
TYPE Original Research
PUBLISHED 22 May 2023
DOI 10.3389/fcomp.2023.1085507

OPEN ACCESS

EDITED BY

Carmen Llorente Cejudo,
University of Seville, Spain

REVIEWED BY

Daisuke Saito,
Waseda University, Japan
Radoslava Stankova Kraleva,
South-West University “Neofit Rilski”, Bulgaria

*CORRESPONDENCE

Hector Belmar
hector.belmar@hotmail.com

RECEIVED 31 October 2022
ACCEPTED 02 May 2023
PUBLISHED 22 May 2023

CITATION

Belmar H (2023) Teaching computer
programming: impact of Brown and Wilson’s
didactical principles.
Front. Comput. Sci. 5:1085507.
doi: 10.3389/fcomp.2023.1085507

COPYRIGHT

© 2023 Belmar. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Teaching computer
programming: impact of Brown
and Wilson’s didactical principles

Hector Belmar1,2*

1School of Computer Engineering, Ñuñoa Campus, INACAP (National Professional Training Institute),
Santiago, Chile, 2UMCE (Metropolitan University of Education Sciences), Santiago, Chile

This research studies the e�ects of the application of didactics to the teaching of
computer programming, focusing on programming skills in the Python computer
language. The problem arises from the failure and dropout rates of students
in computer programming in computer science careers in INACAP and the
consequent interest in promoting better learning. The general objective is to
study the e�ects of an innovative methodology, based on Brown and Wilson’s
didactic principles, on the teaching process of Python programming in computer
science students at INACAP. The theoretical framework is based on the didactics
of teaching computer programming and the concepts of computational thinking
skills of various theoretical references, and in particular on the didactic principles of
Brown and Wilson. This research is carried out with a quantitative methodology of
explanatory scope and with a quasi-experimental design, with a purposive sample,
for the experimental stage the sample will consist of 100 first year undergraduate
students of Computer Science, of which 50 will be the experimental group and
50 will be the control group. The hypothesis proposed is that “The students in
the experimental group obtain a higher performance when applying Brown and
Wilson’s didactic principles than the students in the control group who are taught
in a traditional way.” The data collection technique used will be a 45-question
multiple-choice test. The data analysis will be performed by applying statistical
criteria, comparison of means and variances, among others.

KEYWORDS

computer programming, algorithm, didactics, evaluation instrument, didactical principles

1. Introduction

Since its beginnings in the 20th century with the theoretical conceptualization by Alan

Turing of a machine capable of making calculations and with memory to store data,

computing has led us in a spiral of technological advances, which has evolved exponentially.

The EnglishmanAlan Turing was the founder of Computer Science, he was amathematician,

philosopher and cryptographer, a visionary of his time. Turing lived from (1912 to 1954). It

should be noted that, without that initial idea and the construction of the first computers as

electromechanical machines, computing would not be what we know today (Kulkarni, 2015).

In this context, computer science has evolved during the second half of the 20th century,

starting with computer programming in assembler through procedural languages to focus

at the beginning of the 21st century on Object Oriented programming and code generators.

Currently there are several initiatives in the world to incorporate programming in schools,

one of them is the Bebras challenge, which is aimed at motivating, practicing and evaluating

the skill levels of students at an extracurricular level. Along with the Bebras challenge is

the initiative called https://code.org/, which provides free material to anyone who requests

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2023.1085507
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2023.1085507&domain=pdf&date_stamp=2023-05-22
mailto:hector.belmar@hotmail.com
https://doi.org/10.3389/fcomp.2023.1085507
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2023.1085507/full
https://code.org/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Belmar 10.3389/fcomp.2023.1085507

it, in order to facilitate access to computer programming teaching

material. There is also the NGO https://www.ideodigital.cl/, which

provides free curriculum materials for schools, including teaching

materials and associated assessment tools. But let’s see what each of

these initiatives is.

The Bebras Challenge (https://www.bebras.org/) is a

community computer education network that was born in

Lithuania in 2005 and has been consolidated in more than

40 countries to discuss computer science concepts for school

computer education. The Bebras algorithm development

workshops, which have been organized annually since their

inception, bring together representatives from all these countries

for rigorous work and decision making on good tasks to promote

computer education in schools. On the one hand, the Bebras

challenge is an international assembly driven to respond to

the needs of computer education worldwide, and on the other

hand, almost all activities are nationally based, organized by

communities in the participating countries. Bebras is an attractive

way to promote computer science learning worldwide. It has a

community-based, distributed organization, which makes it a

democratic organization, as everything comes from the bottom up.

The workshops work as extracurricular activities so participants do

it voluntarily and based on their motivation to learn (Dagiene and

Stupuriene, 2016; Araujo et al., 2019).

Regarding the NGO Code.org is a non-profit organization

dedicated to expanding access to computer programming in

schools and increasing the participation of all who need and want

to learn to program computers. Code.org’s vision (www.code.org)

is that every student in every school can learn to program and that

this learning is free for those still in school. Code.org, the leading

distributor of school computing curriculum to school communities

in the United States, also established the annual “Hour of Code”

crusade, which has reached more than 15% of all school children

worldwide (Kale and Yuan, 2021).

Ideodigital is a national initiative originated thanks to a

strategic alliance between the Kodea Foundation (www.kodea.org)

and the BHP Foundation (www.bhp.com), which seeks to create

the necessary conditions for thousands of children and adolescents

to become protagonists of the digital society of the 21st century,

incorporating computer science in the Chilean public school

system. The purpose is to create awareness in the actors of the

educational community about the benefits and feasibility of the

application of computer science in the public school system. It

also promotes the implementation of computer science in the

classroom, for which it develops curricular courses from the

first year of primary education to the fourth year of secondary

education, which are available as a public good for the entire

school system, articulating an ecosystem to train and accompany

teachers and develop a network of leading schools in the

teaching of computer science, which by July 2022 there were

more than 80 schools that have already joined the ideodigital

system (www.ideodigital.cl).

At present, there are several problems for the implementation

of the teaching of computer programming in schools, which begin

in the political discussion of the countries and the sufficient

budget allocation to equip the educational system with an adequate

number of computers in laboratories suitable for teaching. After

overcoming the issue of computer infrastructure, an additional

problem arises, which is the availability of a sufficient number of

teachers properly trained to teach programming. In this sense, the

political discussion will begin when a diagnosis is made about the

implications of the advance of technology and how it could displace

a significant percentage of workers (due to the automation of work)

and with it an increase in unemployment that will imply socio-

political instability, which will shake the economy and governments

that are not properly prepared for these changes. Once the first

barrier is overcome, the implementation will come, which would

imply an operational diagnosis, how many trained teachers exist,

how they are distributed in the country, also regarding digital

infrastructure, laboratories, software, etc. (Belmar, 2022).

1.1. Context of programming teaching

Already at the beginning of the 21st century, computing

is ubiquitous, filling every space, ranging from a system that

allows programming a microwave oven to a complex Artificial

Intelligence system that is capable of drivingmotor vehicles without

endangering the safety of people, animals and property. In this

context, in developed countries it has been defined that the XXI

century is where work, economy and social relations are and will

be guided by a new type of skills of people, which has been called

computational thinking, which is constituted by the cognitive skills

of; abstraction, decomposition, algorithmic thinking, debugging

and problem solving. In addition, it has been proposed by several

researchers that these skills are transferable to other areas of

knowledge, such as natural sciences, mathematics and history

(Wing, 2006).

