python toolbox for generating CFEs, supporting many common

machine learning frameworks to ensure availability of a wide

range of potential ML algorithms. Thus, the Alien Zoo provides

a highly flexible infrastructure to efficiently investigate different

intelligibility factors of automatically generated CFEs.

2.1.5. Advantages and limitations of the Alien Zoo
framework

The proposed framework offers several advantages for

investigating the usability of CFEs in XAI.

First, the abstract nature of the task eliminates potential

confounding effects of prior user knowledge: it is safe to say that

any user is a novice when it comes to feeding aliens, eliminating the

possibility of misconceptions or prior beliefs.

2 https://phaser.io/

3 https://github.com/andreArtelt/ceml
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FIGURE 1

Integral components of the Alien Zoo framework: (A) An exemplary group of shubs, the small alien species inhabiting the zoo. (B) Plants available to

the participants for feeding.

FIGURE 2

Causal diagram describing expected e�ects of counterfactual explanations on the constructs subjective usability, system understanding, and task

performance investigated in the Alien Zoo framework. Green arrows depict expected positive e�ects. Opaque gray boxes show the measures for the

respective construct, divided into behavioral and self-reported measurements. Arrows behind measures depict the expected direction of positive

e�ects. The dashed box shows a behavioral factor reflecting improved system understanding indirectly assessed via its mediating role on task

performance.

Second, the interactive and game-like design promotes

user engagement over iterative rounds of user action and

feedback. Evidence from educational science motivates this choice,

demonstrating that learner’s level of commitment affects the

learning outcome, and that interactive activities foster deeper

understanding (Chi and Wylie, 2014).

Third, the web-based infrastructure allows for prompt

data collection from a large number of participants, which is

essential for gathering results with sufficient statistical power,

a common shortcoming of previous work (Keane et al.,

2021). For instance, data acquisition from 90 participants

in the current proof of concept study (Section 2.2) took

five days via Amazon Mechanical Turk (AMT), including

the initial quality assessment. Acknowledging concerns

regarding validity of data acquired this way, we demonstrate

the feasibility of using the given online approach to obtain

meaningful data if appropriate quality measures are in place (see

Section 2.2.4).

Fourth, the Alien Zoo confronts participants with feedback

from real XAI methods based on reproducible ML models.

Acknowledging that Wizard of Oz designs are the preferable

option in terms of control over what participants experience and

consistency of presented explanations (Browne, 2019; Jentzsch

et al., 2019), we posit that employing explanations genuinely

produced fromMLmodels provides more truthful insights into the

user-AI-experience.

Moreover, the Alien Zoo combines both subjective and

objective measures to gain a comprehensive understanding of

CFE usability in XAI. The post-game survey quantifies how

users experience the task, and in how far they deem information

provided by CFEs helpful and usable. Importantly, these subjective

measures are complemented by objective measures (i.e., task

performance, and decision time). Given that the complex

association between subjective evaluation and user behavior is yet

poorly understood (Hoffman et al., 2018), the proposed framework

opens up relevant research opportunities.

Last, in the interest of reproducible research, we fully

share data and code of the Alien Zoo framework on GitHub

(RRID:SCR_002630; https://github.com/ukuhl/IntroAlienZoo),

encouraging research groups and practitioners alike to adapt and

utilize the implementation.

Naturally, while addressing prominent limitations of previous

work, the Alien Zoo framework is not without constraints itself.

One of the largest limitations of our paradigm concerns its

generality. In its current form, the Alien Zoo provides usability

insights when providing CFEs as feedback in an iterative learning

design, targeting an abstract domain for novice users. Whether

and how far observations based on the proposed design generalize

to other tasks, domains and target groups, remains to be shown

in dedicated validation studies adapting the specific aspects in

question. Likewise, while the proposed framework promises to be

a valuable tool for investigating specific aspects of CFEs in XAI,

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1087929
https://scicrunch.org/resolver/RRID:SCR_002630
https://github.com/ukuhl/IntroAlienZoo
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Kuhl et al. 10.3389/fcomp.2023.1087929

it does not provide a patent solution for addressing all potentially

relevant dimensions. For instance, all Alien Zoo features share the

same, continuous feature type (i.e., number of leaves per plant),

impeding investigations of more fundamental feature properties

that have recently been shown to impact understanding (Warren

et al., 2022), and thus the effectiveness of an explanation in a

current setting.

2.2. Empirical proof of concept study

In the following, we empirically investigate the efficacy and

feasibility of the Alien Zoo framework. To this effect, to employ

it to run a user study examining the impact of providing CFEs

on user performance as compared to no explanations in the

proposed Alien Zoo iterative learning task. The study consists of

two experiments that primarily vary in terms of the complexity of

the underlying data used for model building. Specifically, growth

rate in Experiment 1 depends on the best combination of three

plants, while this is reduced to the best combination of two plants in

Experiment 2 (see Section 2.2.6). The critically low learning rate of

control participants in Experiment 1 motivated our decision to run

the second experiment. Thus, we investigated whether users that

do not receive explanations generally fail to learn in the Alien Zoo

setting, even given a simpler configuration.

2.2.1. Hypotheses
The guiding question of the empirical proof of concept study is

whether users benefit from receiving CFEs when tasked to identify

relationships within an unknown data set when interacting with the

Alien Zoo framework.

We evaluate this question using an interactive iterative learning

task, in which users repeatedly select input values for an ML

model. Throughout the experiment, users receive feedback at

regular intervals. Either we show them an overview of their

choices alone (control condition), or we show them this overview

alongside CFEs, highlighting how changes in their past choices

may have led to better results (CFEs condition). Via this approach,

the interaction between repeated actions by users and corrective

feedback allows us to assess system understanding objectively

through task performance over a series of decisions.

We hypothesize that providing CFEs compared to no

explanations indeed helps users in the task at hand. Specifically,

we assume that exposure to alternative feeding choices that would

lead to better results enables users to build a more accurate mental

model of the underlying data distribution.

We recruited novice users and designed the task around an

abstract scenario in order to gain insight into the usability of CFEs.

By using this approach, we can protect against possible differences

in domain knowledge or misconceptions about the task setting that

might impact task performance (van der Waa et al., 2021).

Consequently, we address the following three hypotheses.

