
TYPE Systematic Review

PUBLISHED 19 October 2022

DOI 10.3389/fcomp.2022.997222

OPEN ACCESS

EDITED BY

Carmen Llorente Cejudo,

University Seville, Spain

REVIEWED BY

Cesar Collazos,

University of Cauca, Colombia

Bert Zwaneveld,

Open University of the

Netherlands, Netherlands

*CORRESPONDENCE

Héctor Belmar

hector.belmar@hotmail.com

SPECIALTY SECTION

This article was submitted to

Digital Education,

a section of the journal

Frontiers in Computer Science

RECEIVED 18 July 2022

ACCEPTED 26 September 2022

PUBLISHED 19 October 2022

CITATION

Belmar H (2022) Review on the

teaching of programming and

computational thinking in the world.

Front. Comput. Sci. 4:997222.

doi: 10.3389/fcomp.2022.997222

COPYRIGHT

© 2022 Belmar. This is an open-access

article distributed under the terms of

the Creative Commons Attribution

License (CC BY). The use, distribution

or reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Review on the teaching of
programming and
computational thinking in the
world

Héctor Belmar1,2*

1School of Computer Engineering, National Training Institute (INACAP), Santiago, Chile,
2Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile

Recent studies suggest that computational thinking, composed of the

skills of abstraction, decomposition, algorithmization, debugging, and

problem-solving, is the fundamental skill for scientific, technological, and

economic development for the twenty-first century. However, this diagnosis

that is unveiled in rich countries remains nebulous for poor countries. The

problem is that education in computational thinking is fundamental for

countries to insert themselves in the international arena in an advantageous

way and thus achieve the welfare goals for the population of each country. The

objective of this research was to make a bibliographic review that shows the

state of the art in the teaching of computer programming and computational

thinking in the 5 continents. In the review, the advances in the countries

of Europe, North America, Oceania, and Asia were observed, whereas in

Latin America and Africa, the advances are still basic in some countries and

non-existent in others. This review is based on Preferred Reporting Items

for Systematic reviews and Meta-Analyses (PRISMA). The main search terms

were “Computational thinking” and “Teaching computer programming.” The

search was performed in the ACM, Conference on Computational Thinking

Education (Hong-Kong), Google Scholar, WOS, and SCOPUS databases,

from October until December 2020, whose publication year was from 2016

onward. One of the main results found is that the teaching of computational

thinking in England was implemented in schools in 2014; in Germany, it has

been implemented since 2016 at a transversal level in universities; in South

Korea, China, and Taiwan, it has been implemented since 2016. However, in

Latin America and Africa governments, the subject is still not considered.

KEYWORDS

computational thinking, computer programming, algorithm, programming, computer

science

Introduction

Contextualization

In the last decade, teaching of computational thinking skills in compulsory education

is being developed in various countries around the world, which is a strategic decision

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2022.997222
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2022.997222&domain=pdf&date_stamp=2022-10-19
mailto:hector.belmar@hotmail.com
https://doi.org/10.3389/fcomp.2022.997222
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2022.997222/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Belmar 10.3389/fcomp.2022.997222

for technological development and for the acquisition of

twenty-first century skills. In this rapidly advancing world,

education professionals are subjected to new demands during

the exercise of teaching, which has caused training institutions to

permanently analyze their academic work, tomake the necessary

adjustments to their teacher training programs to respond to the

new demands (Coppelli, 2018).

In this context, questions arise; Will it be necessary

to include the teaching of computational thinking as a

compulsory subject? Second, from which course should it

be incorporated, how many hours per week would be

necessary? Or would it be better to incorporate it as a

development axis in existing subjects, such as technology

education? Even the question arises whether it will be

necessary to incorporate it in a transversal way, in all

subjects? Then comes a second group of questions: Regarding

teachers, are there teachers prepared to teach computational

thinking, are there didactic strategies aimed at it, and also

have evaluation instruments been developed to measure

achievements at each educational level? All these questions and

many others may arise when dealing with the issue of teaching

computational thinking and the teaching of these skills in the

educational system.

As for computational thinking, it encompasses a range

of thinking skills specific to problem-solving, including

abstraction, decomposition, debugging, pattern recognition,

logic, and algorithm design, among other skills. But it is

not only this because problem-solving skills also go beyond

rote learning and procedural skills. Logical thinking involves

analyzing situations to decide about an event. Algorithms are

step-by-step procedures for solving problems, which are then

codified in a programming language. It should be noted that

computational programming is the natural scaffold for the

acquisition of computational thinking skills, so its teaching from

school is essential for future professionals to fully integrate

it as mathematics, science, and language (Grover and Pea,

2018).

The implementation of computational thinking in school

is already advancing in several countries, as in USA in

December 2015 was signed the Federal Law entitled “Every

Student Succeeds,” which is responsible for public policies

in this country. This law places computing on an equal

footing with other academic disciplines, such as Mathematics,

Geography, History, and Science (Brackmann et al., 2016).

In January 2018, the Spanish Ministry of Education, Culture,

and Sport published the report “Programming, robotics and

computational thinking in the classroom,” the document

describes the current situation of programming, robotics,

and computational thinking in the basic curriculum and

different autonomous communities and several unofficial

initiatives, led from companies, universities, or civil society.

There are some questions to answer about it, such as

integrating it, within the current disciplines or whether

it is preferable for it to be an extracurricular activity

(Adell-Segura et al., 2019).

Teaching of computer programming

Despite it is true that this review aims to study the

teaching-learning of computer programming, it is also true

that the concept of “Computational Thinking” has taken some

prominence whenever the subject of computer programming is

addressed. Nowadays, the world is incorporating the teaching

of computer programming for elementary and high school

students, to develop computational thinking skills, which

go far beyond learning to program. Thus, the teaching of

computational programming serves as a scaffold for the

development of computational thinking skills, which are

transferable to other areas of knowledge, and it means that they

not only remain in computer science scholars, but also radiate

into the whole area of science and technology (STEM), also

including art (STEAM) and beyond (Rojas and García, 2020).

