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Automatic emotion recognition (AER) systems are burgeoning and systems based

on either audio, video, text, or physiological signals have emerged. Multimodal

systems, in turn, have shown to improve overall AER accuracy and to also provide

some robustness against artifacts and missing data. Collecting multiple signal

modalities, however, can be very intrusive, time consuming, and expensive. Recent

advances in deep learning based speech-to-text and natural language processing

systems, however, have enabled the development of reliable multimodal systems

based on speech and text while only requiring the collection of audio data.

Audio data, however, is extremely sensitive to environmental disturbances, such

as additive noise, thus faces some challenges when deployed “in the wild.” To

overcome this issue, speech enhancement algorithms have been deployed at

the input signal level to improve testing accuracy in noisy conditions. Speech

enhancement algorithms can come in di�erent flavors and can be optimized

for di�erent tasks (e.g., for human perception vs. machine performance). Data

augmentation, in turn, has also been deployed at the model level during training

time to improve accuracy in noisy testing conditions. In this paper, we explore the

combination of task-specific speech enhancement and data augmentation as a

strategy to improve overall multimodal emotion recognition in noisy conditions.

We show that AER accuracy under noisy conditions can be improved to levels

close to those seen in clean conditions. When compared against a systemwithout

speech enhancement or data augmentation, an increase in AER accuracy of 40%

was seen in a cross-corpus test, thus showing promising results for “in the wild”

AER.

KEYWORDS

multimodal emotion recognition, BERT based text features, modulation spectrum
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1. Introduction

Affective human-machine interfaces are burgeoning as they provide more natural

interactions between the human and the machine (Zeng, 2007). Automated emotion

recognition (AER) systems have seen applications across numerous domains, from

marketing, smart cities and vehicles, to call centers and patient monitoring, to name a few.

In fact, the COVID-19 pandemic has resulted in a global mental health crisis that will have

long-term consequences to society, economy, and healthcare systems (Xiong et al., 2020).

Being able to detect changes in affective states in a timely and reliable manner can allow
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individuals and organizations to put in place interventions to

prevent, for example, burnout and depression (Patrick and Lavery,

2007).

AER systems can rely on a wide range of modalities, including

speech, text, gestures/posture, and physiological responses (e.g.,

via changes in heart/breathing rates). For so-called “in the

wild” applications, multimodal systems are preferred in order to

compensate for certain confounds and to improve overall AER

accuracy by providing the system with some redundancy and

complementary information not available with unimodal systems

(Naumann et al., 2009; Parent et al., 2019). Multimodal systems,

however, can be very time consuming to implement, costly to

run, and potentially intrusive to the users (e.g., requiring on-body

sensors with physiological data collection) and their privacy (Sebe

et al., 2005). Notwithstanding, with audio inputs, one may be able

to devise a multimodal speech-and-text system with the use of

an advanced speech-to-text system, thus relying on a single input

modality. As such, text and speech have emerged as two popular

AER modalities.

Recent advances in deep learning architectures, such as

transformers (Vaswani et al., 2017), have redefined the performance

envelope of existing AER systems. In fact, most state-of-the-

art systems today rely on deep neural network architectures in

some way. For example, for text-based systems, self attention

and dynamic max pooling has been proposed by Yang et al.

(2019). The widely-used Bidirectional Encoder Representations

from Transformers (BERT) model (Devlin et al., 2018), in turn,

has been used to detect cyber abuse in English and Hindi texts

(Malte and Ratadiya, 2019). The work by Lee and Tashev (2015)

and Kratzwald et al. (2018), in turn, relies on recurrent neural

networks (RNN) to better consider long-range contextual effects

and to better model the uncertainty around emotional labels.

For speech-based AER systems, in turn, mel-spectral features

combined with a convolutional neural networks (CNNs) have been

extensively explored, specially with self-attention mechanisms to

extract emotionally-informative time segments (e.g., Chen et al.,

2021). Long-short term memory networks (LSTM) have also been

extremely popular (e.g., Haytham et al., 2017; Tripathi et al., 2018;

Zhao et al., 2019) and end-to-end solutions have also been explored

(Tzirakis et al., 2017).

As mentioned previously, one major advantage of the audio

modality is that recent advances in automated speech-to-text

conversion have allowed for multimodal speech-and-text-based

systems to emerge while requiring the collection of just one signal

modality (Chuang and Wu, 2004). Text and speech have been

shown to be very useful modalities for multimodal AER systems

(Patamia et al., 2021). In this regard, attention-based bidirectional

LSTM models (Li et al., 2020), bi-directional RNNs (Poria et al.,

2017), transformer-basedmodels (Siriwardhana et al., 2020), multi-

level multi-head fusion attention mechanisms (Ho et al., 2020),

graph-based CNNs (Zhang et al., 2019), gated-recurrent units

(Poria et al., 2019), early and late fusion strategies (Jin et al.,

2015), and cross-modal attention (Sangwan et al., 2019) have been

explored as strategies to optimally combine information from the

two modalities.

One major disadvantage of speech-based systems (either uni-

or multi-modal), however, is their sensitivity to environmental

factors, such as additive and convolutional noise (e.g., room

reverberation). These factors can be detrimental to AER systems

(Patamia et al., 2021; Maithri et al., 2022). Commonly, speech

enhancement algorithms are applied at the input level stage

to minimize environmental factors for in-the-wild speech

applications. Enhancement methods can range from more classical

methods, such as spectral subtraction and Wiener filtering (Cauchi

et al., 2015; Braun et al., 2016), to more recent deep neural network

(DNN) based ones (e.g., Parveen and Green, 2004; Lu et al.,

2013; Pascual et al., 2017; Zhao et al., 2018). The use of speech

enhancement for AER in-the-wild has shown some benefits (e.g.,

Avila et al., 2021).