It should be noted that the present research is oriented

to implement a didactic strategy in the teaching process of

computer programming, since until now the application of didactic

strategies in the teaching of programming is unknown, which

occurs for several reasons; on the one hand, the area of teaching

programming (in schools) is incipient, so didactic theories for

teaching programming have not been developed, or because the

teachers who teach programming do not have pedagogical training,

which in some cases are professional disciplines such as Computer

Engineers or Electronic Engineers or other equivalent professionals

with training in some computer programming language, so it has

been naturalized that each teacher teaches the way he or she has

learned in his or her own professional training. The following

are some references on the teaching of programming in computer

science courses in the first year of study in higher education.

1.2. A case from the University of TI West,
Denmark

Bennedsen and Caspersen (2007) conducted a survey in 63

universities in various countries to estimate the failure rate of the

subject “introduction to programming.” In this regard, the research

states that a common conception of students is that computer

programming is a difficult course and that failure rates are high.

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085507
https://www.ideodigital.cl/
https://www.bebras.org/
http://www.code.org
http://www.kodea.org
http://www.bhp.com
http://www.ideodigital.cl
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Belmar 10.3389/fcomp.2023.1085507

The average failure rate for different types of initial programming

courses was around 30%. Therefore, it is suggested that ACM

Education (Association Computing Machinery Education) and

other participants in the study done by TI West University, may

conduct further studies with a larger sample in order to postulate

more representative results (Bennedsen and Caspersen, 2007).

1.3. A view from Durham University in the
UK

Watson and Li (2014) researchers at Durham University

in the United Kingdom, calculated a high failure rate in the

achievement level of students in the subject of introduction to

computer programming. The study describes the results of 161

introductory computer programming courses that were conducted

in 15 different countries, in which the average pass rate was found

to be 67.7%, therefore, the average failure rate is 32.3%. However,

despite several studies conducted on the topic of achievement

level in novice first-year computer programming students, which

cite a motivation for research on pass/fail rate, in introductory

programming courses, most of the available evidence is still not

sufficiently representative. In addition, it was found that the pass

rate has been maintained over time, and that it does not depend

on the programming language taught, nor on the professor, nor on

the University Institution that teaches it and that the perception of

students is that learning to program is a difficult task (Watson and

Li, 2014).

The objective of this study is to study the effects of Brown

and Wilson’s didactic principles on the teaching process of Python

programming in computer science students at INACAP. To achieve

this objective, it was necessary to work hand in hand with the

institution in order to involve the computer science area to

carry out the experimentation, which was carried out during two

semesters, first the validation of the test published in Belmar (2023),

and then with that validated test, work with the teachers of the

control and experimental group, so that they would take part in the

research, taking the students the pre and post-test, necessary for the

data collection and statistical analysis described in this report.

2. Theoretical framework

2.1. Generalities

While it is true that this research aims to study the effects

of a didactic strategy for teaching computer programming, it is

also true that the concept of “Computational Thinking” has taken

some prominence whenever the topic of computer programming

is addressed. What is happening is that the teaching of computer

programming is being added for all students in school, with the

idea of generating broad skills, which go beyond being educated

in programming. Thus, learning computer programming is used

as a scaffold for the development of computational thinking skills,

which are transferable to other areas of knowledge, since they

also radiate to the whole area of science and technology (STEM),

including art (STEAM) (Rojas and Garcia, 2020).

According to Wing (2006), Computer Science is the study of

computation, what is computable and what is not, and what is

computable, how to do it? But to appropriate the concept, we will

see other researches that consider studies based on computational

sciences, which broaden their meanings based on their application.

Some applications of computing can be named, such as; Internet of

Things, social networks, big data, Artificial Intelligence, Robotics,

Video Games, Communications, smart phones, augmented reality,

virtual reality, among others. The truth is that computing is present

in everything (Psycharis et al., 2020).

For García (2018), the digitization of information is the

beginning in the digital edification that will energize the world

of the 21st century. Given this, from which we cannot dissociate,

schools must carry out activities with students to act in a virtual

world, for which they must learn the language of this century,

without which they will be catechized into digital illiterates.

Therefore, schools must teach students the skills of computational

thinking. In this sense, ICT training is absolutely insufficient, since

what this century requires is to get the skills in computation, to

adapt to a new way of solving problems and thinking. Therefore,

the present challenge is to train young people to succeed in a

digitalized world. That is, they must be trained in the new paradigm

of computational thinking skills (García, 2018).

Complementing the above, from Lithuania in 2018, researchers

Juškevičiene and Dagiene from Vilnius University, published the

article “relationship between computational thinking and digital

competence,” which investigates both concepts, starting with

computational thinking. It should be noted, the researchers report,

that the European Commission’s scientific center has been guiding

member countries in the sense that computational thinking is

the most important skill of the 21st century. But, despite the

interest in implementing computational thinking in schools and

public and private investment, there are a number of challenges

to the integration of computational thinking into school curricula

(Juškevičiene and Dagiene, 2018).

It should be noted that the teaching of programming should

consider students’ ability to develop algorithms that solve concrete

problems. Regarding algorithms, these are finite sequences of

instructions written in some language according to its syntax,

whose instructions involve: simple step-by-step sequences, as when

guiding a student on the steps to follow to solve a second-degree

equation; sequences that consider cycles, as when elaborating an

algorithm that allows calculating powers by multiplying the base

n-times by itself; conditional sequences as when implementing a

Taylor series of a trigonometric function such as sine or cosine.

Thus when assessing students learning to program, it is key to

consider branching instructions (if statement condition then ...

else), defined cycles (for {sentence1 ... sentencek}), and conditional

cycles (while condition {sentence1 ... sentencek}), being control

structures a prominent part of the learning that students must

acquire (Mühling et al., 2015).

Of the articles read, the contribution of Belmar (2022)

is important in his publication “Review on the teaching

of programming and computational thinking in the world,”

research in which he integrates modeling and simulation as

basic skills of computational thinking, so that it incorporates

designing problems, categorizing and studying data logically,

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085507
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Belmar 10.3389/fcomp.2023.1085507

symbolizing data through models and mechanizing procedures.

In this way, taking a look at teaching in schools, these skills

enhance qualities such as: freedom to deal with complexity,

perseverance in working with complex projects, tolerance of

the fuzzy, and readiness for teamwork to achieve a common

goal and report on it. Which is complemented by Grgurina

(2021) who relates computational thinking in its main concepts,

such as: “data collection, data analysis, data representation,

problem decomposition, abstraction, algorithms and procedures,

automation, modeling and simulation.”

When confronting the achievements of countries in the

teaching of computational thinking in schools, it is convenient

to look at the development of nations in public policies that

incorporate the subject in the mandatory curriculum, such as the

case of England in 2013 and European countries since 2016, or

other Asian states such as Japan, South Korea and China, in which

computational thinking is understood as the skills of the XXI

century and that will move investments in technology. However,

in underdeveloped countries, whether in Latin America or Africa,

the states have other priorities, so the issue is not the subject of

political discussion, in this sense the teaching of programming

remains in the hands of the initiative of individuals and lacks

institutionalization and involvement in public policies that cement

the creation of the necessary conditions for students to incorporate

the skills of computational thinking in their knowledge (Belmar,

2022).

2.2. Didactics in programming education

2.2.1. Gamification: teaching through the use of
games

The didactics based on the use of games helps in the students’

willingness to learn, which in the field of computational thinking

covers a larger area, ranging from the conception of the design

idea, the construction and use of games. Gamification is also

transversal to many areas of knowledge. Thus there are practices

of the use of digital games in storytelling, in the practice in

mathematics, in history, etc. Thus, de Paula et al. (2018)) in his

work “Playing Beowulf: linking computational thinking, arts and

literature through the creation of games,” reading with that opens a

game programmed by two 14-year-old students, “Playing Beowulf,”

which in collaboration with students from the British Library, a

program in which 13–14 year olds from a London school learn, has

managed to expand the scope of programming beyond the STEM

area. The games are based on their unique understandings of the

Anglo-Saxon poem Beowulf (de Paula et al., 2018).