2.2.1.1. Hypothesis 1

We expect users that receive CFEs on top of a summary

of their past choices to outperform users without explanations

in discovering unknown relationships in data, both in terms of

objective and subjective measures. Specifically, we anticipate that

participants in the CFEs condition (a) produce larger pack sizes,

thus showing greater learning success, (b) become faster in making

their choice as a sign of more automatic processing, and (c) are able

to explicitly identify relevant and irrelevant input features.

2.2.1.2. Hypothesis 2

In terms of subjective understanding, we predict a marked

group difference. We expect that users that receive CFEs

will subjectively find their feedback more helpful and usable.

Furthermore, we posit that those users will also judge CFE feedback

to be more helpful for other users.

2.2.1.3. Hypothesis 3

Both feedback variants (overview of past choices and overview

of past choices + CFEs) are relatively straight-forward. Thus, when

evaluating users’ understanding of the feedback themselves, and

their evaluation of timing and efficacy of how feedback is presented,

we do not expect to see group differences. Further, it will be

interesting to see if users differ in terms of needing support to

understand the provided feedback. In the CFE condition, it is

conceivable users may wish for additional help for interpreting this

added information.

2.2.2. Participants
We conducted the study in early March 2022 on AMT. We

restricted access to the study to users that (a) belong to the high

performing workers on the platform, and have been granted the

Mechanical Turk Masters Qualification, (b) have a work approval

rate of at least 99%, and (c) did not participate before in any Alien

Zoo tasks we ever ran on AMT.

For each experiment, we recruited 45 participants, randomly

assigned to either CFE or control (i.e., no explanation) group.

We based the choice for this relatively small sample size on the

results of an a-priori power analysis run based on pilot data

from a previous experiment employing the same framework (Kuhl

et al., 2022). The corresponding a-priori power analysis showed

that power levels surpassed 80% for sample sizes >40 by trial 11,

assuming a medium effect size. In the current study, we expected

a quite large effect given the assumed boost in performance

by receiving explanations compared to receiving no additional

information. Thus, we decided to close data acquisition after

45 participants submitted their data in each experiment. Note,

however, that a particular advantage of the proposed design is its

online nature, allowing comfortable acquisition of larger data sets

for well-powered studies. All participants gave informed electronic

consent by providing click wrap agreement prior to participation.

Participants received payment after first data quality assessment.

Contributions from participants whose data showed

insufficient quality (see Section 2.2.4) were rejected. Affected

users received US$ 1 base compensation for participation, paid

via the bonus system. This concerned 6/45 (Experiment 1) and

2/45 (Experiment 2) participants, respectively. All remaining

participants received a base pay of US$ 3 for participation. The five

best performing users in each experiment received an additional

bonus of US$ 1. We included information about the prospect of

a bonus in the experimental instructions, to motivate users to
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comply with the task (Bansal et al., 2019). The Ethics Committee of

Bielefeld University, Germany, approved this study.

2.2.3. Experimental procedure
The experiment consists of a game and a survey phase.

Accepting the task on AMT redirects participants to a web server

hosting the study.

Users are first notified of the purpose, procedure, and expected

duration of the study, their right to withdraw, confidentiality

and contact details of the primary investigator. If a user does

not wish to participate, they may close the window. Otherwise,

users confirm their agreement via button press. As soon as

they indicate agreement, participants get secretly allotted to

one of the experimental conditions (either control or CFE) via

random assignment.

A subsequent page provides detailed information about the

Alien Zoo game. Specifically, it illustrates images of the aliens to

be fed, and the variety of plants they may use for feeding. Written

instructions state that a pack size can be increased or decreased by

choosing healthy or unhealthy combinations of leaves per plant.

The maximal number of leaves per plant is limited to six, and users

may freely select any combination of plants they find preferable.

Subsequent instructions direct the user to maximize the number

of aliens, so-called shubs, in order to qualify as a top player to

receive an additional monetary bonus. Further, written information

establishes that participants will receive a summary of their past

choices after two rounds of feeding. Users in the CFEs condition

also learn that they will be provided with feedback on what choice

would have led to a better result on these occasions.

Clicking a “Start” button at the end of the page indicates that

the user is ready to start the game phase. This button appears with

a delay of 20 s in an effort to prevent participants from skipping

the instructions.

2.2.3.1. Game phase

Figure 3 visualizes the general flow of scenes displayed during

the game phase. This phase begins with a padlock scene, where

participants make their first feeding selection (left side in Figure 3

and Supplementary Figure 1). All available plant types alongside

upward and downward arrow buttons appear on the right side of

this scene. The same leaf icon in different colors represents the

different plants (Figure 1B). While each participant encounters the

same 5 plant colors, their order is randomized for each participant

in order to avoid confounding effects. During the first trial, the

top of the page notes that clicking on the upward and downward

arrows increases and decreases the number of leaves of a specific

plant, respectively. In each subsequent trial, the top of the page

holds a summary of the previous trial’s choice, together with the

previous and current pack size. Furthermore, the page shows a

padlock displaying the current pack of animated shubs. Participants

receive a pack of 20 shubs to begin. Participants submit their choice

by clicking a “Feeding time!” button in the bottom right corner of

the screen.

While users watch a short progress scene, the underlying ML

model predicts the new growth rate based on the user’s input. Our

implementation subsequently updates the pack size based on the

model’s decision, and computes a CFE. Within three seconds, a

new padlock appears, visualizing the impact of the current choice

in terms of written information and animated shubs. The choice

procedure repeats after odd trials.

Users receive feedback after even trials, accessible via a single

“Get feedback!” button replacing the choice panel on the right-

hand side of the screen. The feedback button directs users to an

overview of past two feeding choices, and the impact on pack size.

Users in the CFE condition are additionally presented with the

intermittently computed CFEs, illustrating an alternative choice

that would have led to a better result for each of the past two trials. If

users select a combination of plants that lead tomaximal increase in

pack size, no counterfactual will be computed. In these cases, users

learn that they were close to an optimal solution in that round.

Hitting a “Continue!” button appearing after 10 s on the

right-hand side of the screen, users proceed with the next trial,

encountering a new padlock scene.We included this delay to ensure

that users spend sufficient time with the presented information to

be able to draw conclusions for their upcoming feeding decisions.