Speech enhancement methods can have two very different

purposes. If aimed at improving intelligibility/ quality, for

example, human perception becomes the main driving factor

and quality/intelligibility improvements are typically used as a

figure of merit (e.g., Fu et al., 2021). However, if enhancement is

used to improve downstream speech recognition applications then

other machine-driven outcome measures, such as word error rate

improvements, are more appropriate. As such, depending on the

final task, the enhancement procedure can be very different. The

work by Bagchi et al. (2018), for example, showed that mimic loss-

based enhancement was optimal for automatic speech recognition

(ASR) downstream tasks. Having this said, it is hypothesized

that for multimodal speech-and-text AER systems the use of two

different enhancement procedures will be useful, with a quality-

driven one used for the speech branch (mimicking how humans

perceive emotions from speech) and a machine-driven one for the

speech-to-text branch. We will test this hypothesis herein.

Lastly, with deep learning based approaches showing the latest

state-of-the-art results, data augmentation has emerged as a useful

technique to make systems more robust to in-the-wild distortions

at the model training stage (e.g., Hannun et al., 2014). With

data augmentation, the training set is increased multi-fold by

applying certain transformations to the available training signals,

including time-reversal, time-frequency masking, pitch alterations,

background noise addition and reverberation corruption, to name

a few. For AER specifically, the work by Etienne et al. (2018)

showed that vocal track length perturbations served as a useful

data augmentation strategy. In this paper, we further explore the

advantages that data augmentation can provide, in addition to

speech enhancement, for multimodal in-the-wild AER.

The remainder of this paper is organized as follows. Section 2

describes the proposed system. Section 3 describes the experimental

setup. Experimental results and a discussion are presented in

Section 4 and conclusions in Section 5.

2. Proposed method

Figure 1 depicts the block diagram of the proposed multimodal

AER pipeline. In the case of interest here, speech S(i) is assumed

to be corrupted by additive background noise N(i), resulting in

noisy speech signal Y(i) = S(i) + N(i). With the multimodal

AER system, the top branch focuses on extracting emotion-relevant

features directly from the speech component, whereas the bottom

branch relies on a state-of-the-art automatic speech recognizer

(ASR) to generate text from the noisy speech signal. Features are

then extracted from the text transcripts. We concatenated Speech
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and text features, then these concatenated features are input to

a deep neural network for final emotion classification. As noisy

speech is known to corrupt AER/ASR performance, here we also

include a speech enhancement step, one optimized for speech

quality improvement (top branch) and another for ASR. Each

sub-block is described in detail in the subsections to follow:

2.1. Speech enhancement

Enhancement and noise suppression has been widely used

across many different speech-based applications. In human-to-

human communications, the goal of enhancement is to improve

the quality of the noisy signal, not only to increase intelligibility,

but also to improve paralinguistic characterization that humans

do so well, such as emotion recognition. In human-to-machine

interaction (e.g., ASR), however, improving quality may not be the

ultimate goal, and instead, improvement in downstream system

accuracy could be regarded as a better optimization criterion.

Here, we explore the use of a quality-optimized enhancement

algorithm for the speech branch of the proposed method and an

ASR-optimized algorithm for the text generation branch. The two

algorithms used are described next:

2.1.1. MetricGAN+: A quality-optimized
enhancement method

MetricGAN+ is a recent state-of-the-art deep neural network

specifically optimized for quality enhancement of noisy speech

and shown to outperform several other enhancement benchmarks

(Fu et al., 2019, 2021). In particular, two networks are used.

The discriminator’s role is to minimize the difference between

the predicted quality scores (given by the so-called PESQ,

perceptual evaluation of speech quality, rating Rix et al., 2001) and

actual PESQ quality scores. PESQ is a standardized International

Telecommunications Union full-reference speech quality metric

that maps a pair of speech files (a reference and the noisy

counterpart) into a final quality rating between 1 (poor) and

5 (excellent). PESQ has been widely used and validated across

numerous speech applications.

The generator’s role, in turn, is to map a noisy speech signal

into its enhanced counterpart. The discriminator and generator

models are trained together to enhance the noisy signal in a

manner that maximizes the PESQ score of the enhanced signal.

MetricGAN+ builds on the original MetricGAN (Fu et al., 2019)

via two improvements for the discriminator and one for the

generator. More specifically, for the discriminator training, along

with the enhanced and clean speech signals, the noisy speech

was also used to minimize the distance between the discriminator

and target objective metrics. The second improvement is that

the speech generated from the previous epochs is reused to

train the discriminator to avoid the catastrophic forgetting of the

discriminator. For the generator, in turn, the learnable sigmoid

function was used for mask estimation. The interested reader is

referred to Fu et al. (2019, 2021) for more details on theMetricGAN

and MetricGAN+ speech enhancement methods.

2.1.2. Mimic loss: An ASR-optimized
enhancement method

Spectral mapping-based speech enhancement is an

enhancement method specifically optimized for downstream

ASR applications (Bagchi et al., 2018). We refer henceforth to

this method as ‘mimic loss based enhancement’ as the model uses

mimic loss instead of student-teacher learning, thus the speech

enhancer is not jointly trained with a particular acoustic model.

We use this enhancement model as it has been shown to be a

useful pre-processing method for many ASR systems, thus offers

some flexibility on the choice of ASR model to use (Bagchi et al.,

2018). The overall system is comprised of two major components: a

spectral mapper and a spectral classifier which are trained in three

steps.

First, a spectral classifier is trained to predict senone labels

from clean speech with a cross-entropy criterion, resulting in a

classification loss LC between predicted and actual senones. The

weights of this spectral classifier are then frozen and used in

the last step. Second, a spectral mapper is pre-trained to map

noisy speech features to clean speech features using a mean

squared error (MSE) criterion. This results in a fidelity loss

LF between the denoised features and features from the clean

speech counterpart. Bagchi et al. (2018) relied on log-spectral

magnitude components extracted over 25ms windows with a 10-

ms shift as features and a deep feed-forward neural network

for mapping.