In the USA, researchers from Carnegie Mellon University

and Notre Dame, published in 2017 the article entitled “A

computer game that promotes mathematics learning more than

a conventional approach,” which unveils a practical work that

generates evidence that a mathematical educational game can

help with learning alternatives, which manages to make learning

mathematics more entertaining. The program “Decimal Point”

is a single-player game that recreates the amusement park and

is oriented to young teenagers. The program called “Decimal

Point: the fantastic and fabulous world of fractional fun.” The

program is set up so that youngsters can jump in sequence to

different themes (Haunted House, Wild West, Space Adventure,

Amusement Park), playing a variety of small games in each

theme area predestined to learn decimals. The youngster’s

progress is made through a sequence of steps in the park and

players are graphically shown the next game (McLaren et al.,

2017).

Similarly, a paper whose objective was to incorporate the

computational thinking board game with robots so that students

practice computational thinking skills as they complete the board

game activities by controlling the action of the robots. The game

teams are joined by two students in one team helping each other,

those who played with the other team composed of two students.

The work used Robots City board games to allow young people to

learn the concept of computational thinking through game-based

learning and use cell phone programs to command the actions of

the robots (Zhou and Hsu, 2020).

2.2.2. Educational robotics
In teaching, the multimedia environment helps to lower

learners’ anxiety and provides a stress-free classroom environment.

Also, multimedia materials collaborate with English instructors to

promote students to perfect their English learning and decrease

their language stress (Huang and Hwang, 2013 in Kong et al.,

2020). As soon as students feel confident in the foreign language

classroom, they lose inhibition and start speaking in the second

language, the target language. The experiments reveal that, in the

learning process, with the incorporation of robots, students speak

English as a matter of course to command the robot. In addition,

the research analyzed the behavior among the students and revealed

that when the student is practicing oral English, there will always be

other students to help him/her in his/her language practice, so if the

student makes a mistake, there will always be someone to correct

and guide him/her (Kong et al., 2020).

In another work at the Norwegian University of Science and

Technology, children’s teamwork and their creative disposition in

programming games and educational robotics was investigated.

The objective of the work was to investigate the teamwork driving

qualities of children in programming activities. For this purpose,

an experiment was designed with 44 students between 8 and

17 years old, who were programming for a whole day. Their

programming work was guided and data was recorded such as; their

look and attitudes in relation to their achievements, well-being,

collaborative work, with post-activity tests. In the analysis of the

data it was revealed that the behavior helps the relationship between

willingness to learn, openness to teamwork, compliance - joy and

learning achieved (Sharma et al., 2019).

In Taiwan researchers Jen and Hsu (2020), from National

Taiwan University, in an investigation entitled “The impact of

using mobile block-based programming to control robots with fifth

grade students learning computational thinking in Singapore.” The

robots were configured in Chinese language to act with block-based

programming. The experiment revealed that the students achieved

significant improvement in both computational thinking learning

and also in handling conditional sentences through the knowledge

training tasks based on robot games (Jen and Hsu, 2020).

Finally, the authors Lee and Low (2020), implemented a

computational thinking curriculum with robot programming

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085507
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Belmar 10.3389/fcomp.2023.1085507

tasks. Also, Cheng et al. (2018) worked on an investigation

regarding the fundamental applications of the educational robot,

through a requirements analysis, seen from the eyes of experts

and researchers. On SRA (Sence, Reasoning, Action) coding the

authors Fanchamps et al. (2020, 2021), worked regarding the

implication of SRA coding on algorithmic thinking. In addition, the

implications of using cell phone applications to command robots

with elementary school students in school was investigated (Yi

and Ting, 2020 in Kong et al., 2020). Finally, researchers Souza

et al. (2019), studied the implication of computational thinking in

mathematics through robotics.

2.2.3. Metaphors and blocks for teaching
programming

Pérez et al. (2018), propose using metaphors, such as;

pantry/memory and boxes/variables. Thus, it shows the alternative

of employing such metaphors to diverse resources that the teacher

has access to. Four step-by-step guidelines are provided on the

recommended way to use metaphors in class. In this sense,

an opinion study was carried out among students, for which

the opinions of 62 students from 9 to 11 years old and their

teacher were collected. The study revealed that 65% of the

respondents found metaphors useful. The children were proficient

in understanding metaphors, and <10% of the children preferred

direct language without using metaphors. In a conversation with

him as a teacher, he reported, “I think it is correct, because the

students are not only working with instructions in the recipes, but

they are able to see themselves on the screen or on the board” (Pérez

et al., 2018, 2020).

In another case, the AgentSheets program exchanged four

alternatives to generate a block programming way. After initially

locating on syntax alternatives, it has been tested with perspectives

to go to the next step, semantics, to resolve meaning and

practical conflicts. Three considerations are reported there: (1)

Contextualized explanations to aid understanding, (2) Traditional

programming to proactively encourage possible outcomes, and

(3) Color palettes to make programming easier. The block

programming community has been on the lookout for syntactic

coverage of coding (Repenning, 2017).

2.2.4. Learning programming like learning a
second language

Learning to code computers is undoubtedly a linguistic

learning, since it is a way of communicating to the computer what

to do and how to do it, and once it has finished how to elaborate the

results and where to send them. Thus the lack of grammatical rules

to get started in coding leaves students with a pedagogical fissure to

achieve by their own means, although teachers expect to solve the

exercises using concepts of logic mediated by a language in which

many complicate him to say the elementary. So much so, that some

more talented as to get their codings to work correctly stagnate in

their learning during their first year. The exact complications of

learning a programming language are similar with the complexity

of speaking a second language (Portnoff, 2018).

Portnoff (2018) says that the 10 years he has been a teacher

in an introductory computer programming course, he has used

a diversity of programming languages, such as; Scratch, Alice,

minecraft and others. However, the promising significance of

software tools, what everyone remembered was the explicit

language model. In recent years, it has become increasingly clear

that implicit language strategies are critical. This is not to say

that the explicit language model is ineffective: there are evidently

talented learners who go on to train as expert programmers

(Portnoff, 2018).

2.2.5. Other didactic initiatives in computer
programming

In Germany in 2018, the book “Content and Skills of Computer

Science” was published by the University Press of the University

of Potsdam. In the first paper that is part of the publication,

entitled “What everyone should learn about computer science: an

analysis of University courses for students of other disciplines,”

professors Stefan Seegerer and Ralf Romeike from Friedrich-

Alexander University propose a didactic way to be prepared for

life in the digital society, this is not only because computer science

is present in our lives in the productive area and in education,

but also in all aspects of our daily lives. In their work they

analyzed 70 modules on computer education for students from

other disciplines; syllabi and lesson plans, identifying some key

issues and types of tools used (Bergner et al., 2018).

2.2.6. Pedagogical models and didactics
For the purposes of this work, didactics is a science, so

it has an object of study, since its purpose is to transpose

academic knowledge into sufficient actions and nurtured holistic

components coming from teachers, so that it makes sense to

learners and allows students to appropriate new knowledge.

There are didactics generated by areas and sub-areas of subjects;

for example, there is a didactics of language, a didactics of

geometry, a didactics of algebra, a didactics of chemistry, a

didactics of physics, etc., Thus, what best generalizes didactics

is what Shulman proposes about the didactic knowledge of

content, as a methodology capable of making the teacher an

architect of himself in his creations and practices rich in ways of

teaching that allow students to move toward new knowledge in

a pleasant, motivated and participatory way. Thus, the teaching

of computer programming, as an emerging area still navigates

on some postulates of didactics that have not been experimented

and proof of this is that those who teach programming, are

disciplinary professionals without pedagogical studies (Belmar,

2022).