According to Wing (2006), computer science is the study

of computation and asks himself, what can be computed and

how to compute it? To have enough elements of judgment

and to appropriate a definition, we will show several research

that address the studies based on computational sciences, which

orient their meanings based on their applicability. We can

number some applications of computing such as internet of

things, social networks, big data, artificial intelligence, robotics,

video games, communications, smart phones, augmented

reality, virtual reality, etc. The reality is that computer science

is ubiquitous, so it is something to know, or at least a part of its

applicability (Psycharis et al., 2020).

The contributions of computer science in education are

very broad. Thus, universities around the world are revising

their undergraduate computer science curricula, because of

which they are changing their first course in computer science

to cover fundamental concepts, not just programming. In

addition, interest in computational thinking has grown beyond

undergraduate education, with many focusing on incorporating

computational thinking into education from kindergarten

through K-12. As for sponsors, they include professional

organizations, government, academia, and industry. Computer

scientists know the value of thinking abstractly, thinking at

multiple levels of abstraction, abstracting ideas to manage

complexity, abstracting to scale, iteration, debugging, and

software testing, among others (Wing, 2011).

For García (2018), we cannot abstract from the teaching

of programming, but schools must take steps with our young

people to operate in a virtual world, for which they must prepare

in the language of this century, without which they will become

digital illiterates. Therefore, the school should train the youth

with the skills of computational thinking. So far, the energy has

been directed at training users of existing computational tools.

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2022.997222
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Belmar 10.3389/fcomp.2022.997222

Of course, this is insufficient, since what the present century

demands is to acquire the skills of computational thinking, to

live a new way of thinking and problem-solving. Therefore,

instead of teaching students to be the users of a changing

technology, they should be trained in the new paradigm of

computational thinking, to be creators of new technologies

(García, 2018).

According to Wing’s (2006) definition, computational

thinking has been supplemented as a generalized problem-

solving approach applicable to a broad matrix of STEM and

non-STEM fields. A formal definition is still an open topic

of discussion in the literature, but in general, scholars agree

that computational thinking skills include algorithmic thinking,

navigating multiple levels of abstraction, decomposing problems

into manageable pieces, and representing data. Computational

thinking can be taught with or without the use of computers, but

it is often operationalized through computer programming, as

this makes the abstraction at the heart of computational thinking

easier (Grover and Pea, 2018).

It should be noted that, with the research shown and

speaking from experience, it could be safely said that

computational thinking is the set of skills such as abstraction,

decomposition, pattern recognition, algorithmization,

debugging, and problem-solving, which could be extended

to the skill of critical thinking. For the author, computational

thinking is a new paradigm that expands the cognitive skills

of students, in terms of making visible issues that until

now are typical of computer technicians and professionals,

but that undoubtedly will be a great contribution to the

learning of science, mathematics, and many other areas of

knowledge, where abstraction and the decomposition of

problems, parallelism, and thinking at multiple levels provide

the necessary contributions for students to learn from a different

approach to the traditional one, especially modeling skills that

allow the integration of all skills into a broad knowledge capable

of integrating diverse cognitive skills.

General objective and research
questions

The general objective was to make a bibliographic review

that shows the state of the art in the teaching of computational

programming and computational thinking in the 5 continents

(see Figure 1).

It also suggests the possible lines of action that should be

followed by the countries that are at the stage of evaluating the

implementation of computational thinking.

Research questions:

What is computational thinking and how is it linked to

computational programming?

Are there didactic strategies in the teaching of

computational programming at school? And if so,

what didactic strategies are used in the teaching of

computer programming at school?

What is the international context in which the process

of teaching computer programming is designed and

implemented at different educational levels; primary,

secondary, and tertiary?

Which are the pioneer countries in implementing the

teaching of computer programming, what are they doing?

Which computational tools/programming languages are

most used to provide the scaffolding toward the acquisition

of computational thinking skills?

Method

Search terms and databases consulted

In the first instance, the trend of the investigated concepts

(Computational Thinking and Computational Programming)

was reviewed in Google trends (trends.google.es/trends), which

showed a growing interest in investigating computational

thinking from 2014 onward. This review is based on The

PRISMA 2020 statement: an updated guideline for reporting

systematic reviews. International Journal of Surgery, 88, 105906

(Page et al., 2021).

The search terms were as follows:

- Primary search terms: “Computational thinking” and

“Teaching computer programming.”

- Secondary search terms: Teaching computational

programming in elementary school, secondary

school, tertiary/higher education, educational

robotics, gamification, and didactics in

computational programming.

A detailed search was conducted in the following databases

since October until December 2020, whose year of publication

was from 2016 onward, due to the accelerated obsolescence of

the investigated subjects and associated technologies:

∗ ACM (Association for Computing Machinery)

Digital Library.
∗ Google Scholar.
∗ WOS AND SCOPUS.
∗ Conference on Computational Thinking Education (Hong-

Kong).

Selection of articles

The flow chart summarizing the searches in the various

databases is below. It shows the articles eliminated and the

reasons why (see Figure 2).

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2022.997222
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Belmar 10.3389/fcomp.2022.997222

FIGURE 1

Own elaboration based on the literature search procedure according to the PRISMA guidelines.

In the ACM Digital Library, the use of the main terms

together with all secondary search terms resulted in 251 articles.

After eliminating by title, 60 publications were retained.

A Google Scholar search (combining all secondary search

terms with computational thinking) yielded 631 articles.

After filtering by title and eliminating unrelated articles, 96

publications were retained. In addition, 21 articles were found

in WOS and SCOPUS.

In the publications of the Conference on Computational

Thinking Education (Hong-Kong, 2020), which was held for

the first time in 2017, many papers were found and an own

categorization of computational thinking, which guide the

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2022.997222
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Belmar 10.3389/fcomp.2022.997222

FIGURE 2

Number of paper per country.

search toward new horizons, from where in addition to the

published papers were the references of each of them, so we

proceeded to review most recent publications and those of

greater interest, and thus, 82 publications were completed.

The inclusion and exclusion criteria were developed as

recommended in the systematic review guidelines.