Lastly, noisy speech is input to the pre-trained spectral

mapper, resulting in a denoised version, which is input to

the “frozen” spectral classifier, resulting in a predicted senone.

In parallel, the clean speech counterpart is also input to the

frozen spectral classifier, resulting in a soft senone label and a

mimic loss LM between the soft senone label and the predicted

senone. The spectral mapper is then retrained using joint

loss (LF and LM), thus allowing the enhancer to emulate the

behavior of the classifier under clean conditions while keeping

the projection of noisy signal closer to that of the clean signal

counterpart. The same hyperparameters described by Bagchi

et al. (2018) were used herein. The interested reader is referred

to Bagchi et al. (2018) for more details on the mimic loss

enhancement method.

2.2. Automatic speech recognition

In order to generate text from speech, a state-of-the-art

automatic speech recognizer is needed. Here, wav2vec 2.0, an end-

to-end speech recognition system is used (Baevski et al., 2020). A

complete description of the method is beyond the scope of this

paper, hence only an overview is provided; the interested reader

can obtain more details from Baevski et al. (2020). Wav2vec 2.0

relies on the raw speech waveform as input. This 1-dimensional

data then passes through a multi-layer 1-d CNN to generate speech

representation vectors. Vector quantization is then used on these

latent representations to match them to a codebook. Half of the

available speech data is masked and the remaining quantized data

is fed into a transformer network. By using contrastive loss, the

model attempts to predict the masked vectors, thus allowing for
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FIGURE 1

Experimental pipeline for AER using audio and text features.

pre-training on unlabeled speech data. The model is then fine-

tuned on labeled data for the subsequent down-streaming ASR

task.

2.3. Speech feature extractor

Several AER systems have been proposed recently, and they

have relied on different speech feature representations. Here, we

focus on the three most popular representations, namely: prosodic,

eGeMAPS, andmodulation spectral features. In particular, prosody

features include fundamental frequency (F0), intensity measures,

and voicing probabilities, as these have been widely linked to

emotions (Banse and Scherer, 1996). Next, the so-called extended

Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) (Eyben

et al., 2016), which has been widely used in many recent emotion

recognition challenges (e.g., Valstar, 2016; Ringeval et al., 2019;

Xue et al., 2019), is also explored and contains a set of 88

acoustic parameters relating to pitch, loudness, unvoiced segments,

temporal dynamics, and cepstral features. Lastly, modulation

spectral features are explored as they capture second-order

periodicities in the speech signal and have been shown to convey

emotional information (Wu et al., 2011; Avila et al., 2021).

Modulation spectral features (termed MSFs) were extracted using

a window size of 256 ms and a frame step of 40 ms. The interested

reader is referred to Falk and Chan (2010b) and Avila et al. (2021)

for complete details on the computation of this representation.

2.4. Text feature representations

Text has also been used to infer the emotional content

of written material and several state-of-the-art methods and

techniques exist. Here, we explore three recent methods, namely

BERT (Bidirectional Encoder Representations from Transformers),

TextCNN, and Bag-of-Words (BoW). A brief overview of each

method is given below:

2.4.1. BERT-bidirectional encoder representations
from transformers

BERT is based on a transformer network and attention

mechanism (Devlin et al., 2018) that also learns contextual relations

between words in the text (Tenney et al., 2019). BERT comes in two

flavors: BERTBase and BERTLarge. The BERTBase model uses 12

layers of transformers block with a hidden dimension of 768 and 12

self-attention heads; overall, there are approximately 110 million

trainable parameters. On the other hand, BERTLarge uses 24 layers

of transformers block with a hidden size of 1024 and 16 self-

attention heads, resulting in approximately 340 million trainable

parameters. Here, we employ the BERTBase model for text feature

extraction. The BERT hidden state vector is used as input to the

AER system. The interested reader is referred to Devlin et al. (2018)

for more details on BERT.

2.4.2. TextCNN
TextCNN is a deep learning model for short text classification

tasks and has been used as a baseline model for text classification

(Zhang et al., 2018). TextCNN transforms a word into a vector

using word embeddings, which are then fed into a convolutional

layer, followed by a max-pooling layer, and a fully connected output

layer. In our experiment, TexCNN embeddings were extracted

using the model described by Poria et al. (2018). We used three

convolutional layers with 64 filter and kernel sizes of 3, 4, and 5

respectively in each layer, followed by max-pooling and finally 150

dense layers to extract the final text features. Specifically, with pre-

trained 300-dimensional GloVe vectors (Pennington et al., 2014),

we first extracted the semantic vector space representation and then

fed them to a 1-D-CNN to extract 100-dimensional text features

vector.

2.4.3. Bag-of-Words
The bag-of-words (BOW) method is commonly employed

in natural language processing (Alston, 1964). The approach is

straightforward and flexible and can be used in many ways to

extract features from documents. BOW represents the text by

describing the occurrence of words within a document. It consists

of two parts: a vocabulary of known words and a measure of the

presence of these words. It is called a “bag” of words because

any information about the order or structure of words in the

document is discarded. The model is only concerned with whether

known words occur in the document, not wherein the document.

In this method, first, a word histogram is generated within a text

document. Next, the frequencies of each word from a dictionary are

computed, and finally the resultant vector is fused and used as the
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FIGURE 2

Valence-arousal emotional space with the three discrete emotions

considered here.

text features. For our experiment, we used CountVectorizer from

the sklearn library. A 652-dimensional feature vector was used for

each utterance and the unigram model was used to generate the

BOW representation.

2.5. Multimodal AER classifier

Here, we rely on a fully connected deep neural network

for multimodal emotional recognition. Three dense layers (of

dimensions 256, 128, 32) were used, plus a final classification layer.