For Ortiz et al. (2015) and his team, all researchers from the

University of Magdalena in Colombia, published a research entitled

“Pedagogical models from a psychological-spiritual dimension,” in

which they analyze pedagogical models, making a brief description

of the behaviorist pedagogical model (Skinner), the constructivist

pedagogical model (Piaget) and the sociohistorical-cultural theory

(Vygotsky) as a pedagogical model. In addition, various holistic and

ecological pedagogical proposals derived from new epistemologies

are analyzed, such as Maturana’s bio-pedagogical model, which

proposes a biology of love as the ontological and epistemological

basis of pedagogy. Every educational process has a method, an axis,

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085507
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Belmar 10.3389/fcomp.2023.1085507

which directs and contributes to the development of the exercise of

training, which we call pedagogical model (Ortiz et al., 2015).

Precisely, pedagogy is a science whose boundaries show its

dynamics between society and human thought. A pedagogical

model is a theoretical and practical plan of strategies that teachers

and educational institutions possess to develop the training process

of their students. The pedagogical model is characterized by the

articulation of notions such as: curriculum, pedagogy, didactics,

training, education, teaching, learning and evaluation; but it also

contributes to the configuration of practice and theory. For the

configuration and identification of a pedagogical model it is

important, according to Coll (1991 in Ortiz et al., 2015), to answer

five essential questions: why teach, what to teach, how to teach,

when to teach, and what, how and when to evaluate (Ortiz et al.,

2015).

For his part, Zipitría (2018), a research scholar at the Computer

Science Institute of the University of the Republic of Montevideo in

Uruguay published a research entitled “Piaget and computational
thinking,” a perspective that points in the same direction of
the construction of computational thinking skills, both as a

cognitive skill and the means by which this skill is built, which
is computational programming. The publication discusses the

concept of “computational thinking.” Computational thinking is in
a higher category than algorithmic thinking, however, the latter is
the key piece from where computational thinking skills begin to

be acquired, since the way of thinking when solving algorithmic

problems and representing their solutions as algorithms, are

characteristic of Computer Science (Zipitría, 2018).

The most relevant aspects of Piaget’s theory is to look at

and analyze the construction of knowledge as a process and to

unveil how the transition from a lower level of knowledge to

a more complex level takes place. In this expanded sense, the

learning of computational thinking can be explained. The research

methodology is supported by Piaget’s application of Piaget to

have students solve problems by sorting, counting and searching

elements of data and reflecting on the method they employ and

the reasons for their success (or failure), as a first step toward

the conceptualization of algorithms and data structures. From

this perspective, the author developed the extension of Piaget’s

postulates as the need to describe cases where the subject must

instruct an action to a computer (Zipitría, 2018).

Researchers from Japan, investigated regarding pedagogical

transformation based on student-led design and computational

thinking. In current times that technology is everywhere it is

appropriate to discuss transformative teaching where technology

is part of who we are. We do not believe, say the authors, that

we have any basis for claiming that the unification of technology

happens by itself, for students performing complex robot coding

activities, it was the redesign of didactics and learning by doing

that made the real difference. The authors’ current thesis points

out that the idea of unification of information technologies, is

slowly disappearing, and in its replacement is gradually integrating

computational thinking with its associated skills (Vallance and

Towndrow, 2016).

Grgurina’s (2008) work is oriented toward the teaching of

ICT (Information and Communication Technology), and develops

experiences in the teaching of computing at a general level

without pointing out didactics as the basis of teaching action

to achieve student learning, and does not contain a didactic

formulation of the teaching of computer programming in initial

teacher training. It should be noted that Grgurina (2021), 13

years later, describes computational thinking in terms of its

main concepts, such as: data collection, data analysis, data

representation, problem decomposition, abstraction, algorithms

and procedures, automation, simulation, and parallelization

(Grgurina, 2021).

Also, Chinese researchers inquired about a mixed didactic

method and fostering innovative aptitude, whose methodology

of action is based on computational thinking. Computational

thinking incorporates computational thinking and unification

with the natural environment, which considers progressive

thinking in computing environments. In the future, non-computer

professionals can use computing to create and shape new ideas for

multiple professions. In addition, they would be able to support

other areas of research into new electronic equipment and software.

Computational thinking can significantly collaborate diverse non-

computing professionals to bridge the gap between knowledge

construction and tool creation (Zhang et al., 2019).

Finally, the teaching of computer programming requires the

use of computers, however, when there are no resources for it,

it is possible to work in an unplugged way, which in reality is

learning through a series of board games that seek to replace the

use of a computer (plugged) in the teaching of programming.

Thus, for example, the assignment of a variable is represented by

the movement of a figure on a board, the conditional if is also

represented by some different figure, and so on for the different

operations and control statements of a programming language,

such as the conditional while loop {condition}, the repeat until

{condition} or the unconditional for loop. Once novices have

achieved some learning in a unplagged way (without computer)

then they are already moderately prepared to start learning

programming on the computer, i.e., plugged (Grgurina, 2021).

3. Materials and methodology

3.1. Materials

The materials to carry out the present work consider having an

office equipped with a desk with a personal computer with Internet

connection, which is at least equipped with Office software and

SPSS software (Statistical Package for the Social Sciences).

3.2. Methodology

The methodology of the study corresponds to a quasi-

experimental design with pretest, posttest, and control group,

and comprises a didactic intervention in 12 classes of Unit III

of the subject “Introduction to Programming.” The test data

collection, data analysis and presentation of the results. The test

consists of 45 multiple-choice questions, scored 0 or 1, depending

on whether the answer is correct or incorrect, is attached in

Supplementary Annex 1. The test was taken during class time, so it

was carried out synchronously. See results of the pre- and post-test

in Supplementary Annex 2.

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085507
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Belmar 10.3389/fcomp.2023.1085507

3.3. Design guidelines and principles

- Objective: The objective is to determine the effects of applying the

didactic principles of Brown and Wilson (2018) on the teaching-

learning process of Python programming in computer science

students of INACAP (National Professional Training Institute)

in Chile.

- Construct definition: Programming in Python, implies the ability

to solve problems based on computer science concepts and

using the logical syntax of the programming language: basic

sequences, loops, iteration, conditionals, functions, variables, and

data structures such as arrays, tuples and dictionaries.

- Population: In the year 2021, 32,802 first year students of the

computer science degree program at INACAP.

- Sample: The experiment was carried out with 100 students of the

course “Introduction to Programming” in professional technical

education, INACAP Ñuñoa branch.

- Type of test: multiple-choice test of 45 items with four answer

options (only one correct) (Belmar, 2023).

- Estimated completion time: 90min.

Didactics: Ten principles for teaching programming by Brown

and Wilson.

Principle 1: Remember that there is no such thing as a

programming gene. The first and most important tip is that there

is no innate knowledge in computer programming. Computer

programming skills are not innate, but rather a learned skill that

can be acquired and improved with practice.

Principle 2: Use Peer Support.One-on-one tutoring is perhaps

the ideal form of teaching; a teacher’s full attention can be focused

on one student, and they can fully customize their teaching for that

person and tailor individual feedback and corrections based on a

two-way dialogue with them.

Principle 3: Use live coding. Instead of using slides, instructors

should create programs in front of their students.

Principle 4: Have students make predictions. When

instructors use live coding, they usually run the program several

times during its development to show what it does. The key to

making demonstrations more effective is to have students predict

the outcome of the demonstration before running it.

Principle 5: Use pair programming. Pair programming is a

software development practice in which two programmers share

a computer.

Principle 6: Use solved examples with labeled subgoals.

Learning to program involves learning the syntax and semantics

of a programming language, but it also involves learning to build

programs. A good way to guide students in building programs is to

use solved examples: step-by-step guides that show how to solve an

existing problem.