The texts considered have the following characteristics:

∗ Directly answered one or more research questions.
∗ Were related to the teaching of computer programming in

educational institutions.

Studies were excluded if they:

∗ Were in a book format or gray literature (opinion articles,

technical reports, blogs, presentations, etc.).
∗ Did not answer any research question.
∗ Other exclusion criteria used, was to ask the

following questions:

- How well does the evaluation address its original objectives

and purposes?

- How well was the data collection conducted?

- How clear and coherent is the report?

After these steps, which consisted of reading the abstracts

and conclusions, and eliminating articles if they did not comply

with the above criteria, 101 articles were selected for review.

Regarding the year of publication of the articles reviewed, it

is highlighted that 19% are from 2018, 40% correspond to the

publications from 2019, 22% are the publications from 2020, and

5% are the publications from 2021.

Results: The main research

Contextualization

Undoubtedly, the teaching of computer programming

lacks a didactic that guides it and that doses the contents

in smaller units, disaggregating the complexity, to make

learning more fluid for the students. In the computing

field, it is like another side of teaching, which does not

include didactic elements from other STEM areas, and

runs on its own track, where those who teach do not have

pedagogical training and teach using the same method as

they learned, which generates a vicious circle contrary to

didactics as it happens in mathematics, science, and other

areas of learning. The teaching of computer programming is

fundamental to acquire the skills of computational thinking,

which opens new opportunities to learning with the skills

of abstraction, problem disaggregation, algorithmization,

parallel task processing, debugging, and pattern recognition,

among others.

Thus, in this review, we will seek to answer the research

questions, to guide what is being done in the field, or to define

what is intended to be done in the various countries. It should

be noted that not all the publications were written in English,

so the translation from Chinese, Russian, Korean, and German,

among others, was needed. However, the common denominator

found was that the teaching of computational thinking is the key

skill for the twenty-first century, that it should be taught from an

early period of time, that its skills are transferable to other areas

of knowledge, and that computer programming is the natural

scaffolding to achieve this goal.

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2022.997222
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Belmar 10.3389/fcomp.2022.997222

The research questions to which answers were sought were

the following: What is computational thinking and how is it

linked to programming? Are there didactic strategies in the

teaching of computer programming at school? And if they

exist, what didactic strategies are used in teaching computer

programming at school? What is the international context

in which the process of teaching computer programming

is designed and implemented at different educational levels;

primary, secondary, and tertiary?What are the pioneer countries

in the implementation of teaching computer programming,

what are they doing?What computational tools or programming

languages are the most used to provide the scaffolding toward

the acquisition of the skills of computational thinking?

By obtaining the results, several ways of facing the problem

of the lack of didactic strategies in the teaching of computer

programming were found. Some of them resort to the use

of games, others to educational robotics, metaphors, etc., but

none of them proposes a properly developed didactic, which is

applicable to all contexts and levels of teaching, rather they are

trials and errors. It stands out to the general rule, the 10 didactic

principles of Brown and Wilson (2018), which create a kind of

algorithm for teaching programming, which is perhaps the path

that should be followed. In this sense, it is left to the reader to

acquire the necessary elements of judgment, such as validating

one or another attempt to shape didactics of computational

programming, just as didactics of mathematics and science have.

Computational thinking—Research and
concepts

Computational thinking is unquestionably the skill that

young people of the twenty-first century must acquire, and

computational programming seems the logical way to achieve

it, since making a computer program confronts the student

with problem-solving, abstraction, task sequencing or task

algorithmization, parallelism, and code debugging. In 2018,

Ching et al. published the research, in which he begins

by positing that computer programming should be taught

for children of all ages. Here, in the research conducted,

computational thinking is considered as a broad problem-

solving framework involving problem-solving skills, processes,

and approaches, and “programming” as a key practice to support

and cultivate the cognitive tasks involved in computational

thinking (Ching et al., 2018).

The following research works computational thinking

from a different perspective, and here, it seeks to teach

the same computational thinking skills, but without the

need for a computer laboratory. In 2017, Brackmann’s

et al. research set out to develop computational thinking

skills through unplugged activities in elementary school, for

which they conducted a quasi-experiment with 5th and

6th graders from two public elementary schools in Madrid,

which has 73 students aged between 10 and 12 years. The

unplugged approach is important for schools that do not

have technological resources, internet connections, or even

electricity. Regarding this, there is a lack of research showing

the effectiveness of unplugged activities in the development of

computational thinking skills, especially in elementary schools

(Brackmann et al., 2017).

A key issue in the development of computational thinking

is the measurement of such skills, and thus, some design and

validation guidelines for computational thinking content have

been developed (González, 2015). Developing computational

thinking of young children with educational robotics allows

an interaction effect between gender and scaffolding strategy

(Angeli and Valanides, 2020). In the same sense, there are

successful experiences of teaching programming and robotics in

elementary and middle school education (Gómez et al., 2019).

Developing students’ computational thinking with a

poly-disciplinary approach becomes fundamental for the

student group, due to the diversity and multiple approaches

from different professions (Klunnikova et al., 2020). In

summary, programming expertise promotes greater STEM

motivation among all the students and with a focus on first-year

girls and boys (Master et al., 2017).

Other publications show a series of research that deepen

the development of computational thinking and programming,

of which stand out the methodological proposal based on

metaphors to teach programming to children (Pérez et al.,

2018), the development of programming skills in engineering

education through problem-based game projects with Scratch

(Topalli and Cagiltay, 2018), the introduction to computer

science as a part of the general education curriculum

for the whole university (Khenner, 2019), toward the use

of computational models in learning physical computing

(hardware) (Seow et al., 2020), the comparison of learning

behaviors of third-year elementary students and integrate robots

and computational thinking board game in Singapore and

Taiwan (Liang and Hsu, 2020), and the alignment of the

framework in STEM classrooms infused with computational

thinking (Bain et al., 2020).