Each experiment in this paper consists of 12 trials (i.e., 12 feeding

decisions). Users receive feedback after even trials.

Two additional attention checks assess attentiveness of users

during the game phase, implemented after trials 3 and 7. Said

attention checks request participants to type in the current number

of shubs in the last feeding round. Participants receive immediate

feedback on the correctness of their answer, alongside a reminder

to stay attentive to every aspect of the game at all times. The game

then continues with the subsequent progress scene.

After the user made 12 feeding decisions, the game phase of the

study ends.

2.2.3.2. Survey phase

In the survey phase, users answer a series of questions. Survey

items first assess user’s explicit knowledge of plant relevance for

task success (items 1 and 2), and second subjective judgements of

usability and quality of feedback provided via an adapted version of

the System Causability Scale (Holzinger et al., 2020).

A final set of three self-report measures assesses potential

confounding factors. They address whether users understand

the feedback provided, whether they feel they need support for

understanding it, and how they evaluate the timing and efficacy

of feedback. The last two items of the survey phase collect

demographic information on participant’s gender and age.

On the final page of the study, users are thanked for their

participation and receive a unique code to provide on the AMT

platform to prove that they completed the study and qualify for

payment. To ensure anonymity, we encrypt payment codes and

delete them as soon as users received payment.

Finally, participants may choose to follow a link providing full

debriefing information.

2.2.4. Data quality criteria
Due to the nature of web-based studies, some users may

attempt to game the system, claiming payment without providing

adequate answers. Thus, a priori defined criteria ensure sufficient

data quality.

Users qualify as speeders based on their decision time in the

padlock scene, if they spent less than two seconds to make their
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FIGURE 3

General flow of scenes displayed during the game phase. Note that this pattern was disrupted after trials 3 and 7 for an additional attention scene,

asking participants to indicate the current number of shubs in their pack. A more detailed overview of scenes within a block can be found in

Supplementary Figure 1.

plant selection in at least four trials. Users qualify as inattentive

participants if they fail to give the correct number of shubs

in both attention trials (game phase). Likewise, we categorize

participants as inattentive users if they fail to select the requested

answer when responding to the catch item in the survey phase

(see Supplementary Table 1). Finally, users qualify as straight-liners

if they keep choosing the same plant combination despite not

improving in three blocks or more (game phase), or if they answer

with only positive or negative valence in the survey phase.

By excluding data of individuals that were flagged for at least

one of these reasons from further analysis, we maintain a high level

of data quality.

2.2.5. Statistical analysis
We perform all statistical analyses using R-4.1.1 (R Core Team,

2021, R Project for Statistical Computing; RRID:SCR_001905),

using experimental condition (control and CFE) as independent

variable. Staying true to our longitudinal design, linear mixed

models examine effects of experimental condition over

the 12 experimental trials (R package: lme4 v.4_1.1-27.1;

RRID:SCR_015654) (Bates et al., 2015). In the model evaluating

differences in terms of user performance, number of shubs

generated serves as dependent variable. In the model evaluating

differences in terms of user’s reaction time, decision time in

each trial serves as dependent variable. Each model includes

the fixed effects of group, trial number, and their interaction.

The random-effect structure includes a by-subjects random

intercept. We decided to follow this approach, as linear mixed

models account for correlations of data drawn from the same

participant (Detry and Ma, 2016; Muth et al., 2016). To compare

model fits, we rely on the analysis of variance function of the

stats package in base R. η
2
p values denote effect sizes (effectsize

v.0.5) (Ben-Shachar et al., 2020). We follow up significant main

effects or interactions by computing pairwise estimated marginal

means, with respective effect sizes reported in terms of Cohen’s

d. To account for multiple comparisons, all post-hoc analyses

reported are Bonferroni corrected.

We evaluate data acquired during the survey phase depending

on item type. The first two items assess user’s explicit knowledge of

plant relevance, or irrelevance, for task success.

We aim to obtain a unified measure of user knowledge,

appreciating correct answers but also penalizing incorrect ones.

Therefore, we use the number of matches between user input and

ground truth (i.e., number of plants correctly identified as relevant

or irrelevant) per participant per item. Distributions of match data
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FIGURE 4

Distribution of synthetic data used for model training. Each point in each scatter plot represents the combination of two plant values, colored

according to the corresponding growth rate of that point. Gray values indicate growth rate values below 1 (leading to pack size decreases), and red

values code values above 1 (leading to pack size increases). (A) Experiment 1: The growth rate scales linearly with plant 2, depending on values of

plant 4 and plant 5. (B) Experiment 2: The growth rate scales linearly with plant 2, depending on values of plant 4. For clear rendering, only 0.2% of all

training data are shown, with data points jittered around their true integer values.

was tested for normality using the Shapiro-Wilk test, followed up

by the non-parametric Wilcoxon-Mann-Whitney U-test in case

of non-normality, and the Welch two-sample t-test otherwise for

group comparisons. We follow the same approach to compare age

and gender distributions. Finally, we gauge group differences of

ordinal data from the Likert-style items, using the non-parametric

Wilcoxon-Mann-Whitney U-test. Effect sizes for all survey data

comparisons are given as r.

2.2.6. Models
To predict the growth rate and thus ultimately the new pack

size given the user input in each trial, we train a decision tree

regression model for each experiment. Decision trees consecutively

split the data along a series of if-then-else rules, thus approximating

the underlying data distribution (Shalev-Shwartz and Ben-David,

2014). Decision trees are powerful enough to model our synthetic

data set with sufficient accuracy, while allowing for efficient

computation of CFE (Artelt and Hammer, 2019).4 The current

implementation uses the Gini splitting rule of CART (Breiman

et al., 1984). To maintain comparable model outputs for all users

within throughout one experiment, we use the same decision tree

model once build in the beginning.

4 Note, however, that the Alien Zoo framework itself does not depend on

a specific model, and could potentially used with other regression models

as well.