Principle 7: Stick to one language. A principle that applies in

all areas of education is that transfer only comes with mastery of

a programming language. Therefore, courses should stick to one

language until students have made enough progress with it to be

able to distinguish the forest from the trees.

Principle 8: Use authentic tasks. Learners find authentic tasks

more engaging than abstract examples. One caveat about the choice

of context is that the chosen topic may inadvertently exclude some

people while appealing to others.

Principle 9: Remember that novices are not experts. This

principle is tautological, but it is easily forgotten. Novices program

differently from experts and need different approaches or tools.

Principle 10: Don’t just code. Design before coding.

Finally, for details on the 10 principles, go to the source found

at Brown and Wilson’s publication (Brown and Wilson, 2018).

4. Discussion

4.1. Global context of computer
programming education

The teaching of computer programming involves resources

ranging from the implementation of digital infrastructure

(computers and software), the availability of sufficient human

resources to cover the entire primary and secondary education,

to the lack of didactics to guide the delivery of computer

programming knowledge. In this context, the questions arise: what

to teach and at what level?Which programming languages to teach;

Python, Scratch, Alice or Java? In which subjects to incorporate

programming? Only to teach in the STEM area or to extend to the

humanistic area? In addition, there is the aspect of how to measure

learning, how to know that what is done pays off in new learning

for students and that this learning truly constitutes the acquisition

of computational thinking skills (Belmar, 2022).

At the 21st edition of the “International Conference on

Interactive Collaborative Learning” and the “47th edition of the

International Conference on Engineering-Pedagogy” held in 2018

at the “Aristotle University of Thessaloniki of Greece,” they

published a text with the papers presented entitled “The Challenges

of the Digital Transformation in Education,” in which among

the many papers presented, a section on research conducted on

preschool, primary and secondary education stands out. Some of

the titles observed are: “Cyber and Internet Module Using Python

in Junior-High School,” “Children’s Reflection-in-Action During

Collaborative Design-Based Learning,” “Internet Addiction and

Anxiety AmongGreek Adolescents: AnOnline Survey,” “Intelligent

Robotics in High School: An Educational Paradigm for the Industry

4.0 Era,” “Design and Use of Digitally Controlled Electric Motors

for Purpose of Engineering Education,” among others. It should be

noted that, from the observed titles, didactic teaching strategies do

not appear and neither are observed validations of tests to measure

learning (Auer and Tsiatsos, 2019).

For its part, UNESCO proposes a master plan for the

development of digital skills, in which in one of the sections

it highlights some important points in which it points out that

the plan should have described aspects on the technological

infrastructure in the school, as a necessary prerequisite, teachers

trained in the area of digital technologies, and the integration

of digital technology within the curriculum, not only in specific

courses but within the goals or objectives (Fau and Moreau,

2018). These aspects must be supported by public policies that

guide in teaching methodologies and didactics, beyond providing

digital infrastructure and human resources. It should be noted

that implementing the teaching of computational thinking is an

enormous task, which should start in universities by preparing

teachers for such a gigantic task, who after the curricular policies

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085507
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Belmar 10.3389/fcomp.2023.1085507

have been dictated by governments and the economic resources

have been allocated, will be able to implement the new teaching in

schools (Law et al., 2018).

This is complemented by the European Commission, which

published in 2016 a paper entitled “Developing Computational

Thinking in Compulsory Education,” in which it makes various

diagnoses and the state of progress in this area in the member

countries. The research points out, among other things, that the

states have the obligation to train the next generations to operate

the new digitalized world that is approaching, however, the states

that have implemented the changes in education have revealed

the lack of teachers trained in Computer Science, and where they

have them, although few, there is the problem that there are

no pedagogical and didactic models for teaching the new skills.

The report analyzes the most significant of the development of

computational thinking for formal education in Europe and in

sum shows the implications in the classroom and in the academy

(Bocconi et al., 2016).

4.2. Results

A statistical test that validates the analysis of the results is

the repeated measures factorial ANOVA (pre- and post-test), with

the pre- and post-test treatment as an intra-subject factor and

teaching method (traditional and innovated) as between-group

factors. The pre- and post-test, being evaluated in the same subjects,

is a repeated measure so it should be treated as an intra-subject

factor, since these observations are not independent. Statistical

analysis was performed with SPSS (Statistical Package for the

Social Sciences) software version 29.0.1.1 under license from IBM

(International Business Machines).

The repeated measures ANOVA procedure performs the

analysis of groups of related dependent variables corresponding to

different measurements of the same property at different times. In

such an experimental design, the dependent variables correspond

to measurements of more than one variable for different levels of

within-subjects factors. For example, the score achievement and the

time taken to respond may have been measured for each subject

at two or three different times. The repeated measures ANOVA

procedure provides multivariate analyses for repeated measures

data. In addition to testing hypotheses, repeated measures ANOVA

generates parameter estimates (Camacho, 2019).

In the tables below it can be seen that the tests of inter-subject

effects give us a significance of 0.01, a value that is <0.05, a

threshold that confirms that the results are statistically significant.

In addition, the multivariate tests ratify the significance of the

experiment and show a statistical power of 100%, that is, an

observed power of 1.00. As shown in Table 1.

According to Camacho (2019) the statistics for multivariate

tests with repeated factors are mainly; the Pillai trace which is

a test statistic produced by a Multivariate Analysis of Variance

(MANOVA), which is a value ranging from 0 to 1. The meaning is

that when the Pillai trace approaches 1, the more significant is the

evidence that the explanatory variable has a statistically significant

effect on the values of the response variables. Another indicator is

Wilks’ Lambda which is the product of the unexplained variances

in each of the discriminant variants, and the lower its value, the

greater the disparity between the groups being compared, and the

greater Roy’s root which corresponds to the increasing values of

the statistic indicating increasing contributions of the effects to the

model in question. For the case under study, the Pillai trace is 0.623

value closer to 1, thus showing that the explanatory variable has a

significant effect on the values of the response variables, which is the

score obtained by the students, in addition theWilks’ Lambda index

resulted in 0, 377, which the lower its value, the greater the disparity

between the groups being compared, i.e., it makes a significant

difference between the control group with the experimental group,

and finally the greater Roy’s root (1.654) which indicates increasing

contributions of the effects to the experiment. See tableMultivariate

tests. As shown in Table 2.

In addition, we have the graph of marginal measures, which

compares the average scores obtained in each test, both for the

control group and for the experimental group, in which we can

appreciate and ratify what the table of statistical indexes indicates;

means and variances with their maximum and minimum scores.

Here it is shown that the control and experimental group that

started with similar averages in the pretest, in the experimental

group is slightly higher than the control group, but in the post-

test, the experimental group is observed to be much higher

than the control group, which makes it clear that the hypothesis

is confirmed.

Finally, when observing the ANOVA table, it is seen that for

the pretest score there is no significant difference between means

between the control group and the experimental group since p

= 0.541, a value >0.05, so the researcher’s hypothesis is rejected,

which is evident, since the new teaching method has not yet been

applied, However, at the post-test level, p = 0.001, a value much

lower than 0.05, so the researcher’s hypothesis is accepted that the

students who receive the teaching with the Brown and Wilson

methodology have higher achievements than the students of the

control group who receive the teaching in the traditional way.

5. Conclusions

Undoubtedly, the teaching of computer programming

has become an essential skill for today’s society in constant

technological evolution. Programming not only involves learning

a new language, but also developing problem-solving skills, logical

thinking and creativity. That’s why programming is becoming an

essential skill in every field, from data science to web development

to artificial intelligence. One of the best ways to teach programming

is through the use of hands-on examples and projects. Students

learn best when they are involved in hands-on projects and

applications, and this helps them understand how programming

can be applied in real-world situations. In addition, projects

also allow them to work in teams and collaborate on solutions,

important skills for any career in technology.