In the same vein as the previous paragraph, a study about

changing the way a generation thinks by teaching computational

thinking through programming is also shown that it is a giant

challenge, no doubt (Buitrago et al., 2017). Other authors

focus on education in computational thinking, the problems,

and challenges it holds (Angeli and Giannakos, 2020). In

a following study, there is an analysis of response theory

to the element of sequencing algorithms and programming

concepts (da Cruz Alves et al., 2020). And finally, research

about computational thinking skills and their impact on the

achievements of the Trends in International Mathematics and

Science Study (TIMSS) test, a study that looks in depth at the

scope of such measurement, which will set the tone in the

educational development of countries (Alyahya and Alotaibi,

2019).

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2022.997222
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Belmar 10.3389/fcomp.2022.997222

The results will be shown in the following two
categories

- Lines of research in applied programming education.

∗ Gamification.
∗ Educational robotics.

- Pedagogical and didactic elements.

∗ Pedagogical and didactic practices.
∗ Didactic methods in Computer Programming.

◦ Learning programming like learning a

second language.
◦ Metaphors and building blocks for

teaching programming.
◦ Ten principles for teaching programming, by Brown

&Wilson.

Now regarding the countries that publish, these

investigations are mainly found in the continents, Europe,

Asia, and North America. With less participation are some Latin

American countries, such as Colombia, Brazil, and Argentina.

The following graph shows the number of articles reviewed

by country:

Lines of research in programming education applied

The following are some of the research lines associated with

this work, such as gamification and educational robotics, which

provide guidance on the teaching of computer programming in

these areas.

Gamification: Teaching using games. Teaching by games

in the field of computational thinking covers a range of

possibilities, ranging from the design, construction, and use

of games to the production and marketing of video games.

Thus, there are experiences of the use of digital games in

storytelling, learning mathematics, history, etc. Children learn

better history if they play Age of Empires, personal reading

books are more attractive if they are developed in animated

environments, and mathematics is fun if there is an interaction

with numbers and they are contextualized in a real environment,

etc. In this regard, de Paula et al. published in 2018 an

article entitled “Playing Beowulf,” featuring a game produced

by two 14-year-olds, “Playing Beowulf,” which is a collaboration

with teenagers from the British library (de Paula et al.,

2018).

In the United States, researchers published an article

in 2017, which presents an empirical study that provides

evidence that a mathematical educational game can help

with superior learning opportunities, as well as being more

engaging. The “Decimal Point” game is a single-player game

and is based on an amusement park metaphor and is

aimed at high school students. The game is called “Decimal

Point: the fantastic and fabulous world of fractional fun.”

In the game, the student travels sequentially to different

theme areas (Haunted House, Wild West, Space Adventure,

Amusement Park), playing a variety of mini games within

each theme area aimed at learning decimals. Student progress

is tracked by tracking the park and students are visually

cued to the next game they will play (McLaren et al.,

2017).

In the same vein, researchers Zhou and Hsu from National

Taiwan University published in 2020, a study that aimed

to integrate the computational thinking board game with

robots, so that students put computational thinking skill

into practice when completing the board game tasks by

controlling the action of robots. The participants were sixth-

grade students in Singapore. In total, two students divided

into a team collaborated with each other, competed with the

other team composed of two other students. The research used

Robots City board games to enable the students to cultivate

the concept of computational thinking through game-based

learning and use cell phone applications to control robot

behavior with programmed logic for analysis (Zhou and Hsu,

2020).

Finally, there are other research such as, Fotaris et al.

(2016), with conducting an empirical study of the application

of gamification techniques in a computer programming class,

where it uses a leaderboard as motivation for players.

Daungcharone et al. (2019) present learning the C programming

language based on the mobile games to improve students’

learning. Also, Pellas and Vosinakis (2018) show the effect

of simulation games in learning computer programming

on the learning performance of high school students by

assessing computational problem-solving strategies. There

is a wide range of applications of computer games to

motivate and enhance learning, not only in the areas

of computer science, but also in different areas (Wing,

2011).

Educational robotics. An educational robotics paper

presented at the “International Conference on Computational

Thinking Education 2020” in Hong Kong, which explored the

learning behaviors of sixth-grade students using educational

robots in English oral interaction learning units, in which a

smart phone application was provided to control the action of

the robots and ask students to orally interact with their peers to

put learning sentences into practice. Then, the foreign language

interactive behaviors were recorded and observed during the

collaborative learning task period. The participants were 18

English foreign language learners, aged between 11 and 12 years

(Kong et al., 2020).

It should be noted that multimedia environment can

reduce students’ anxiety and provide a less stressful classroom

environment. In addition, multimedia tools enable English

teachers to help the students improve their English performance

and reduce language anxiety (Huang and Hwang, 2013 in

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2022.997222
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Belmar 10.3389/fcomp.2022.997222

Kong et al., 2020). When students begin to feel confident in a

foreign language classroom, they will naturally start speaking.

Ultimately, all foreign language teachers need to motivate

learners, encourage them to speak, and allow them to make

mistakes freely (Atas, 2015; in Kong et al., 2020). Experimental

results show that, in the learning process, with the help of

educational robots, students speak English as a very common

action to give commands to the robot. To complete the goal of

the class, it is possible to interact with students in spoken English

(Kong et al., 2020).

In another research at the Norwegian University of Science

and Technology, a paper was conducted that deals with

children’s collaboration and participation, and their attitudes

in game programming and educational robotics. The goal of

the work was to investigate how collaboration and engagement

moderate children’s attitudes about programming activities. For

this purpose, a study was designed with 44 children aged

between 8 and 17 years, who participated in a full-day computer

programming activity. Their participation and collaboration

during the activity was measured by recording their gaze and

attitudes regarding their learning, enjoyment, teamwork, and

intention using post-activity survey instruments. Behavior was

found to moderate the relationship among intention to learn,

attitude toward teamwork, enjoyment, and observed learning

(Sharma et al., 2019).

Also, authors Lee and Low (2020) conducted the

implementation of a computational thinking curriculum

with robotic programming activities. In addition, Cheng et al.

(2018) investigated on the essential applications of educational

robot through a requirements analysis from the perspective of

experts, researchers, and instructors. Regarding SRA (Sense,

Reasoning, Action) programming, authors Fanchamps et al.