2.2.6.1. Hyperparameter tuning

To ensure the models reliably present the respective underlying

data structure without overfitting, we choose tree depth that

yield a high R2 value and minimizes the mean squared error

(MSE) when evaluated on test data. As a further sanity check,

we ensured that inputting the perfect solution into the model

reliably yields no CFE (i.e, eliciting the feedback that one

is close to an optimal solution). Overly complex models are

prone to overfit, picking up dependencies in the structure of

the randomly chosen features. CFEs generated on the basis

of such a model may suggest changes in irrelevant features,

thus leading participants on a garden-path. Thus, for the more

complex data set in Experiment 1, we use a maximal tree depth

of 7 (model performance on test data: R2 = 0.893, MSE =

0.037), while the tree model in Experiment 2 was trained with

a maximal tree depth of 5 (model performance on test data:

R2 = 0.888, MSE= 0.039).

2.2.6.2. Training data

The underlying data in Experiment 1 were generated according

to the following scheme: The growth rate scales linearly with values

1–5 for plant 2, iff plant 4 has a value of 1 or 2 AND plant 5 is

not smaller than 4 (Figure 4A). For Experiment 2, we reduced the

dependency to two relevant features, such that growth rate scales

linearly with values 1–5 for plant 2, iff plant 4 has a value of 1

or 2 (Figure 4B). In both experiments, the linear relationship does

not hold for value 6 of plant 2, to prevent a simple maximization

strategy with respect to this feature.
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Growth rate may take a value between 0.1 and 1.9.5 In

each trial, the respective model predicts the new growth rate

based on the current user input. Subsequently, the new growth

rate (range 0.1–1.9) is converted into a corresponding value

between −10 and 10 in our implementation, that gets then

added to the current number of shubs to update the pack size.

Note that our implementation prevents pack size from shrinking

below two.

Each synthetic data set contains all possible plant—growth rate

combinations 100 times, yielding 1,680,700 data points. For final

model training, we balance the data set by first binning the samples

based on their label (growth rate), and then applying Synthetic

Minority Over-sampling Technique (SMOTE; Chawla et al., 2002)

using the bins as class labels. The final data set is obtained by

removing the binning.

3. Results

The empirical part of the current paper investigates whether

the proposed Alien Zoo framework is suitable to study the effect

of providing automatically generated CFEs for users tasked to

learn about yet unknown relationships in a data set. We used

an abstract setting to circumvent any confounding effects from

previous knowledge of the users.

3.1. Experiment 1

In Experiment 1, we acquired data from 45 participants

(Table 1), tasked to identify relationships within an unknown

data set. To ensure sufficient task complexity, we opted for a

comparatively complex interdependence of three features.

3.1.1. Participant flow
From 45 participants recruited via AMT, we exclude data from

participants who failed both attention trials during the game (n =

2), and straight-lined during the game despite not improving (n

= 4). No participant in this cohort qualified as speeder, gave an

incorrect response for the catch item in the survey, or straight-

lined in the survey. Thus, the final analysis includes data from

39 participants (Table 1). Note that for one user in the CFE

condition, logging of responses for the first two survey items

(“Which plants were [not] relevant to increase the number of

Shubs in your pack?”) failed. Thus, we excluded this user in the

evaluation of these two items, but included them in all remaining

analysis.

On average, the final 39 participants in Experiment 1 needed

17 m:42 s (±01 m:16 s SEM) from accepting the task on AMTs to

inserting their unique payment code.

5 Originally, the prediction was conceived to be used as a factor, enabling

exponential growth in perfect cases. This was changed because it meant that

individual people might achieve very high pack sizes, in turn disproportionally

driving potential e�ects.

3.1.2. Objective measures of usability
Hypothesis 1 posits that users benefit from receiving CFEs

compared to no explanations in the Alien Zoo framework. To

address this hypothesis, we compare data from participants in both

groups in terms of pack size produced over time, decision time,

and matches between ground truth and indicated plants. Figure 5A

depicts the development of average pack size as well as average

decision time per group. While users receiving CFEs clearly show

a positive trajectory, users receiving no explanation did not show

any trace of improvement over the course of this experiment. In

fact, no user in the control condition managed to increase their

pack size from the minimal attainable number of two by trial 12. A

significant interaction of factors trial number and group [F(11,407)
= 6.649, p < 0.001, η2p = 0.153] in the corresponding linear mixed

effects model confirms this stark discrepancy. Follow-up analysis

reveal significant differences between groups from trial 9 onward

[t(56.7) ≥ 2.461, p ≤ 0.0169, d ≥ 1.711]. Additionally, there is a

significant main effect of trial number [F(1,407) = 15.758, p < 0.001,

η
2
p = 0.299], but no significant main effect of group [F(1,37) = 3.755,

p= 0.060, η2p = 0.092].

Participants in either group showed a marked decrease in

decision time over the curse of the study, especially after the

very first trial (Figure 5B). A significant main effect of factor trial

number [F(11,407) = 13.025, p < 0.001, η
2
p = 0.260] confirms

this observation. Corresponding post-hoc analyses show significant

differences between trial 1 and all other trials [all t(407) ≥ 5.189,

p < 0.001, d > 1.175]. Moreover, decision time for trial 4 as the

initial trial after the first in-game attention question, stands out.

Users require significantly more time to reach a feeding decision in

trial 4 compared to trial 5 [t(407) = 3.755, p= 0.013, d= 0.850], trial

7 [t(407) = 4.020, p= 0.005, d = 0.911], trial 10 [t(407) = 3.397, p <

0.049, d= 0.769], and trial 11 [t(407) = 3.537, p< 0.030, d= 0.801].

Neither the main effect of factor group [F(1,37) = 3.976, p = 0.054,

η
2
p = 0.097], nor the interaction between factors trial number and

group [F(11,407) = 0.965, p= 0.477, η2p = 0.025] reach significance.

Thus, these results verify our hypothesis that providing CFEs

in the AlienZoo not just facilitates, but enables learning in the

first place, given the poor performance of participants in the

control group.

3.1.3. Assessing user’s explicit knowledge
In terms of mean number of matches between user judgments

of plant relevance for task success and the ground truth,

participants receiving CFEs could explicitly identify relevant plants

(control: mean number of matches between user input and ground

truth = 1.895 ± 0.072 SE; CFE: mean number of matches = 3.000

± 0.286 SE; U = 281.5, p = 0.001, r = 0.517) as well as irrelevant

plants (control: mean number of matches between user input and

ground truth= 2.421± 0.176 SE; CFE: mean number of matches =

3.210± 0.224 SE; U = 264.5, p= 0.009, r = 0.422) more easily than

users receiving no explanation (see Figure 5C).