It is worth remembering that the teaching of programming

aims to develop computational thinking skills in children and

young people, which has become an essential skill for today’s digital

society, as it involves problem-solving and logical thinking skills

that are necessary for the development of innovative technologies

and solutions. Computational thinking can also help people

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085507
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Belmar 10.3389/fcomp.2023.1085507

TABLE 1 Inter-subject e�ects test.

Origen Sum of
squares

df Root mean
square

F Sig. Partial Eta
squared

Non-centrality
parameter

Observed
power

Intersection 105,248.40 1 105,248.4 3,147.288 <0.001 0.972 3,147.288 1.000

Group 614.20 1 614.203 18.367 <0.001 0.171 18.367 0.989

Error 2,976.24 89 33.441

Has been calculated using alpha= 0.05.

TABLE 2 Multivariate tests.

Value F Df of
hypothesis

Error de Sig. Partial Eta
squared

Non-centrality
parameter

Observed
power

Pillai trace 0.623 147.2 1.000 89.000 <0.001 0.623 147.203 1.000

Wilks lambda 0.377 147.2 1.000 89.000 <0.001 0.623 147.203 1.000

Hotelling trace 1.654 147.2 1.000 89.000 <0.001 0.623 147.203 1.000

Roy’s mayor
root

1.654 147.2 1.000 89.000 <0.001 0.623 147.203 1.000

Each F-tests the effect of TEST. These tests are based on linearly independent pairwise comparisons between the estimated marginal measures.

Has been calculated using alpha= 0.05.

understand how technologies work and how they can use them

to improve their daily lives. Countries that have implemented

computational thinking in their educational programs have a

competitive advantage in the digital age, as their citizens have

advanced skills and knowledge in technology and programming.

These countries can develop advanced technological solutions and

be at the forefront of innovation, allowing them to be more

competitive in the global marketplace. In addition, computational

thinking can also have a positive impact on a country’s economy

and employment. Jobs in technology and programming are in high

demand around the world, and companies are increasingly looking

for employees with advanced programming and technology skills.

In the study that is the subject of this report, there was

undoubtedly an improvement in the students’ learning, which is

ratified in the increase of the mean and average, but even more

significant was that the experimental group that was dispersed in

the results tended to become more uniform in their learning, as

shown by the results of the post-test. There is a positive effect of

greater camaraderie and collaboration, which explains the certain

uniformity of the post-test results of the experimental group,

which did not occur in the control group, where the dispersion of

results increased significantly. In the following graph, the pretest

of the control group (PRETEST-COTROL) corresponds to the

first scheme, followed by the pretest of the experimental group

(PRETEST-EXPERIMENTAL), and in third position is the post-test

of the control group (POSTEST-CONTROL) in which the increase

in dispersion can be seen, Finally, further to the right is the scheme

of the experimental group (POSTEST-EXPERIMENTAL), in which

a greater uniformity in the results is observed.

Table 3, which shows the indicators of the control and

experimental groups, clearly shows that the experimental group

achieved better results than the control group, which are more

significant in terms of the minimum value observed in the post-test

and the uniformity of achievements, which tend to level out, which

means that all students learned, approaching the total achievement

score, however, none managed to reach 100% of the test.

Undoubtedly, having experimented with the didactic principles

of Brown and Wilson, the lack of didactic tools for teaching

programming and the lack of instruments to measure the skills

achieved by the students are discussed. This report intends to be

a pioneer contribution in this matter, and as the culmination of

a project that took 2 and a half years of work, in which works

from all over the world were analyzed, from the most diverse

countries, such as China, South Korea, Japan, several European

countries, Brazil and Argentina, among others, which allowed

placing computational thinking as an essential skill for the 21st

century, and which is projected as one of the educational tasks with

the greatest impact in this century that is beginning.

6. Projections and limitations of the
study

6.1. Limitations

The limitations of the study are in the experimental part in

which it would be convenient to include a larger sample and

from several institutions, which could show in a reliable way the

goodness of the didactic principles of Brown and Wilson for the

teaching of computer programming. The research worked with one

course as the experimental group and another course as the control

group, and each course with different professors, which could

already pose a possible bias in the application of the methodology.

One way in which the Brown and Wilson methodology could be

applied that would allow eliminating one of the teacher biases

would be to have the same teacher teach classes in the experimental

group and in the control group, which could be replicated with

several pairs of courses as control and experimental with the

same teacher.

The general objective was to determine the effects of

applying the didactic principles of Brown and Wilson (2018)

on the teaching—learning process of programming in Python

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085507
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Belmar 10.3389/fcomp.2023.1085507

TABLE 3 Indicators and results.

Group

Index Pretest control Pretest experimental Post-test control Post-test experimental

Median 16.5 16 31 34

Average 17.02 17.80 27.62 34.22

Minimum 8 8 9 28

Maximum 27 39 39 42

Standard Deviation 4.98 7.19 9.10 3.90

Variance 28.80 51.7 82.81 15.21

Confidence interval (95%) 15.60–18.44 15.53–20.08 25.04–30.2 32.99–35.45

Source: Own elaboration.

FIGURE 1

Estimated marginal averages by group.

with students of computer science careers of INACAP, an

objective that is observed to be fully met, since the results were

satisfactory, and project new scenarios to conduct new studies

where the set of didactic principles of Brown and Wilson can be

tested again (see Figure 1).

6.2. Projections

In the future there should be many investigations that test

different didactic strategies for teaching programming. It should

be noted that the didactics for primary and secondary students

should be different from the one applied in tertiary education,

since the latter works with adult students who have a specific

purpose for which they carry out the study and not general as when

they are in primary and secondary education. Thus emerges the

concept of andragogy, which is the analog of pedagogy, but for adult

education. Moreover, in the future it will not only be necessary to

evaluate algorithms with conceptual or quantitative results, but it

will be necessary to evaluate actions such as those performed by a

robot or an automated machine (Carrillo, 2018).

The educational systems of the future, should incorporate not

only the teaching of computational thinking, but also elements of

neuroscience, so that once the basis of knowledge in computer

programming, educational robotics and gamification is laid, it

can go further, making the connection between computational

processes and brain processes, in order to understand and create

applications that are able to take advantage of brain waves in

the activation of electronic devices that perform actions as an

extension of the body, as there are already developments in the

war industry, but with peaceful motivations and focused on the

physical disabilities of human beings and also on brain disabilities

in order to correct diseases such as deafness, blindness or go

beyond, correcting Alzheimer’s disease.

The teaching of computational thinking should permeate all

knowledge formation in the educational system, integrating STEM

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085507
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Belmar 10.3389/fcomp.2023.1085507

and non-STEM areas or better known as STEAM. Currently there

are lost subjects such as technology education in Latin American

countries when students are made to do crafts related to handicrafts

or issues that contribute very little to the formation of knowledge.

The subject of technology education should change its content

from craft to technology, and should be composed of electronics,

integrating electronic devices with the management of programs

that allow students to be true generators of new digital technologies.

The formation of knowledge in schools should cut across

all areas of knowledge, starting with mathematics and natural

sciences, where one could experiment with the creation of virtual

reality and/or augmented reality applications for chemistry and

biology, passing through history and geography where one could

teach through the creation of games and stories located in certain

territories and eras, such as the Age of Empires game where

different versions of the game show the ancient civilizations

of Europe until about 1,700, and could create applications for

schoolchildren on other continents, such as Africa, Latin America,

Asia and Oceania. In language, tales and stories could be recreated

to give life to letters, and in art, it could be integrated with

virtual reality developments, so that students can navigate within

technology, building the different educational knowledge, all of

which would be done in a progressive and interactive way, training

students in programming and gradually incorporating the skills of

computational thinking.