(2020) investigated the influence of SRA programming on

algorithmic thinking using robotics. They also investigated the

effects of using cell phone software to control educational robots

with third-grade elementary school students (Yi and Ting, 2020,

in Kong et al., 2020). In addition, Paucar-Curasma et al. (2022)

conducted a study with a group of students aged 6–13 years

in Peru, which was developed during 4 weeks, and applied

computational thinking assessments applying the concepts

of sequences, cycles, parallelism, conditionals, operators,

and data manipulation, which allowed an appropriation of

computational thinking skills by the participants in an optimal

way (Paucar-Curasma et al., 2022). Finally, researchers Souza

et al. (2019) analyzed the effect of computational thinking in

mathematics through educational robotics.

Pedagogical and didactic elements

From the articles and reports selected and reviewed, all

agree that computational thinking is the essential skill for

education and industry in the twenty-first century, as it provides

complex cognitive skills such as abstraction, decomposition,

problem-solving, and algorithmic thinking, skills that are not

only necessary for the scientific and technological development

of humanity, but also for the preparation for work and the

challenges posed by the automation of work and the loss

of jobs as a result of robotization and artificial intelligence.

With the above in mind, the challenge for governments is

to prepare future generations for this complex world ahead;

however, countries that have implemented educational reforms

have found themselves with a shortage of teachers trained in the

areas of computer science (Bocconi et al., 2016).

Pedagogical and didactic practices

Japanese researchers conducted research on pedagogical

transformation based on computational design and thinking.

Now, that technology has become ubiquitous, and it is

more appropriate to discuss transformative pedagogy

where technology is no longer considered a tool, but part

of who we are. We do not believe that there is a strong

basis for claiming that the integration of technology was

the game changer, for our students working on extensive

and complex robot programming tasks; rather, it was the

design of teaching and learning in practice that made

the real difference. A key implication for heutagogical

(self-determined learning) practice that follows is that

technology must build on a solid understanding of key

concepts in teaching and learning, not the other way

around (Vallance and Towndrow, 2016).

In turn, Chinese researchers from Hainan University

investigated on a model of blended learning and the

cultivation of innovative talent, whose mechanism

is based on computational thinking. Computational

thinking includes computational thinking and integration

with the social and natural environment, including

evolutionary thinking in general computing environments,

alternatively promoting and co-evolving problems. In

the future, non-computer science professionals can

use computer science means for innovation in various

disciplines. They can also develop support for various

disciplines of research and innovation of new media

of digital technology. Computational thinking can

effectively help non-computer science professionals

to bridge the gap between learning and training with

common computing tools for future professionals

(Zhang et al., 2019).

Didactic methods in computer programming general.

In 2018, the book “Content and Skills of Computer

Science” was published in Germany by the university

press of the University of Potsdam, which makes a tour

on what should be learned in computer science by the

students of higher education of all careers, which receives

the contributions of different academic teams of the

German university world, to contribute collaboratively

to lay the foundations of the skills that professionals

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2022.997222
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Belmar 10.3389/fcomp.2022.997222

of the twenty-first century should possess. On this,

some of the papers included in the publication are

highlighted (Bergner et al., 2018).

In the publication, it was found that the central topics were

algorithms, computer programming, and data representation,

but also elementary technical concepts of computers and the

internet. Courses also appeared that touched on traditional

topics, on social implications, privacy, and the role of computer

science in society. Regarding programming environments,

programming systems were used professionally in most of

the courses. Among the recommendations, it is indicated

that it would be better to design courses focused on

the specialties in which they are taught, since this would

enhance the students’ learning and applicability in subsequent

subjects to be taken, thus better achieving the objectives

of metacognition.

Computational thinking develops naturally in higher

education, as shown by the research seen, which for reasons of

space, it is not possible to show them in this section. The research

deals with diverse topics, such as augmented reality for STEM

learning; a computational thinking curriculum framework

for lower sixth with implications for teachers’ knowledge;

computer science as a core competency for teachers in other

disciplines; trainee teachers’ views on computational thinking—

STEM vs. non-STEM teachers; technology-enhanced learning

in higher education; motivations, engagement, and academic

performance; a study between Finland, mainland China,

Singapore, Taiwan, and South Korea, comparing teachers’

perceptions and preparedness to teach programming skills (Wu

et al., 2020).

Learning programming using learning a second language

methods. The introductory course in computer programming

is first and foremost a language course, since teaching

a language is already a component of the introductory

programming course. The issue has been the pedagogical

approach to teaching the linguistic aspects of the course,

a teaching structure long abandoned for natural languages

modeled after a linguistics approach (based on rules of

grammar instruction), rather than incorporating principles

of second language acquisition. In the twenty-first century,

there are virtually no natural language classrooms using

the prescriptive linguistics approach, yet it remains the

universal teaching model for learning a programming

language (Portnoff, 2018).

The absence of grammatical rules for learning programming

causes students has a conceptual pedagogical gap to bridge on

their own, even though instructors expect to solve problems

using logic mediated by a programming language, in that most

struggle to express basic fluency. Even those talented enough to

get their programs to run and function correctly still compose

inadequately structured programs well into their first year. The

specific difficulties in learning a programming language coincide

with the difficulties of learning a second natural language. The

complications stem largely from the small number of control

structures that programming languages employ, even though

they are adaptive and are semantically broad (Portnoff, 2018).

Metaphors and blocks for teaching programming. Pérez

et al. (2018) proposed using metaphors such as recipe/program,

pantry/memory, and boxes/variables. They also illustrate the

possibility of applying these metaphors to any resource available

to the teacher. In total, four step-by-step scripts are provided

on how to use metaphors in class, with the opinions of

62 children (enrolled in fourth, fifth, and sixth grades of

Spanish Primary Education, ages 9–11) and their teacher. This

proposal has been validated with 62 Spanish children, who

found the metaphors useful in more than 65% of the cases.