3.1.4. Measures of subjective usability
Hypothesis 2 posits that providing CFEs compared to no

explanation increases user’s subjective understanding. To assess this
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TABLE 1 Demographic information of participants in Experiment 1.

Before quality assurance measures (N = 45) After quality assurance measures (N = 39)

Control CFE U-valuea p-value Control CFE U-valuea p-value

N 22 23 .. .. 19 20 .. ..

Genderb 5 f/17 m 5 f/18 m 255.5 0.950 4 f/15 m 5 f/15 m 182.5 0.788

Age (Mdn)c 35–44 y 35–44 y 225.5 0.516 35–44 y 35–44y 143 0.168

aNon-parametric Wilcoxon-Mann-Whitney U-test.
bf, female; m, male.
cMdn, median age band (options: 18–24 y, 25–34 y, 35–44 y, 45–54 y, 55–64 y, 65 y, and over).

FIGURE 5

Experiment 1: Development of (A) mean pack size per group by trial, (B) mean decision time per group by trial, and (C) mean number of matches

between user judgments and ground truth for survey items assessing relevant plants and irrelevant plants, respectively. Shaded areas in (A, B), and

error bars in (C) denote the standard error of the mean. Asterisks denote statistical significance with ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001,

respectively.

notion, we analyze participant judgments on relevant items in the

post-game survey.

Visual assessment of user responses suggest large discrepancies

between groups in items assessing feedback’s helpfulness

and usability (Figure 6A). This notion is confirmed by the

corresponding statistical assessment. Groups differ when judging

whether presented feedback (i.e., summary of past choices only

vs. summary + CFEs) was helpful to increase pack size (control

condition: M = 1.789 ± 0.282 SE; CFE condition: M = 3.700 ±

1.285 SE; U = 306.5, p < 0.001, r = 0.540). Similarly, participants

receiving CFEs on top of a summary of their past choices

significantly differed in terms of reported subjective usability

(control condition: M = 1.210 ± 0.096 SE; CFE condition: M =

3.450 ± 0.294 SE; U = 351, p < 0.001, r = 0.759). Strikingly,

however, there is no significant difference between groups for

estimated usefulness of feedback for others (control condition: M

= 3.632 ± 0.244 SE; CFE condition: M = 3.350 ± 0.335 SE; U =

175, p= 0.674, r = 0.067).

3.1.5. Mode of presenting feedback and CFEs
In conflict with Hypothesis 3, survey responses reflecting

user’s subjective understanding of feedback show that groups

differ in terms of understanding the feedback as such (Figure 6B).

While a considerable proportion of both groups responds

positively about understanding the feedback, the control group

leans significantly more to giving positive judgements (control

condition: M = 4.105 ± 0.252 SE; CFE condition: M = 3.7 ±

0.309 SE; U = 312.5, p < 0.001, r = 0.567). When indicating

their need for support for understanding, both groups reply

with a comparable, more balanced response pattern (control

condition: M = 2.684 ± 0.351 SE; CFE condition: M =

2.900 ± 0.383 SE; U = 205, p = 0.674 r = 0.067). User

judgements on timing and efficacy of presented feedback is

consistently high across groups (control condition: M = 4.316±

0.188 SE; CFE condition: M = 3.950 ± 0.246 SE; U = 154.5,

p= 0.289 r = 0.170).

3.1.6. Identification of inconsistencies
Our explanatory analysis revealed that users in groups did

not differ in finding inconsistencies in the feedback provided

(control condition: M = 2.316 ± 0.265 SE; CFE condition: M

= 2.95 ± 0.352 SE; U = 232, p = 0.232, r = 0.192, see

Figure 6C).
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FIGURE 6

Experiment 1: Overview of user responses in post-game survey (adapted from Holzinger et al., 2020) per group. (A) Depicts user replies in survey

items relevant for hypothesis 2, (B) depicts user replies in survey items relevant for hypothesis 3, and (C) depicts replies relevant for our last

exploratory analysis. Statistical information including the respective p-value is given within each item’s box (n.s., not significant).

3.2. Experiment 2

In Experiment 2, we acquired data from 45 additional

participants facing the same task as in Experiment 1 (Table 2). The

underlying data used for model training was simpler, including the

interdependence of two and not three features.

3.2.1. Participant flow
From 45 participants recruited via AMT, we exclude data from

participants who failed both attention trials during the game (n =

1), and straight-lined during the survey (n = 1). No participant in

this cohort qualified as a speeder, gave an incorrect response for the

catch item in the survey, or straight-lined in the game part of the

study. Thus, the final analysis includes data from 43 participants

(Table 2).

On average, the these 43 participants in Experiment 2 needed

14 m:25 s (± 01 m:07 s SEM) from accepting the task on AMTs to

inserting their unique payment code.

3.2.2. Objective measures of usability
In Experiment 2, we successfully replicate the beneficial effect

of providing CFEs compared to no explanations in the Alien Zoo

approach already seen in Experiment 1. This is noteworthy, given

the less complex interdependencies within the underlying data set.

As in Experiment 1, average pack size per group increases

significantly faster when CFEs are given [Figure 7A; significant

interaction of factors trial number and group; F(11, 451) = 32.748,

p < 0.001, η
2
p = 0.444]. In contrast to Experiment 1, some users

in the control condition increases their pack size over the course of

the experiment, in line with our expectation given the simpler data

set. Still, follow-up analyses reveal significant differences between

groups from trial 5 onward [all t(67.8) ≥ 2.384, p≤ 0.020, d≥ 1.467].

Additionally, there is a significant main effect of trial number

[F(1, 451) = 62.556, p < 0.001, η2p = 0.604], as well as a significant

main effect of group [F(1, 41) = 16.909, p < 0.001, η2p = 0.292].

Similar to Experiment 1, participants in both groups showed a

decrease in decision time over the curse of the study, evident after

the very first trial (Figure 7B). A significant main effect of factor

trial number [F(11, 451) = 4.991, p < 0.001, η2p = 0.109] confirms

this observation. Corresponding post-hoc analyses show significant

differences between trial 1 and all other trials [all t(451) ≥ 3.432, p

≤ 0.043, d ≥ 1.740], except for trials 2 and 10. Neither the main

effect of factor group [F(1, 41) = 2.758, p = 0.104, η2p = 0.063], nor

the interaction between factors trial number and group [F(11, 451) =

1.439, p= 0.152, η2p = 0.034] reach significance.