Some of the computer science topics that could be studied

and evaluated in the future would be computer security, computer

programming in education, disconnected activities in learning

computational thinking, didactic strategies in the teaching and

learning process of programming, internet of things, data science

and big data, artificial intelligence, students with special needs and

studies on psychological aspects of technology and humans, in

addition to deepening on gamification and educational robotics

in primary school and robotics and industrial automation in

secondary school, so that learning by projects, learning by doing,

is practiced. It should be noted that all this should be properly

distributed in the 12 years of primary and secondary education.

In addition to the above, there are emerging technologies such

as nanotechnology and quantum computing, topics that should be

part of the educational system in research phases and emerging

technology topics. It should be noted that companies such as

IBM already have prototypes of quantum computers that are fully

operational. It is important to keep in mind that a quantum

computer can decode all existing computer security systems in

the world in just minutes, which will leave governments and

organizations around the world unprotected. This happens because

of the processing speed of this type of computers, since they

are based on the parallelism of the binary system. While in the

current electronic system, the bits (1 and 0) manifest themselves

sequentially, in the quantum system they do so in parallel.

Finally, I would like to make a reflection on the difference

in priorities between countries, which occurs on multiple levels;

cultural, economic, technological, political and social, which leads

us to think, where should we start from, should we promote the

teaching of computational thinking as a way to transfer knowledge

and thus in the medium and long term countries solve their social

problems, or should we categorize where to start from, in addition

to the fact that each country is independent. For example, inHaiti in

Central America, with more than 200 years of independence, they

still have not managed to have a stable political system that allows

them to overcome extreme poverty and hunger. In this situation

there are several countries in Africa and Latin America, while the

world, represented by the developed countries, is faced with the

dilemma of climate change, which is just around the corner and

which will affect us all. I firmly believe that, in order of priority,

the teaching of computational thinking is second only to climate

change and world hunger.

Data availability statement

The original contributions presented in the study are included

in the article/Supplementary material, further inquiries can be

directed to the corresponding author.

Ethics statement

The studies involving human participants were

reviewed and approved by Institutional Ethics Committee -

Universidad de Santiago de Chile. The patients/participants

provided their written informed consent to participate in

this study.

Author contributions

The author confirms being the sole contributor of this work and

has approved it for publication.

Conflict of interest

The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fcomp.

2023.1085507/full#supplementary-material

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085507
https://www.frontiersin.org/articles/10.3389/fcomp.2023.1085507/full#supplementary-material
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Belmar 10.3389/fcomp.2023.1085507

References

Araujo, A. L. S. O., Andrade, W. L., Guerrero, D. D. S., and Melo, M. R.
A. (2019). “How many abilities can we measure in computational thinking? A
study on Bebras challenge,” in Proceedings of the 50th ACM Technical Symposium
on Computer Science Education (Universidad Federal de Paraíba, Paraíba, Brasil),
545–551. doi: 10.1145/3287324.3287405

Auer, M. E., and Tsiatsos, T. (eds) (2019). “The challenges of the digital
transformation in education,” in Proceedings of the 21st International Conference on
Interactive Collaborative Learning (ICL2018)-Volume 1 (Vol. 916) (Cham: Springer),
215–226. doi: 10.1007/978-3-030-11935-5

Belmar, H. M. (2022), Review on the teaching of programming and computational
thinking in the world. Front. Comput. Sci. 4, 997222. doi: 10.3389/fcomp.2022.
997222

Belmar, H. M. (2023), Expert validation of a Python test, reliability, difficulty and
discrimination indices. J. Educ. Dev. 7, 52. doi: 10.20849/jed.v7i1.1320

Bennedsen, J., and Caspersen, M. (2007). Failure rates in introductory
programming. AcM SIGcSE Bull. 39, 32–36. doi: 10.1145/1272848.1272879

Bergner, N., Röpke, R., Schroeder, U., and Krömker, D. (2018). Hochschuldidaktik
der Informatik HDI. Berlin: University Press.

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., Engelhardt, K. (2016).
Developing Computational Thinking in compulsory education – implications for policy
and practice; EUR 28295 EN. Luxembourg: Publications Office of the European Union.
doi: 10.2791/792158

Brown, N., and Wilson, G. (2018). Ten quick tips for teaching programming. PLoS
Comput. Biol. 14, e1006023. doi: 10.1371/journal.pcbi.1006023

Camacho, C. (2019). Análisis de la Varianza Para Medidas Repetidas. Sevilla:
Universidad de Sevilla.

Carrillo, F. (2018). Formación de Competencias para el Trabajo en Chile. Tech. Rep.,
Comisión Nacional de Productividad. Universidad de Chile, Santiago, Chile.

Cheng, Y., Sun, P., and Chen, N. (2018). The essential applications of educational
robot: requirement analysis from the perspectives of experts, researchers and
instructors. Comput. Educ. 126, 399–416. doi: 10.1016/j.compedu.2018.07.020

Coll, C. (1991). Reforma Al Sistema Educativo Español, la. Libresa. Universidad de
Chile, Santiago, Chile.

Dagiene, V., and Stupuriene, G. (2016). Bebras–a sustainable community building
model for the concept based learning of informatics and computational thinking.
Inform. Educ. 15, 25–44. doi: 10.15388/infedu.2016.02

de Paula, B., Burn, A., Noss, R., and Valente, J. (2018). Playing Beowulf: Bridging
computational thinking, arts and literature through game-making. Int. J. Child-
Comput. Interact. 16, 39–46. doi: 10.1016/j.ijcci.2017.11.003

Fanchamps, N., Slangen, L., Hennissen, P., and Specht, M. (2021). The
influence of SRA programming on algorithmic thinking and self-efficacy using
Lego robotics in two types of instruction. Int. J. Technol. Des. Educ. 31, 203–222.
doi: 10.1007/s10798-019-09559-9

Fanchamps, N., Specht, M., Hennissen, P., and Slangen, L. (2020). The
Effect of Teacher Interventions and SRA Robot Programming on the Development
of Computational Thinking. Fontys University of Applied Science, Eindhoven,
Netherlands.

Fau, S., and Moreau, Y. (2018). Managing Tomorrow’s Digital Skills-What
Conclusions can we Draw from International Comparative Indicators? Education 2030
– UNESCO. Ministerio de Educación, Lima, Perú.

García, F. (2018). Editorial computational thinking. IEEE Ibero-Am. J. Learn.
Technol. 13, 17–19. doi: 10.1109/RITA.2018.2809939

Grgurina, N. (2008). “Computer science teacher training at the University of
Groningen,” in International Conference on Informatics in Secondary Schools-Evolution
and Perspectives (Berlin: Springer), 272–281. doi: 10.1007/978-3-540-69924-8_25

Grgurina, N. (2021). Getting the Picture: Modeling and Simulation in Secondary
Computer Science Education. Naples: University Press.

Huang, P., and Hwang, Y. (2013). An exploration of EFL learners’ anxiety
and e-learning environments. J. Lang. Teach. Res. 4, 27–35. doi: 10.4304/jltr.4.
1.27-35

Jen, T., and Hsu, T. (2020). The Impact of Using Mobile Block-based Programming to
Control Robots on the Performance of the Fifth Grader Students Learning Computational
Thinking in Singapore. National Taiwan Normal University, Taipei, Taiwan.

Juškevičiene, A., and Dagiene, V. (2018). Computational thinking relationship with
digital competence. Infor. Educ. 17, 265–284. doi: 10.15388/infedu.2018.14

Kale, U., and Yuan, J. (2021). Still a new kid on the block? Computational
thinking as problem solving in Code. org. J. Educ. Comput. Res. 59, 620–644.
doi: 10.1177/0735633120972050

Kong, S., Hoppe, H., Hsu, T., Huang, R., Kuo, B., Li, K., et al. (eds) (2020).
Proceedings of International Conference on Computational Thinking Education 2020.
Hong Kong: The Education University of Hong Kong.