The students were able to understand the metaphors (<30%

of the students found the metaphors difficult) and <10% of

the students did not want to use the metaphors. The teacher

was also asked to evaluate and validate the methodology

(Pérez et al., 2020). In this same line in 2021, a research

by Jiménez Toledo et al. (2021) published a study entitled

“Discovery Model Based on Analogies for Teaching Computer

Programming” through which he applied a discovery model

that allowed the extraction of patterns, textual and linguistic

analysis, in addition to the use of analogies for teaching the

fundamental ideas of computer programming, which allowed

to achieve better learning in students (Jiménez Toledo et al.,

2021).

In another case, 20 years ago, AgentSheets combined

four possibilities to create an early form of block scheduling.

After initially focusing on syntactic possibilities, AgentSheets

in computer science education, new approaches have been

experimented with to go beyond syntax to address semantic

and pragmatic obstacles. Thus, three approaches are described:

(1) contextualized explanations to support understanding,

(2) conversational programming to proactively assist and

predict the future, and (3) live palettes to make programming

more unpredictable. The block scheduling community

has been concerned about the syntactic possibilities of

the scheduling environment. It is time to shift research

agendas toward systematically exploring the semantic and

pragmatic possibilities of block programming (Repenning,

2017).

Ten principles for teaching programming, by Brown and

Wilson (2018). Neil Brown is a researcher at King’s College

London University in England, and Greg Wilson belongs to the

computer training organization DataCamp in Toronto, Canada,

which after arduous bibliometric research and the experience

accumulated in the development of their academic functions,

offer ten principles for learning to program.

Principle 1: Remember that there is no such thing as the

programming knowledge gene.

Computer programming skills are not innate, but

rather a learned skill that can be acquired and improved

with practice.

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2022.997222
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Belmar 10.3389/fcomp.2022.997222

Principle 2: Use the help of your peers.

One-on-one tutoring is perhaps the ideal form of teaching,

a teacher’s full attention can be focused on one student, and

they can fully customize their teaching for that person and tailor

individual feedback and corrections based on a two-way dialog

with them.

Principle 3: Use live coding.

Instructors should create programs in front of their students.

This is most effective for several reasons: (1) It allows instructors

to better answer “what if?” questions. Live coding allows

instructors to follow the interests of their and (2) it facilitates

unintended knowledge transfer.

Principle 4: Encourage students make predictions.

When instructors use live coding, they usually run the

program several times during its development to show what it

does. The key to making demonstrations more effective is to

have students predict the outcome of the demonstration before

running it.

Principle 5: Use pair programming.

Pair programming is a software development practice in

which two programmers share a computer. One individual

(called the driver) writes, whereas the other (called the

navigator) offers comments and suggestions. The two switch

roles 2–3 times per hour.

Principle 6: Use solved examples with labeled objectives.

A good way to guide students in building programs is to use

solved examples: step-by-step guides that show how to solve an

existing problem.

Principle 7: Stay in one language.

A principle that applies in all areas of education is that

transfer only comes with mastery of a programming language.

Principle 8: Use authentic tasks.

Learners find authentic tasks more engaging than

abstract examples.

Principle 9: Remember that freshmen are not experts.

Freshmen are taking their first steps in learning

programming, so initially confront them with small problems,

broken down into chunks.

Principle 10: Do not just code.

Faced with the challenges of learning syntax, semantics,

algorithms, and design, examples that seem small to instructors

can easily overwhelm beginners.

Discussion and implementation of
programming education

For this author, as a computer professional and educator,

most of the conclusions are shared; however, with respect

to the authors who state that programming could disappear,

I consider that it is like saying that the use of the wheel

could disappear because of the invention of airplanes. It

is clear that advances in artificial intelligence and code

generators such as CSS3 Generator, Colorzilla Gradients,

Genexus, among others, have been and will continue to be

a great contribution in software development, but computer

programming is something fundamental in the formation of

computational thinking skills, such as addition, subtraction, and

multiplication, as it is for elementary school students. I agree

that the focus should go beyond programming, since computer

programming is a tool to move toward computational thinking,

and incidentally allows future generations to have the ability to

be creators of technology and not just users of it.

Undoubtedly, the implementation of the teaching of

computational thinking in the various countries of the world

demands a lot of resources, creativity, knowledge, and will

of governments to generate policies that open the way for

the training of today’s students to become professionals that

will make them competitive and capable enough to perform

their jobs in the twenty-first century. In the area of the

implementation of the teaching of computational thinking, this

is where the playing field is most uneven worldwide. There are

countries in which all schools are equipped with computers,

such as Australia, England, Germany, Japan, and New Zealand,

among others, and other countries in which there is a significant

percentage of schools that do not have such infrastructure, as

in Latin American countries, and other countries that have a

percentage of schools that do not even have electricity, as in the

case of India and Africa.

Main considerations

This review discusses the concept of computational

thinking, a term that finds support in the skills of abstraction,

decomposition, sequencing, algorithmization, debugging, and

problem-solving skills. In the literature, computational thinking

is mentioned as the skill of the twenty-first century, and

computational programming as the natural scaffolding to move

toward the incorporation of computational thinking as an active

problem-solving skill. In addition, it is noted that these types

of skills have already been incorporated in international tests

such as Trends in International Mathematics and Science Study

(TIMSS), which allows measuring the trend of countries in

mathematics and science skills. In this sense, a research that talks

about computational thinking skills and its impact on TIMSS

achievement looks in depth at the scopes of such measurement,

which will set the tone in the educational development of

countries (Alyahya and Alotaibi, 2019).

For Grgurina (2021) in her work entitled “Getting the

Picture: Modeling and Simulation in Secondary Computer

Science Education,” computational thinking includes the skill

of modeling, a skill that is at a higher level of complexity

than problem-solving. Thus, computational thinking includes

formulating problems, so that it is feasible to solve them

with a computer, organizing and analyzing data logically,

representing data through models, and automating solutions

through algorithmization, which includes abstractions and

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2022.997222
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Belmar 10.3389/fcomp.2022.997222

parallelism. Thus, looking toward student training, these skills

support and improve attitudes such as: confidence in dealing

with complexity, persistence in working with difficult problems,

tolerance of ambiguity, the ability to deal with open problems,

and the ability to work with others to achieve a common goal and

communicate it. Thus, for example, in two-schema modeling,

students have to construct two schemas and combine them: a

schema consisting of the situation to bemodeled and the schema

of the means (mathematical, computer, scientific, everyday life,

etc.) that can be used in the construction of an understandable

model representing the situation to be modeled.