A dropout rate of 0.6 was used, batch normalization was performed

after every layer, and class weights of [1, 1.8] were assigned during

training. Grid search was performed on the validation set to

obtain the optimal hyperparameters. Rmsprop, Adam, and SGD

optimizers were explored, and learning rates of 0.01, 0.001, and

0.0001 were tested to find the optimal combination. Once the

best parameters were found with the validation set, we reported

the best performance on our test data. Experimentation codes are

available on github1. The network is trained with and without data

augmentation in order to explore its effect on in-the-wild AER

performance.

3. Experimental setup

In this section, we present the setup used in our experiments.

3.1. Datasets used

The dataset used for experimentation is the Multimodal

EmotionLines Dataset (MELD) (Poria et al., 2018). It is a

multimodal emotion classification dataset which has been created

by extending the EmotionLines dataset (Chen et al., 2018). MELD

1 https://github.com/shrutikshirsagar/Speech-enhancement-Audio-

Text-ER

contains approximately 13,000 utterances from 1,433 dialogues

from the TV series ‘Friends’. Each statement is annotated with

emotion and sentiment labels and encompasses audio, visual,

and textual modalities. The MELD dataset contains conversations,

where each dialogue has utterances from multiple speakers.

EmotionLines was created by crawling the discussions from

each episode and then grouping them based on the number

of statements in conversation into four groups of utterances.

Finally, 250 dialogues were sampled randomly from each group,

resulting in the final dataset of 1,000 dialogues. The utterances in

each dialogue were annotated with the most appropriate emotion

category.

For this purpose, the six universal emotions (joy, sadness, fear,

anger, surprise, and disgust) were considered. This annotation list

was extended with two additional emotion labels: neutral and non-

neutral. Each utterance was annotated by five workers from the

Amazon Mechanical Turk platform. A majority voting scheme was

applied to select a final emotion label for each utterance. While the

MELD dataset has labels for several emotions, here we focus on two

specific binary tasks to gauge effects across the valence and arousal

dimensions. More specifically, we first focus on two tasks. Task

1 comprises anger vs. sad classification to explore the benefits of

the proposed tool for low/high arousal classification (Mower et al.,

2010; Metallinou et al., 2012). Task 2, in turn, comprises joy vs.

sad classification for positive-valence-high-arousal and negative-

valence-low-arousal characterization (Park et al., 2013; Li et al.,

2019). Figure 2 depicts the arousal-valence emotional space and the

three discrete emotions considered. As such, the MELD dataset was

split into three disjoint sets: training, test, and development. These

were split as follows:

1. Training: angry (1,109 samples), joy (1,743 samples), and sad

(682 samples);

2. Validation: angry (153 samples), joy (163 samples), and sad (111

samples);

3. Testing: angry (345 samples), joy (402 samples), and sad (208

samples).

To test the robustness of the proposed methods to in-the-wild

conditions, the MELD dataset is corrupted by multi-talker babble

noise, cafeteria noise, and noise recorded inside a commercial

airplane at different SNR levels: –10,–20, 0, 5, 10, 15, and 20 dB. The

AURORA (Hirsch and Pearce, 2000) and DEMAND noise datasets

(Thiemann et al., 2013) are used for this purpose. Note that only a

subset of these conditions are used during augmentation, including

airport and babble noise and SNR levels of 0, 10, and 20 dB. The

remainder are left as unseen conditions during testing.

Next, we utilized the IEMOCAP dataset to show the

generalizability of the proposed model. The IEMOCAP dataset has

12 h of audio-visual data from 10 actors where the recordings

follow the dialogue between a male and a female actor in both

scripted or improvised topics. After the audio-video data was

collected, it was divided into small utterances of length between

3 and 15 s, which were then labeled by evaluators. Each utterance

was evaluated by 3–4 assessors. The evaluation form contained ten

options (neutral, happiness, sadness, anger, surprise, fear, disgust,

frustration, excitement, and others). We consider only three: anger,

sadness, and happy so as to remain consistent with the previous

MELD data experiments and to be able to directly test the models
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trained on the MELD dataset. To this end, the dataset was split

into three disjoint sets: training (70%), development (10%) and test

(20%). IEMOCAP contains utterances from the disjoined speakers

in training and testing. More specifically, we used sessions 2,3,4,

and 5 for training and session 1 for testing purposes. These were

split as follows:

1. Training: angry (772 samples), happy (416 samples), and sad

(758 samples);

2. Validation: angry (111 samples), happy (60 samples), and sad

(110 samples);

3. Testing: angry (220 samples), happy (119 samples), and sad (216

samples).

Finally, we also utilized the spontaneous “in the wild” English-

language Emoti-W database (Dhall et al., 2017). It was made

available through the 2017 Emotion Recognition in the Wild

Challenge. Some level of background noise was present in the

recording as Emoti-w is “in the wild” dataset. The labels for the

EMoti-W challenge dataset were created from the closed captions

available in movies and TV series. Complete details about the

Emoti-W dataset can be found in Dhall et al. (2017). The data is

available in a sampling frequency of 48 kHz; videos are available

in MPEG-2 format with 25 frames per second. Emotion labels

are available for seven emotion categories: anger, disgust, fear,

happiness, neutral, sadness, and surprise were available in this

dataset. We consider only three: anger, sadness, and happy/joy so

as to remain consistent with the previous MELD data experiments

and to be able to directly test the models trained on the MELD

dataset as mentioned earlier. Again, we use only the labeled training

and development subsets in our experiments. Training, testing and

validation split of Emoti-W dataset are as follows:

1. Training: angry (110 samples), happy (120 samples), and sad

(90 samples);

2. Validation: angry (11 samples), happy (24 samples), and sad

(17 samples);

3. Testing: angry (64 samples), happy (60 samples), and sad

(61 samples).