Kulkarni, V. (2015). Looking Back: Alan Turing-The Father of Computer Science. CSI
Communications, India.

Law, N., Woo, D., de la Torre, J., and Wong, G. (2018). A Global Framework
of Reference on Digital Literacy Skills for Indicator 4.4. 2. Montreal, QC: UNESCO -
Institute for Statistics.

Lee, P., and Low, C. (2020). Implementing a Computational Thinking Curriculum
with Robotic Coding Activities through Non-formal Learning. CoolThink@ JC, 150.
Bukit View Secondary School, Singapore.

McLaren, B., Adams, D., Mayer, R., and Forlizzi, J. (2017). A computer-based
game that promotes mathematics learning more than a conventional approach. Int.
J. Game-Based Learn. 7, 36–56. doi: 10.4018/IJGBL.2017010103

Mühling, A., Ruf, A., and Hubwieser, P. (2015). “Design and first results of a
psychometric test for measuring basic programming abilities,” in Proceedings of the
Workshop in Primary and Secondary Computing Education, TUM School Universität
München, Germany. 2–10. doi: 10.1145/2818314.2818320

Ortiz, A., Sánchez, J., and Sánchez, I. (2015). Los modelos pedagógicos desde una
dimensión psicológica-espiritual. Rev. Cient. Gen. José María Córdova 13, 183–194.
doi: 10.21830/19006586.22

Pérez, D., Hijón, R., Bacelo, A., and Pizarro, C. (2020). Can computational
thinking be improved by using a methodology based on metaphors and scratch
to teach computer programming to children?. Comput. Hum. Behav. 105, 105849.
doi: 10.1016/j.chb.2018.12.027

Pérez, D., Hijón, R., and Martín, M. (2018). A methodology proposal based on
metaphors to teach programming to children. IEEE Rev. Iberoam. Tecnol. Aprendiz.
13, 46–53. doi: 10.1109/RITA.2018.2809944

Portnoff, S. (2018). The introductory computer programming course is first and
foremost a language course. ACM Inroads 9, 34–52. doi: 10.1145/3152433

Psycharis, S., Kalovrektis, K., and Xenakis, A. (2020). A conceptual framework for
computational pedagogy in STEAM education: determinants and perspectives. Hell. J.
STEM Educ. 1, 17–32. doi: 10.51724/hjstemed.v1i1.4

Repenning, A. (2017). Moving beyond syntax: lessons from 20 years
of blocks programing in AgentSheets. J. Vis. Lang. Sentient Syst. 3, 68–91.
doi: 10.18293/VLSS2017-010

Rojas, A., and Garcia, F. J. (2020). Evaluation of computational thinking for learning
computer programming in higher education. Distance Education Magazine (RED), 20.
Technological University of Puebla Puebla, México.

Sharma, K., Papavlasopoulou, S., and Giannakos, M. (2019). Coding
games and robots to enhance computational thinking: how collaboration and
engagement moderate children’s attitudes? Int. J. Child-Comput. Interact. 21, 65–76.
doi: 10.1016/j.ijcci.2019.04.004

Souza, I., Andrade, W., and Sampaio, M. (2019). “Analyzing the effect of
computational thinking on mathematics through educational robotics,” in 2019 IEEE
Frontiers in Education Conference (FIE) (Covington, KY: IEEE), 1–7.

Vallance, M., and Towndrow, P. (2016). Pedagogic transformation, student-
directed design and computational thinking. Pedagog. Int. J. 11, 218–234.
doi: 10.1080/1554480X.2016.1182437

Watson, C., and Li, F. (2014). “Failure rates in introductory programming
revisited,” in Proceedings of the 2014 Conference on Innovation and Technology in
Computer Science Education (Durham University Library, United Kingdom), 39–44.
doi: 10.1145/2591708.2591749

Wing, J. (2006). Computational thinking. Commun. ACM 49, 33–35.
doi: 10.1145/1118178.1118215

Yi, L., and Ting, H. (2020). “Effects of using mobile phone programs to control
educational robots on the programming self-efficacy of the third grade students,”
in Proceedings of International Conference on Computational Thinking Education
(National Taiwan Normal University, Taiwan), 31–35.

Zhang, K., Chen, X., and Wang, H. (2019). “Research on the mixed-learning model
and the innovative talent cultivation mechanism based on computational thinking,” in
Recent Developments in Intelligent Computing, Communication andDevices (Singapore:
Springer), 59–65. doi: 10.1007/978-981-10-8944-2_8

Zhou, T., and Hsu, T. (2020). Learning Behaviors Analysis of the Six Grader Students
Integrating Educational Robots with the Computational Thinking Board Game. National
Taiwan Normal University, Taipei, Taiwan.

Zipitría, S. (2018). “Piaget and computational thinking,” in Proceedings of the
7th Computer Science Education Research Conference (Universidad de la República
Montevideo, Uruguay), 44–50. doi: 10.1145/3289406.3289412

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2023.1085507
https://doi.org/10.1145/3287324.3287405
https://doi.org/10.1007/978-3-030-11935-5
https://doi.org/10.3389/fcomp.2022.997222
https://doi.org/10.20849/jed.v7i1.1320
https://doi.org/10.1145/1272848.1272879
https://doi.org/10.2791/792158
https://doi.org/10.1371/journal.pcbi.1006023
https://doi.org/10.1016/j.compedu.2018.07.020
https://doi.org/10.15388/infedu.2016.02
https://doi.org/10.1016/j.ijcci.2017.11.003
https://doi.org/10.1007/s10798-019-09559-9
https://doi.org/10.1109/RITA.2018.2809939
https://doi.org/10.1007/978-3-540-69924-8_25
https://doi.org/10.4304/jltr.4.1.27-35
https://doi.org/10.15388/infedu.2018.14
https://doi.org/10.1177/0735633120972050
https://doi.org/10.4018/IJGBL.2017010103
https://doi.org/10.1145/2818314.2818320
https://doi.org/10.21830/19006586.22
https://doi.org/10.1016/j.chb.2018.12.027
https://doi.org/10.1109/RITA.2018.2809944
https://doi.org/10.1145/3152433
https://doi.org/10.51724/hjstemed.v1i1.4
https://doi.org/10.18293/VLSS2017-010
https://doi.org/10.1016/j.ijcci.2019.04.004
https://doi.org/10.1080/1554480X.2016.1182437
https://doi.org/10.1145/2591708.2591749
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1007/978-981-10-8944-2_8
https://doi.org/10.1145/3289406.3289412
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Teaching computer programming: impact of Brown and Wilson's didactical principles
	1. Introduction
	1.1. Context of programming teaching
	1.2. A case from the University of TI West, Denmark
	1.3. A view from Durham University in the UK

	2. Theoretical framework
	2.1. Generalities
	2.2. Didactics in programming education
	2.2.1. Gamification: teaching through the use of games
	2.2.2. Educational robotics
	2.2.3. Metaphors and blocks for teaching programming
	2.2.4. Learning programming like learning a second language
	2.2.5. Other didactic initiatives in computer programming
	2.2.6. Pedagogical models and didactics


	3. Materials and methodology
	3.1. Materials
	3.2. Methodology
	3.3. Design guidelines and principles

	4. Discussion
	4.1. Global context of computer programming education
	4.2. Results

	5. Conclusions
	6. Projections and limitations of the study
	6.1. Limitations
	6.2. Projections

	Data availability statement
	Ethics statement
	Author contributions
	Conflict of interest
	Publisher's note
	Supplementary material
	References