Overall, these results support the initial findings from

Experiment 1, emphasizing the beneficial role of providing CFEs

in the Alien Zoo for successful task completion.

3.2.3. Assessing user’s explicit knowledge
Unlike Experiment 1, there is no statistically meaningful

difference between groups in terms of number of matches between

user judgments of plant relevance for task success and the ground

truth (control: mean number of matches between user input and

ground truth = 3.000 ± 0.207 SE; CFE: mean number of matches

= 3.182 ± 0.260 SE; U = 255, p = 0.554, r = 0.090) as well as

irrelevant plants (control: mean number of matches between user

input and ground truth = 2.857 ± 0.221 SE; CFE: mean number

of matches = 2.819 ± 0.284 SE; U = 223.5, p = 0.860, r = 0.221),
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TABLE 2 Demographic information of participants in Experiment 2.

Before quality assurance measures (N = 45) After quality assurance measures (N = 43)

Control CFE U-valuea p-value Control CFE U-valuea p-value

N 21 24 .. .. 21 22 .. ..

Genderb 9 f/11 m/1 nb 11 f/13 m 238 0.725 9 f/11 m/1 nb 9 f/13 m 229 0.967

Age (Mdn)c 35–44 y 35–44 y 280 0.497 35–44 y 35–44 y 253 0.571

aNon-parametric Wilcoxon-Mann-Whitney U-test.
bf, female; m, male; nb, non-binary.
cMdn, median age band (options: 18–24 y, 25–34 y, 35–44 y, 45–54 y, 55–64 y, 65 y, and over).

FIGURE 7

Experiment 2: Development of (A) mean pack size per group by trial, (B) mean decision time per group by trial, and (C) mean number of matches

between user judgments and ground truth for survey items assessing relevant plants and irrelevant plants, respectively. Shaded areas in (A) and (B),

and error bars in (C) denote the standard error of the mean. Asterisks denote statistical significance with ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001,

respectively, and n.s., not statistically significant (i.e., p > 0.05).

indicating greater success in building up explicit knowledge even

without explanations, given the simpler data set (see Figure 7C).

Thus, given the current data, the advantage of building better

explicit knowledge when CFEs are available seems to disappear.

3.2.4. Measures of subjective usability
In stark contrast to Experiment 1, the majority of users from

both groups in Experiment 2 shared a positive feeling that provided

feedback was helpful and usable (Figure 8A). The difference in

response patterns still differs significantly between groups, in terms

of subjective helpfulness (control condition: M = 3.714 ± 0.277

SE; CFE condition: M = 4.682 ± 0.153 SE; U = 351, p = 0.001,

r = 0.489) and subjective usability (control condition: M = 4.048

± 0.189 SE; CFE condition: M = 4.591 ± 0.157 SE; U = 325, p

= 0.012, r = 0.385). Extremely favorable user judgements from the

CFE group likely drive this effect, due to strong agreement by a large

proportion of users from this cohort.

As in Experiment 1, there is no significant difference

between groups for estimated usefulness of feedback

for others (control condition: M = 3.952 ± 0.212 SE;

CFE condition: M = 4.409 ± 0.157 SE; U = 294.5,

p= 0.091, r = 0.258).

3.2.5. Mode of presenting feedback and CFEs
In accordance with Hypothesis 3, survey responses reflecting

user’s subjective understanding of feedback show that groups

did not differ in terms of understanding the feedback as such

(Figure 8B; control condition: M = 4.571 ± 0.111 SE; CFE

condition: M = 4.409 ± 0.157 SE; U = 306, p = 0.05, r

= 0.610). Likewise, users in both groups indicate strongly that

they do not wish for support to understand feedback provided

(control condition: M = 1.905 ± 0.248 SE; CFE condition:

M = 2.318 ± 0.250 SE; U = 284, p ≤ 0.177 r = 0.206).

User judgments on timing and efficacy of presented feedback is

consistently high across groups (control condition: M = 4.334±

0.174 SE; CFE condition: M = 4.591±0.107 SE; U = 266.5,

p= 0.334 r = 0.147).
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FIGURE 8

Experiment 2: Overview of user responses in post-game survey (adapted from Holzinger et al., 2020) per group. (A) Depicts user replies in survey

items relevant for hypothesis 2, (B) depicts user replies in survey items relevant for hypothesis 3, and (C) depicts replies relevant for our last

exploratory analysis. Statistical information including the respective p-value is given within each item’s box (n.s., not significant).

3.2.6. Identification of inconsistencies
Analysis of the final survey item reveals that users in both

groups did not differ in finding inconsistencies in the feedback

provided (control condition:M= 1.810± 0.131 SE; CFE condition:

M = 2.091 ± 0.254 SE; U = 241.5, p = 0.786, r = 0.041, see

Figure 8C).

4. Discussion

In the empirical proof of concept study, we investigate the

efficacy and feasibility of the Alien Zoo framework. To this end,

we examine the impact of providing CFEs on user performance

as compared to no explanations. Based on objective behavioral

variables and subjective self-reports, we assess understanding

and usability of CFE-style feedback. Our results reveal the

potential of the Alien Zoo framework to study the usability of

CFEs approaches.

Most notably, merely providing a summary of past choices

does not necessarily enable users to gain insight into the

system. This becomes especially clear considering the poor

task performance of control participants in the more complex

Experiment 1. Given the comparatively complex interdependence

of three features in the underlying data, none of the control

participants manage to increase their pack size in the course of

the experiment.

Participants receiving CFEs for their choices, however, are

able to manipulate the system more efficiently. While both

experiments vary in terms of the complexity of the underlying

data used for model building, the observation of CFEs participants

outperforming their peers in the control group, is consistent.

Interestingly, the control group in Experiment 2 did indeed

manage to improve their pack size to some extent, but providing

explanations puts users at a definite advantage. In fact, 100%

of all users in the experimental condition in Experiment 2

correctly determine that plant 2 is a relevant feature. This

observation not only supports the claim that CFEs are a very

intuitive and meaningful way of explaining in XAI (Wachter

et al., 2017), but clearly demonstrates their effectiveness in the

current setting.