3.2. Benchmark systems

To gauge the benefits of the proposed method, two benchmark

systems are used, namely BcLSTM and DialogueRNN and results

are reported in Table 1 for task 1 and 2. BcLSTM is bi-directional

RNN proposed by Poria et al. (2017). It is comprised of a two-

step hierarchical training process. First, it extracts embeddings

from each modality. For text, GloVe embeddings (Pennington

et al., 2014) were used as input to a CNN-LSTM model to

extract contextual representations for each utterance. For audio,

Openmsile based features (Eyben, 2013) were input to an LSTM

model to obtain audio representations for each audio utterance.

Next, contextual representations from the audio and text modalities

are fed to the BcLSTMmodel for emotion classification.

DialogueRNN, in turn, employs three stages of gated recurrent

units (GRU) to model emotional context in conversations (Poria

et al., 2019). The spoken utterances are fed into two GRUs:

global and party GRU, to update the context and speaker state,

TABLE 1 Benchmark system performance for the two AER tasks based on

the MELD dataset.

Task 1 Task 2

Model F1-score BA F1-score BA

bcLSTM 0.70 0.72 0.82 0.83

DialogueRNN 0.72 0.72 0.84 0.85

Proposed system 0.74 0.73 0.87 0.87

respectively. In each turn, the party GRU updates its state based

on i) the utterance spoken, ii) the speaker’s previous state, and

iii) the conversational context summarized by the global GRU

through an attention mechanism. Finally, the updated speaker

state is fed into the emotion GRU, which models the emotional

information for classification. The attention mechanism is used

on top of the emotion GRU to leverage contextual utterances by

different speakers at various distances. Lastly, our proposed system

comprises a feedforward DNN model and a 768- dimensional

BERT(base) text feature vector fused ( at the feature level) with a

311-dimensional vector comprised of eGEMAPs andMSF features.

3.3. Figures-of-merit

Balanced accuracy and F1-score are used as figures of merit

to assess the performance of the proposed emotion classifier. In

summary, precision shows us how many positive samples classified

by the model are actually positive, i.e.,

Precision =
TP

TP + FP
, (1)

Where TP corresponds to true positives and FP to false positives.

Recall, in turn, calculates how many of the true positives are

captured by the model. This is also called true positive rate or

sensitivity and given by

Recall =
TP

TP + FN
, (2)

Where FN corresponds to false negatives. Moreover, F1-score

represents the harmonic mean of precision and recall and is useful

in binary tasks where classes are unbalanced and is given by:

F1 =
2 ∗ Precision ∗ Recall

Precision+ Recall
. (3)

Lastly, balanced accuracy is given as the arithmetic mean of

sensitivity (true positive rate or recall) and specificity (true negative

rate) which, in turn, is given by:

Specificity =
NP

TN + FP
, (4)

Where TN corresponds to true negatives. As such, balance accuracy

(BA) is given as:

BA =
Sensitivity+ Specificity

2
. (5)

The interested reader is referred to Powers (2020) for more details

on these classical performance metrics.
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3.4. Quality scores

To gauge the improvements in quality and intelligibility of the

enhancement algorithms, two objective speech quality measures

are used, namely, PESQ and the short-term objective intelligibility

(STOI) (Taal et al., 2011). While PESQ estimates the perceived

speech quality on a 5-point mean opinion score scale ranging from

bad to excellent, STOI measures the intelligibility of the signal on

a 0–1 scale, with higher values suggesting greater intelligibility.

Both methods are termed “intrusive” as they require access to the

enhanced and a reference signal. More details on the PESQ and

STOI measurement algorithms can be found in Rix et al. (2001).

4. Experimental results and discussion

In this section, we present and discuss the obtained

experimental results.

4.1. Ablation study 1

In this first ablation experiment, we wish to explore the optimal

set of text and speech features to include in the final system. We

consider speech and text modalities separately in this study. We

start with clean speech to find the best feature per modality and,

subsequently, test the robustness of such set under unseen noisy

conditions. In this study, babble and airport noises are considered.

In both cases, the emotion classifier is trained on clean speech

only. Table 2 shows the performance obtained for each modality

individually for task 1. In the table, the feature termed ‘fusion’

corresponds to the fusion of MSF and eGeMAPS features.

As can be seen, for clean speech conditions and text-only AER,

BERT-based text features resulted in the best performance across

all metrics, hence corroborating previous reports (Yang et al., 2019;

Stappen et al., 2021; Yang and Cui, 2021). As such, only BERT

features are explored in the unseen noisy conditions. Babble noise

is shown to degrade overall performancemore severely than airport

noise. Overall, BERT based features under 0 dB noise conditions are

shown to achieve accuracy inline with that achieved by textCNN

features under clean conditions, thus further suggesting improved

robustness of the BERT text features. Given this finding, the final

proposed system shown in Figure 1 will rely on BERT based text

features.

As for speech features, under clean conditions eGeMAPS

showed the highest overall performance of the three tested

feature sets, thus corroborating findings by Eyben et al. (2013).

Further gains could be seen with the fused feature set, however,

thus suggesting the complementarity of spectral and modulation

spectral features. As such, only the fused feature set is explored

in the noisy mismatch condition. Moreover, similar to the text

features, at low SNR levels, babble noise degraded performance

more drastically compared to airport noise. Overall, the achieved

performance with text-based features only was higher than what

was achieved with audio features alone, thus corroborating the

results reported by Patamia et al. (2021).

4.2. Ablation study 2

This second ablation study is an oracle experiment in which

one modality in the multimodal system is kept clean and the other

is corrupted by noise at varying levels and types. This study will

allow us to gauge whichmodality is most sensitive to environmental

factors and would benefit the most from speech enhancement.

In all cases, the emotion classifier is trained on clean speech

only. Table 3 show the performance obtained for Task 1 and Task

2, respectively.