Grgurina describes computational thinking in terms of

its main concepts, such as: data collection, data analysis,

data representation, problem decomposition, abstraction,

algorithms and procedures, automation, simulation, and

parallelization (CSTA Computational Thinking Task Force,

2011; in Grgurina, 2021). The definition of computational

thinking is complemented by the Carnegie Mellon Center

for Computational Thinking (CMCCT), which states

that it consists of three fundamental aspects: abstraction,

modeling, and algorithmic thinking (Carnegie Mellon

Center for Computational Thinking, 2010; in Grgurina,

2021).

In the review made by Shute et al. (2017), entitled

“demystifying computational thinking,” he addresses the

concept as the set of skills of decomposition, abstraction,

algorithm design, debugging, iteration, and generalization,

understood as necessary skills for problem-solving. Regarding

computational thinking and programming, they are

analyzed at the same level; however, it does not consider

that computational programming through teaching allows

acquiring computational thinking skills, since it is necessary

to abstract and decompose a problem before coding a

program, and also, depending on the complexity, it will be

necessary to abstract at several levels, and once programmed,

debugging and checking that what is done does what it should

solve will be necessary, thus incorporating computational

thinking step by step. Regarding the bibliography consulted,

most of it is observed between 2011 and 2015, so what is

said there has been changing, leaving some conclusions,

rather obsolete.

It is highlighted in Shute Shute et al. (2017), a research

developed, in which a scale was created to measure

computational thinking (Román-González et al., 2017; in

Shute et al., 2017), which includes a 28-item scale and

takes about 45min to complete. It focuses on programming

concepts, such as directions and sequences, loops, conditionals,

and simple functions. In addition, there is the taxonomy

created that categorizes the different levels showing how

lesson plans can be designed. The proposed taxonomy

proposes the following main categories, from which

subcategories are derived, to guide future computational

thinking assessment designs:

(a) Data practice; which is composed of data collection,

data creation, data manipulation, data analysis, and

data visualization,

(b) Modeling and simulation, which is composed of the

subcategories; conceptual understanding, testing solutions,

model evaluation, model design, and model building,

(c) Computational problem-solving, which is composed

of solution preparation, programming, tool selection,

solution evaluation, solution development, abstraction,

and debugging,

(d) Systems thinking, which is composed of systematic

investigation, understanding the relationships between

components, multilevel thinking, communication, and

system management.

In the author’s opinion, this seems to be a significant

contribution that goes in the right direction, since it allows

addressing in an orderly manner each of the categories necessary

to learn in computer science, when it is necessary to acquire the

skills of computational thinking.

Moreno-León et al. (2018) worked on a review on

computational thinking as a universal skill, in which they

conclude several things to highlight:

- That the focus should not be placed exclusively on

programming, but on the skills that are developed through

learning to code, specifically computational thinking skills,

- The most effective way to train these computational

thinking skills is through programming,

- It is possible that in the future new and more efficient

mechanisms for developing these skills in students

will flourish.

- There are even authors who argue that programming

could disappear in a few years due to the advances in

artificial intelligence.

- Consequently, we argue that the metaphor for presenting

this movement to the educational community should shift

toward computational thinking as a universal skill that

can foster the learning of subjects and skills across the

elementary and middle school curriculum.

When the most advanced countries in this area are

investigated, European countries appear in the first line, or

rather the European Union, a conglomerate of countries that

advance at an even pace in various areas and especially in

technology and implementation of educational systems that

allow them to be at the forefront in future generations. Thus,

the case of Ireland stands out, just to cite one example, the

case of England, which have been advancing very fast in the

implementation of the teaching of computational thinking in

school. However, progress has also been observed in Latin

American countries, such is the case of a study conducted

by researchers at the Universidad del Cauca Colombia, where

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2022.997222
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Belmar 10.3389/fcomp.2022.997222

Cruz et al. (2013) and their team published a study entitled

“ChildProgramming Process: A Software Development Model

for Kids,” which was aimed at training children at an early age

(8–10 years old) with the concepts and skills of software creation

(agile methodologies), which allowed fostering teamwork and

introducing computational thinking skills.

In 2017, researchers Lockwood andMooney fromMaynooth

University, Ireland, asked a fundamental question about

computational thinking: computational thinking in education,

where does it fit? It should be noted, that in Ireland, computer

science is not yet an assessed subject at state level, such as

mathematics, language, or science. Although steps have been

taken to include it, so far, all that is available to the students

in the curriculum is a short course in programming. While

programming is a very useful skill and one that can be beneficial

to students in a wide variety of careers, it is not the only part

of computer science that is of interest to consider. Although

scholars have not been able to agree on a universal definition,

according to Wing (2006), she gives two visions that define

computational thinking, which are (a) computational thinking

will be fundamental to new discoveries in all fields of endeavor,

and (b) it will be an integral part of early childhood education

(Lockwood and Mooney, 2017).

Furthermore, it should be noted to say the authors,

who thinking computationally, is of enormous benefit to

all disciplines. In Ireland, researchers in the Department of

Computer Science at Maynooth University, designed the PACT

program (PACT is an acronym for Programming Algorithms =

Computational Thinking). The goal was to introduce computer

science to Irish high school students and teachers through

programming and algorithms, with the idea of improving

computational thinking skills in participating students. Now

in its fourth year, the PACT program has been delivered

in over 60 schools and to over 1,000 students. With the

introduction of programming into the curriculum and the

call from administrators and governments to include more

computer science content in schools (Lockwood and Mooney,

2017).