Intriguingly, our results diverge from those of empirical XAI

studies that find no beneficial effect of providing CFEs on user’s

task performance (Lim et al., 2009; van der Waa et al., 2021). For

instance, Lim et al. (2009) review various explanation approaches

in the domain of context-aware systems. Their evidence suggests

that users receiving counterfactual style what-if -explanations have

no advantage over control users when manipulating abstract

features (labeled A, B, and C) to explore their influence on abstract

predictions (labeled a or b).

Decisive differences between both experimental tasks may

explain this stark contrast. First, the Alien Zoo revolves around

an engaging setting (i.e., feeding aliens to make the pack grow),

as opposed to the non-specific nature of the system in Lim et al.

(2009). Second, we offer users different rounds of action and

feedback in alternating learning and testing steps, making the

Alien Zoo truly interactive. In contrast, users in Lim et al. (2009)

undergo an initial evaluation section displaying explanation after

explanation, followed by a separate test phase. Learners obtaining

deeper understanding through hands-on activities rather than

passive studying is well established in educational science (Chi

and Wylie, 2014), potentially explaining discrepancies in terms of
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observed user behavior. Thus, we suggest that future XAI usability

studies should put a strong focus on goal-directed and interactive

tasks to be maximally effective.

All users across conditions and experiments significantly

decrease their decision time, apparent already after the very first

trial. This effect most likely reflects how participants initially

familiarize themselves with the interface. Another slight increase is

observable for trial 4, right after the first in-game attention question

appeared. We assume that users took this trial to re-focus after this

unsuspected disruption. From there on, decision times consistently

level out for both groups. Thus, despite the performance benefit,

we have no evidence that providing CFEs leads to faster, and

this more automatic, decision-making. Reaction time measures are

a staple of experimental psychology, typically linked to simple,

perceptual experiments. The current study, in contrast, employs

a complex, a game-type scenario invoking high-level decision-

making that may not be sensitive enough or too short to reveal

subtle group differences. Further, the experimental groups may

have been slowed down by the increased cognitive load imposed

by CFE, an effect previously demonstrated to lead to higher—not

lower—response times (Lage et al., 2019). At the same time, having

no additional help to go by, some no-explanation controls may

have approached the task using fast and simple heuristics, relying

on intuition more that time-consuming elaboration (Kahneman,

2011). Consequently, decision time decreases for both groups may

be driven by different underlying factors (increasing automaticity

vs. intuitive decision-making).

In the more complex Experiment 1, users in the experimental

group identify plants relevant for the task more reliably compared

to users in the control group. Interestingly, in the simpler

Experiment 2, this significant difference vanishes. Thismight reflect

the greater success of control users to see through the system

in this simpler setting, even without explanations. However, this

should not be taken as evidence that users across groups indeed

build up comparable mental models of the underlying system,

given the considerable difference in task performance. In fact, one

caveat of the current analysis may be insufficient sensitivity of the

measure of matches between user input and ground truth, possibly

diluting noteworthy effects. For instance, 100% of all users in the

experimental condition, but only 57% of all control participants,

could determine that plant 2 is a relevant feature in Experiment

2 (see Supplementary Figures 2, 3). The current measure does

not capture this detail, calling for careful interpretation of the

corresponding null-effect.

On top of the objective measures quantifying system

understanding, we assess various subjective measures to tap into

perceived usability. Across both experiments, the experimental

groups judged their CFE-style feedback as being more helpful and

usable compared to the control group (Figure 6A, respectively).

Thus, providing CFEs does not just improve user’s performance,

but also their subjective usability of the system.

Surprisingly, despite variable responses in terms of helpfulness

and usability of presented feedback for oneself, the estimated

usefulness for others is not different across groups. In fact, a

larger proportion of control users in Experiment 1 reported

favorably on this item, even though they found feedback of little

help and limited usefulness. This astonishing result is difficult to

interpret without access to more detailed qualitative data from

those participants. Maybe these users are demotivated by their poor

turnout, feeling that they perform exceptionally bad compared to

the average person.

Participant responses to items in place to assess potential

confounding factors reveal an interesting pattern that merits

closer inspection (Figure 8B). In Experiment 1, a considerable

proportion of both groups responds positively about understanding

the feedback. However, the control group leans significantly more

toward agreement. This might reflect higher cognitive load the CFE

group, as they receive a more crowded, information-heavy screen.

While in line with findings suggesting that counterfactual style

questions impose a larger cognitive load on participants (Lage et al.,

2019), this interpretation is unlikely as this effect vanishes in the

simpler Experiment 2. This fact rather suggests that the increased

task difficulty drives this effect. Response patterns on the other

two control items are more consistent. Users across groups and

across experiments state that they need little support to understand

the feedback provided. Similarly, an overwhelming majority of

all users across all groups indicate that feedback was timely and

efficient, backing the efficacy of the Alien Zoo framework despite

its relatively complex game-like setup.

Survey items depicted in Figure 8B is set in place to assess

potential confounding factors, possibly impacting the efficiency of

the Alien Zoo framework. We assumed that across experiments,

consistent group difference with respect to these items would

inform us about potential design flaws. While one group difference

emerges, however, it is not consistent across experiments. This

clearly indicates that the respective item (“I understood the

feedback.”) not just evaluates general understanding, but also

reflects the underlying task difficulty. A possible explanation for

this may be that there is still room for improvement for a clean

identification of confounds. In lack of a standard inventory for

assessing subjective usability in XAI user studies, we rely on

an adapted version of the System Causability Scale (Holzinger

et al., 2020). Prominent alternatives for test instruments include

are the DARPA project’s Explanation Satisfaction and Trust

scales (Hoffman et al., 2018), shown to effectively assess differences

in terms of satisfaction and trust (Warren et al., 2022). Further

scales exist, often highly specific to particular applications (Cahour

and Forzy, 2009; Heerink et al., 2010) Consequently, there is

essential similarity between some items and individual specificity

across scales. Perfecting subjective measures of XAI satisfaction

may the a worthwhile future endeavor for future research.

Finally, our exploratory analysis reveals that groups in both

experiments do not differ in finding inconsistencies in the feedback

provided. This acts as a further quality measure for the CFE

approach, trusted to generate feasible and sound explanations.