As can be seen, the fusion of speech and text features in the

clean condition (first row in the tables) showed improvements

relative to each modality alone (i.e., Table 2) by as much as 2% for

text and 7% for audio in terms of F1 score for Task 1. Furthermore,

using noisy speech to generate “noisy” text resulted in more severe

performance degradations for both Tasks, thus suggesting that

more powerful machine-tuned enhancement algorithms may be

useful for in-the-wild applications to assure the highest possible

quality for text generation. Overall, on average, over the two types

of noise, a drop of 32, 24, and 21% in F1 score was observed at

0, 10, 20 dB SNR levels relative to clean conditions, respectively,

for Task 1. On the other hand, corrupting only the speech content

had a less pronounced effect. Overall, on average, over the two

types of noise, a drop of 16%, 13%, and 9% in F1 score was

observed at 0, 10, 20 dB SNR levels over clean conditions for Task

1, respectively.

For Task 2, similar findings were observed. Overall, on

average, over the two types of noise, a drop of 65, 33, and

28% in F1 score has been observed at 0, 10, and 20 dB

SNR levels relative to clean conditions, respectively, when only

text was corrupted. The drops in accuracy when the audio

was corrupted were of 41, 27, and 25%, respectively. These

findings corroborate those by Kessous et al. (2010) and Patamia

et al. (2021) who showed that text modality achieved higher

performance than audio in clean conditions. The drops in

accuracy, however, under noisy conditions motivate the need

for strategies to improve accuracy in the wild, as in the

proposed system.

4.3. Ablation study 3

This third ablation study is an oracle experiment in which we

wanted to test the hypothesis if we need two separate enhancement

for improving ASR accuracy. Asmentioned earlier, we used quality-

(MetricGAN+) and ASR-optimized (mimic loss) enhancement

algorithms for the speech and text branches shown in the proposed

model in Figure 1. This study will allow us to gauge which

combination of speech enhancement is better suited for this task.

In all cases, the emotion classifier is trained on clean speech only.

Table 4 show the performance obtained for Task 1 and Task 2.

As can be seen, for both Task 1 and Task 2, the best combination

comprised the use of a quality-optimized enhancement algorithm

for the top speech branch and an ASR-optimized (mimic loss)

method for the bottom text branch. This combination resulted in

the best accuracy for very extreme conditions (i.e., 0 dB SNR levels)

and emphasizes the need for task-specific enhancement algorithms

for AER.
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TABLE 2 Ablation study 1: Performance comparison of di�erent features for each individual modality.

Noise type Feature F1-score BA Feature F1-score BA

Text Audio

Clean BERT 0.72 0.76 Prosodic 0.62 0.61

Clean TextCNN 0.56 0.54 eGEMAPS 0.69 0.67

Clean BoW 0.62 0.59 MSF 0.66 0.67

Clean Fusion 0.69 0.71

Airport (0 dB) BERT 0.54 0.52 Fusion 0.51 0.51

Airport (10 dB) BERT 0.60 0.57 Fusion 0.53 0.50

Airport (20 dB) BERT 0.62 0.59 Fusion 0.55 0.52

Babble (0 dB) BERT 0.58 0.56 Fusion 0.51 0.52

Babble (1 dB) BERT 0.61 0.58 Fusion 0.52 0.51

Babble (20 dB) BERT 0.61 0.58 Fusion 0.52 0.51

Feature termed “fusion” corresponds to the fusion of eGeMAPS and MSFs.

TABLE 3 Ablation study 2: Performance comparison of multimodal oracle system for Task 1 and Task 2.

Task 1 Task 2

Audio Text F1-score BA F1-score BA

Clean Clean 0.74 0.73 0.87 0.87

Clean Airport (0 dB) 0.57 0.58 0.55 0.53

Clean Airport (10 dB) 0.61 0.58 0.67 0.62

Clean Airport (20 dB) 0.62 0.59 0.68 0.63

Clean Babble (0 dB) 0.58 0.59 0.50 0.51

Clean Babble (10 dB) 0.61 0.58 0.63 0.58

Clean Babble (20 dB) 0.61 0.58 0.67 0.62

Airport (0 dB) Clean 0.65 0.62 0.60 0.66

Airport (10 dB) Clean 0.65 0.63 0.68 0.68

Airport (20 dB) Clean 0.68 0.65 0.70 0.68

Babble (0 dB) Clean 0.62 0.60 0.63 0.67

Babble (10 dB) Clean 0.65 0.62 0.68 0.67

Babble (20 dB) Clean 0.68 0.65 0.69 0.67

TABLE 4 Ablation study 3: Performance comparison of enhancement system for Task 1 and Task 2.

Task 1 Task 2

Noise Enhancement-1 Enhancement-2 F1-score BA F1-score BA

Airport (0 dB) MetricGAN+ MetricGAN+ 0.60 0.60 0.53 0.50

MetricGAN+ Mimic-loss 0.65 0.64 0.56 0.51

Mimic-loss MetricGAN+ 0.61 0.59 0.54 0.52

Mimic-loss Mimic-loss 0.61 0.60 0.55 0.52

Babble (0 dB) MetricGAN+ MetricGAN+ 0.59 0.59 0.56 0.51

MetricGAN+ Mimic-loss 0.62 0.59 0.57 0.51

Mimic-loss MetricGAN+ 0.60 0.60 0.56 0.51

Mimic-loss Mimic-loss 0.61 0.61 0.56 0.52
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4.4. Overall system performance

This last study explores the performance of the proposed

system described in Figure 1, combining speech enhancement

optimized for each branch (speech and text), as well as data

augmentation to provide robustness at the model training level.

Data augmentation methods are useful to solve imbalanced data

problems. It also helps the model to learn the complex distribution

of the data and helps prevent overfitting. The work by Hu et al.