While this verdict is virtually unanimous across users in the

simpler Experiment 2, some users in both groups in Experiment

1 indicate that they did indeed determine inconsistencies. While a

minority, this observation merits a comment. We cannot exclude

that some users in the CFE group indeed receive feedback

in different runs that, when taken together, does not perfectly

align. It is important to keep in mind that CFEs are local

explanations, highlighting what would lead to better results in a

particular instance. Variability, especially in terms of the irrelevant

features, may indeed exist. To uncover whether such effects cause

fundamental problems, we intentionally moved away from the
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perfect, hand-crafted explanations assessed classical Wizard of Oz

designs more prominently used in the community (Narayanan

et al., 2018; Lage et al., 2019; Sokol and Flach, 2020b; van der

Waa et al., 2021), and used predictions from real ML-models.

However, the observation that a small proportion of users in

the control group indicate that they found inconsistencies, is

much more puzzling. These users merely see a correct summary

of their past choices as feedback, and thus inconsistencies are

impossible. Given that this survey item was the very last, it may

be a sign of participants’ loss of attention or fatigue. Identifying

the actual underlying reasons requires collecting quantitative

data, e.g., via in depth user interviews. These measurements

require moving away from the accessible web-based format,

and perform complementary evaluations in an in-person, lab-

based setting.

4.1. Limitations of the empirical study

Several limitations of the empirical proof of concept study

deserve detailed discussion.

A cautionary note regards the general efficacy of CFEs for

human users. CFEs are local explanations, focusing on how to undo

one past prediction. Thus, it is very unlikely that users are able

to form an accurate mental model of the entire underlying system

solely based on a sparse set of these specific explanations. This is a

short-coming, given that completeness is an important prerequisite

for this process (Kulesza et al., 2013). It remains an avenue for

future research to show situations that severely impact usability of

CFEs, as they are unable to provide a complete picture.

Another point to keep in mind is the potential problem of

users falling victim to confirmation bias after receiving the first

round of CFE feedback (Wang et al., 2019). In essence, we cannot

rule out that some users generate a faulty initial hypothesis, and

subsequently look for confirming evidence for that faulty initial

hypothesis only. This may have greater impact on the control

group, given that they have very little evidence to go by choosing

the best plant combination. Still, it also needs to be acknowledged

as a possible issue for the CFE participants. Consequently, such a

strategy would hamper learning profoundly, and we cannot rule out

that some lower performing users indeed follow it. While exploring

the impact of confirmation bias for CFEs in XAI is outside the

scope of this work, the issue deserves more careful attention in

future work.

Further, we do not investigate whether providing CFEs did also

improve user’s trust in the system. Trust is an important factor in

XAI, and prominently studied in various designs (Lim et al., 2009;

Ribeiro et al., 2016; Davis et al., 2020). The current work, however,

exclusively focuses on the aspect of usability. Extending the current

set up to include evaluation of trust can be easily realized, for

instance by extending the survey by corresponding items.

Finally, a further insight gained from this study is the critical

impact of task difficulty on user performance and judgements.

While not directly at the center of the current work, we shed a first

light on these effects by observing differences between Experiment

1 and 2. Future research should look into the effects of data

complexity on usability of CFEs.

4.2. Conclusions of the empirical study

The main contributions of the empirical proof of concept study

are two-fold. First, we provide long-awaited empirical evidence

for the claim that CFEs are indeed more beneficial for users than

providing no explanations, at least in abstract setting, when tasked

to gain new knowledge. Importantly, this advantage becomes

apparent both in terms of objective performance measures and

subjective user judgements. Second, we demonstrate the basic

efficacy of the Alien Zoo framework for studying the usability of

CFEs in XAI. Thus, within the limits of this game-type scenario in

its low-knowledge domain, it promises to be an effective way for

testing specific aspects of CFEs in XAI.

4.3. Future perspectives and general
conclusions

The current paper introduces the Alien Zoo framework,

developed to assess the usability of CFEs in XAI in a

game-type scenario set in a low-knowledge domain. In

a proof of concept study, we demonstrate its efficacy by

examining the added benefit of providing CFEs over no

explanations using an iterative learning task in the abstract

Alien Zoo setting.

We believe that the Alien Zoo enables researchers to

investigate a wide variety of different questions related

to XAI strategies and specific aspects of CFEs for XAI.

For instance, in a separate study, we use the Alien Zoo

to investigate potential advantages of CFEs restricted to

plausible regions of the data space compared to classical

CFEs remaining as close to the original input as possible (Kuhl

et al., 2022). Surprisingly, this investigation reveals that novice

users in the current task do not benefit from an additional

plausibility constraint.

Another issue for future research may be to examine usability

of different types of CFEs. Importantly, CFEs may vary in terms

of framing the respective result. Upward counterfactuals highlight

how the current situation would be improved, while downward

counterfactuals emphasize changes leading to a less desirable

outcome (Epstude and Roese, 2008). The impact of such a framing

in XAI is yet to be shown.

Moreover, further research may uncover potential differences

in usability for CFEs generated for different models. While the

way CFEs are presented in the Alien Zoo is always the same, the

underlying models may be fundamentally different. Thus, if human

users pick up on model differences solely based on their respective

explanations, it may have critical implications for their usability. A

particularly intriguing question to be addressed is whether users are

able to identify a model that is objectively worse.

As a final suggestion of this by no means exhaustive list, we

propose studying potentially negative effects of CFEs: In the field of

XAIs, it is universally assumed that CFEs are intuitive and human-

friendly. Thus, it will be extremely informative to investigate and

identify cases where these types of explanation do more harm than

good, e.g., when users come to trust ML models even if they are

biased and unfair.
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It is natural for people to interact with each other by explaining

their behaviors to one another. The key to building a stable

mental model for prediction and control of the world is to

explain in a way that is understandable and usable (Heider, 1958).

However, in the absence of a universally applicable definition

of what constitutes a good explanation, a lack of user-based

evaluations affects the assessment of automatically generated CFEs

for ML. The lack of user-based research does not only bear upon

assessments of CFEs as such, but also limits the overall evaluation

of different conceptualizations for this kind of explanations.

Consequently, with the Alien Zoo framework, we offer a flexible,

easily adaptable design, applicable for various purposes and

research questions. This approach in its implementation may be

freely used by researchers and practitioners to further advance the

field of XAI.
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