(2018) showed that adding noisy versions of the clean speech

data to the training set improved speech recognition accuracy in

mismatched noisy conditions. Therefore, in this work, we utilized

the same strategy. Table 5 show the obtained results in rows

labeled ‘Data augmentation only’ for Task 1 and Task 2. As can

be seen, data augmentation alone already improved AER results,

thus corroborating findings by Trinh et al. (2021); Neumann and

Vu (2021), and Kshirsagar and Falk (2022a,b).

Next, we gauge the benefits of using speech enhancement

alone. As before, AER models are trained solely on clean

speech. During run time, we pre-process the test data with the

MetricGAN+ algorithm for the speech branch and the mimic

loss enhancer for the text branch, as described in Section 2.

Table 5, show the obtained results in rows labeled ‘Enhancement

only’. As can be seen, applying speech enhancement improves

overall performance relative to the noisy conditions, but the final

results are still below what was achieved in clean conditions,

as well as what was achieved with data augmentation. The

gains observed were typically more substantial at low SNR

values, thus corroborating results by Triantafyllopoulos et al.

(2019).

In an attempt to better understand the reason behind the

poor AER performance with speech enhancement alone, Figure 3

depicts an average modulation spectrogram, from top to bottom,

for clean, noisy (airport at 0 dB SNR), MetricGAN+, and mimic-

loss enhanced speech for angry (left) and sad (right) emotions,

respectively. Modulation spectrograms are a frequency-frequency

representation where the y-axis depicts acoustic frequency and

the x-axis modulation frequency. From the clean plot, we can

see the typical speech modulation spectral representation with

most modulation energy lying below 16 Hz (Falk and Chan,

2010a) and a slowing of the amplitude modulations with the

sad emotion (Wu et al., 2011). Noise, in turn, is shown to

affect the modulation spectrogram by smearing the energy across

higher acoustic and modulation frequencies, as suggested by

Falk et al. (2010). The enhancement algorithms, however, are

not capable of completely removing these environmental artifacts

and seem to be introducing other types of distortions that can

make the AER task more challenging. Combined, these factors

result in the reduced gains reported in the Tables. This was in

fact confirmed by listening to the outputs of the MetricGAN+

enhancement algorithm. We have also presented the PESQ, and

STOI scores in Table 6. This verifies the significance of having task-

specific enhancement for improving the AER performance in noisy

conditions.

Finally, we test the combined effects of speech enhancement

and data augmentation, as in the proposed system, to gauge

the benefits of noise robustness applied at both the input

and model levels, respectively. For Task 1, gains (relative to

TABLE 5 Performance comparison of the proposed method in di�erent

noisy test conditions for Task 1 and Task 2.

Task 1 Task 2

Signal F1-score BA F1-score BA

Clean 0.74 0.73 0.87 0.87

Noisy-Airport (–20 dB) 0.49 0.49 0.43 0.53

Data augmentation only 0.51 0.49 0.53 0.52

Enhancement only 0.56 0.52 0.51 0.48

Proposed 0.56 0.54 0.52 0.50

Noisy-Airport (–10 dB) 0.53 0.46 0.44 0.57

Data augmentation only 0.53 0.52 0.52 0.50

Enhancement only 0.57 0.52 0.54 0.51

Proposed 0.59 0.54 0.57 0.56

Noisy-Airport (0 dB) 0.57 0.55 0.50 0.50

Data augmentation only 0.67 0.68 0.61 0.61

Enhancement only 0.65 0.64 0.56 0.51

Proposed 0.65 0.63 0.62 0.59

Noisy-Airport (10 dB) 0.59 0.57 0.55 0.51

Data augmentation only 0.69 0.70 0.66 0.66

Enhancement only 0.68 0.65 0.61 0.55

Proposed 0.71 0.69 0.65 0.62

Noisy-Airport (20 dB) 0.60 0.58 0.60 0.55

Data augmentation only 0.69 0.68 0.67 0.66

Enhancement only 0.67 0.65 0.62 0.56

Proposed 0.71 0.69 0.67 0.65

Noisy-Babble(–20 dB) 0.52 0.49 0.49 0.49

Data augmentation only 0.52 0.49 0.54 0.54

Enhancement only 0.57 0.52 0.54 0.51

Proposed 0.58 0.58 0.56 0.51

Noisy-Babble (–10 dB) 0.54 0.51 0.52 0.51

Data augmentation only 0.56 0.51 0.55 0.52

Enhancement only 0.59 0.54 0.54 0.51

Proposed 0.56 0.52 0.59 0.54

Noisy-Babble (0 dB) 0.59 0.57 0.54 0.51

Data augmentation only 0.66 0.66 0.58 0.59

Enhancement only 0.62 0.59 0.57 0.51

Proposed 0.64 0.61 0.61 0.58

Noisy-Babble (10 dB) 0.60 0.58 0.58 0.54

Data augmentation only 0.72 0.71 0.63 0.62

Enhancement only 0.68 0.66 0.61 0.55

Proposed 0.70 0.68 0.66 0.64

Noisy-Babble (20 dB) 0.61 0.58 0.61 0.56

Data augmentation only 0.74 0.72 0.67 0.67

Enhancement only 0.70 0.67 0.66 0.60

Proposed 0.70 0.69 0.67 0.64
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FIGURE 3

Modulation spectrogram for di�erent conditions, from (top–bottom): clean, (airport) noisy at 0 dB, MetriGAN+, and mimic-loss enhanced speech.

(Left) plots correspond to angry and (right) plots to sad emotion.
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TABLE 6 Performance comparison of PESQ and STOI score.

Signal PESQ STOI

Noisy-Airport (–20 dB) 1.107 0.219

MetricGAN+ 1.130 0.312

MimicLoss 1.054 0.244

Noisy-Airport (–10 dB) 1.094 0.367

MetricGAN+ 1.132 0.412

MimicLoss 1.112 0.368

Noisy-Airport (0 dB) 1.102 0.620

MetricGAN+ 1.225 0.657

MimicLoss 1.112 0.627

airport (10 dB) 1.583 0.791

MetricGAN+ 1.899 0.812

MimicLoss 1.622 0.800

Noisy-Airport (20 dB) 2.800 0.885

MetricGAN+ 2.979 0.895

MimicLoss 2.894 0.886

Noisy-abble (–20 dB) 1.100 0.188

MetricGAN+ 1.154 0.254

MimicLoss 1.038 0.229

Noisy-Babble (–10 dB) 1.103 0.342

MetricGAN+ 1.151 0.363

MimicLoss 1.138 0.356

Noisy-Babble (0 dB) 1.139 0.576

MetricGAN+ 1.229 0.639

MimicLoss 1.180 0.591

Noisy-Babble (10 dB) 1.577 0.764

MetricGAN+ 1.939 0.789

MimicLoss 1.605 0.768

Noisy-Babble (20 dB) 2.792 0.871

MetricGAN+ 2.968 0.880

MimicLoss 2.799 0.871

using each strategy individually) were seen for the airport noise

condition at higher and lower SNR conditions. In fact, with data

augmentation alone, accuracy inline with what was achieved with

clean speech was obtained. For Task 2, in turn, the proposed

model showed improvements over the other methods for almost

all tested conditions in terms of F1 score, thus showing the

importance of the proposed method to classify between opposing

emotions in extremely noisy scenaerios; in the case here, joy

vs. sad. Notwithstanding, for Task 2 a gap of 23% remained

between the best achieved performance and the clean speech

accuracy. Furthermore, we also tested the generalization ability

of the proposed system using unseen Cafeteria noise type and

unseen SNR levels such as 5 dB and 15 dB. As can be seen

in Table 7 the model was able to generalize across mismatched

TABLE 7 Performance comparison of the proposed method in unseen

noise and SNR levels for Task 1.

Task 1 Task 2

Signal F1-score BA F1-score BA

Noisy - Cafeteria (5dB) 0.58 0.57 0.52 0.47

Data augmentation only 0.63 0.60 0.67 0.64

Enhancement only 0.66 0.64 0.64 0.59

Proposed 0.68 0.65 0.67 0.65

Noisy - Cafeteria (15dB) 0.61 0.58 0.54 0.48

Data augmentation only 0.65 0.62 0.68 0.63

Enhancement only 0.69 0.66 0.67 0.61

Proposed 0.70 0.69 0.71 0.70

TABLE 8 Cross-corpus performance on unseen IEMOCAP and Emoti-W

datasets for Tasks 1 and 2.

Task 1 Task 2

Experiment Dataset F1-score BA F1-score BA

1 0.94 0.94 0.85 0.85

2 IEMOCAP 0.49 0.55 0.50 0.60

3 0.64 0.69 0.72 0.70

1 0.67 0.66 0.61 0.62

2 Emoti-W 0.46 0.52 0.48 0.53

3 0.58 0.60 0.56 0.56

noise types and noise levels with significant performance gain

with the proposed methodology. For comparison purposes, the

state-of-the-art DialogueRNN system achieved an F1 score of

0.59 and 0.55 for Task 1 and Task 2, respectively, when

corrupted with airport noise at 0 dB. The proposed system,

in turn, was able to outperform this benchmark by 10 and

12%, respectively. Overall, the obtained results suggest that data

augmentation combined with speech enhancement can be a

viable alternative for robust in-the-wild automatic multimodal

emotion recognition while requiring access to only one signal

modality: audio.

4.5. Generalizability of proposed method

To test the generalizability of the proposed method, six

additional experiments have been conducted on IEMOCAP and

Emoti-W datasets. First, we retrain the proposed AER model

using the IEMOCAP training dataset partition and test it on the

IEMOCAP test set to obtain an upper bound on what can be

achieved on this particular dataset. Next, to gauge the advantages

brought by the proposed system, we retrain the AER system shown

in Figure 1 but without the enhancement and data augmentation

steps. Training was done on the MELD dataset and the model was

then tested on the unseen IEMOCAP test data and the unseen

Emoti-W testset. This gives us an idea of how challenging the

cross-corpus task is when the proposed innovations are not present
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and should give us a lower bound on what could be achieved

cross-corpus. Finally, we tested the full proposed method trained

on the MELD dataset and tested on the unseen IEMOCAP and

Emoti-W test data. Experimental results are reported in Table 8.

As can be seen, cross-corpus testing is an extremely challenging

task where performance accuracy can drop to chance levels if

strategies are not put in place. The proposed innovations, on the

other hand, provides some robustness, and gains of 30% and 44%

on IEMOCAP and 26% and 17% on Emoti-W could be seen with

the proposed system for Tasks 1 and 2, respectively, over a system

without task-specific speech enhancement and data augmentation.

The gaps to the upper bound obtained with Experiment 1 suggest

that there is still room for improvement and emotion-aware

enhancement and/or alternate data augmentation strategies may

still be needed.

5. Conclusions

This paper has explored the use of task-specific speech

enhancement combined with data augmentation to provide

robustness to unseen test conditions for multimodal emotion

recognition systems. Experiments conducted on the MELD

dataset show the importance of BERT for text feature extraction

and a fused eGEMAPS-modulation spectral set for audio

features. The importance of data augmentation at the training

stage and of task-specific speech enhancement at the testing

stage are shown on two binary speech emotion classification

tasks. Lastly, cross-corpus experiments showed the proposed

innovations resulting in 40% gains relative to an AER system

without enhancement/augmentation. While the obtained

results suggest that task-specific enhancement, combined

with data augmentation are important steps toward reliable

“in the wild” emotion recognition, speech enhancement

algorithms may still be suboptimal and may be removing

important emotion information. As such, future work should

explore the development of emotion-aware enhancement

algorithms that can trade-off noise suppression and emotion

recognition accuracy.
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