In 2016, the European Commission, specifically the Joint

Research Center (JRC) for policy reporting, published the

paper “Developing computational thinking in compulsory

education—Implications for policy and practice,” which seeks

to shape the implementation of computational thinking in

compulsory education. The document points out that, in

the recent years, computational thinking, which includes

the concepts of coding, programming, algorithmic thinking,

among others, has been promoted as skills that are fundamental

to everyone like numeracy and literacy. At this point,

the questions arise: how can we define computational

thinking as a key twenty-first century skill for schoolchildren;

what are the central features of computational thinking

and its relationship with programming in compulsory

education; how can teachers be trained to effectively integrate

computational thinking into their teaching practice? (Bocconi

et al., 2016).

With respect to the integration of computational thinking

in compulsory education, four important areas emerge for

policy makers and stakeholders to focus on: consolidated

understanding of computational thinking, comprehensive

integration, systemic deployment, and policy support. A

resurgence in the integration of computational thinking and,

more broadly, computer science into compulsory education is

evident, as indicated by the recent wave of curriculum reforms.

In total, eleven countries in Europe have recently completed

a reform process that includes computational thinking and

related concepts. Another seven are currently planning to

introduce computational thinking in compulsory education. In

addition, seven other countries are integrating computational

thinking based on their long tradition in computer science

education, mainly in upper secondary schools. Some of them

are expanding computer science education to include primary

and lower secondary levels (Bocconi et al., 2016).

In 2013, the document “Computing programmes of study:

key stages 1 and 2 National curriculum in England” was

published in England by the Department for Education

for its curriculum. The document states that a high-quality

computational thinking education prepares students to use

computational thinking and creativity to understand and change

the world. Computer science has deep links with mathematics,

science, design, and technology and provides information

about natural and artificial systems. The core of computer

science is computer science, in which students are taught the

principles of information management and computation, how

digital systems work, and how to use this knowledge through

programming. Based on this knowledge, students are equipped

to use information technology to create programs and a variety

of applications (Radin and Hawley, 2013).

In 2017, the education system in England, according

to evidence, shows that computer science education in

the UK is fragmented and fragile. Its future development

and sustainability depends on swift and coordinated action

by governments, industry, and non-profit organizations.

Neglecting opportunities to act could damage both the

education of future generations and economic prosperity as a

nation. The broad subject of computer science, which covers

the three vital areas of computing, has become compulsory

in schools in England for ages 5–16. Students aged 5–14 have

computer science lessons 1 h per week, and some schools

take the opportunity to teach computer science within other

subjects. However, most teachers are teaching an unfamiliar

school subject without adequate support. Moreover, they may

be the only teacher in their school with this task. Governments

need to address a growing shortage of computer science teachers

(Calderon et al., 2017).

On the other hand, Asia has also been given the importance

that the implementation of teaching computational thinking in

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2022.997222
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Belmar 10.3389/fcomp.2022.997222

school should have. An example of this is the progress made

in South Korea, China, and Japan, among others. The case of

Japan, which, although it is a technologized country with 99%

robotized factories in the 1980s, encounters the same problems

as all countries in terms of teaching computer programming in

schools: the shortage of teachers to teach this subject, in addition

to the lack of training in science, In other words, there are

few teachers and these few are not always well-trained to teach

programming, which generates the second floor for students

to achieve the skills of computational thinking. In Japan, the

teaching of computer programming in schools was implemented

in April 2020, and the curriculum requires them to teach it in a

playful way, which further complicates Japanese teachers due to

the lack of research in the field and the absence of didactics in

the teaching of programming (Gougeon and Cross, 2021).

Meanwhile, in South Korea, although computational

thinking education is still in its early stages of nationwide

implementation, there has been some research evidence

supporting the effectiveness of learning programming skills and

related computational thinking skills. Computational thinking

in K-12 contexts, education has been conducted in the areas of

(a) innovating specific pedagogical approaches to computational

thinking, (b) developing assessment tools to measure students’

computational thinking knowledge, skills, and attitudes, (c)

expanding coding education in physical computing and maker

education, and (d) training teachers in computational thinking

skills. Large-scale research revealed that students, teachers,

and parents have positive perceptions about the needs and

effectiveness of software education in schools (So et al., 2020).

A very remarkable case is India, a country with many

inhabitants, with multiple deficiencies in infrastructure, and

education, in addition to a linguistic diversity, within all these

difficulties has been proposed to implement computational

thinking, not only with the idea of leaving and improve the

economic conditions of its inhabitants, but as a tool based on

the skills that will allow it to develop in the XXI century with

the advantage that its population is knowledgeable about new

technologies, and thus providemore job opportunities anywhere

in the world.

The National Computer Science Policy for school education

in India advocates the development of a curriculum model

that would include knowledge enhancement and generic skill

development, focusing on digital literacy. The computer science

education that has been introduced in urban sectors in

India focuses mainly on digital literacy and some computer

programming. The implementation of computer science in the

curriculum has not been easy and has had to go through several

challenges. According to the government reports, India has

more than 1.6 million schools offering K-12 education to 300

million students. The problem is compounded by the fact that

education in the country is administered by two national boards

of education, with each of India’s 29 states having its own board

of education! While the common language of instruction is

English in urban areas, 70% of the population resides in rural

areas where education is conducted in their own local language

(Shah, 2019).

To prepare the students to creatively engage in the

digital age, CSpathshala proposes an activity-based disconnected

computational thinking curriculum for primary and secondary

schools. The computational thinking curriculum is highlighted:

teaching computation without computers, community-created

teaching materials: 200 lessons, no cost to schools, subset

of teaching materials translated into Gujarati, Hindi, and

Marathi (dialects in India), 30,000 schools in Tamil Nadu

learn computational thinking as part of the math curriculum.

This includes 425 residential welfare schools, conducting 90

awareness workshops and training programs, at no cost to the

schools, 5,400 volunteer participants from 2,650 institutions.

With this plan, a light is seen in learning computational thinking

skills, which though seems big, India is bigger with more than

1.4 billion population, but the growth of CSpathshala (https://

cspathshala.org/) is spiraling exponentially (Shah, 2019).

Undoubtedly, other countries are also doing the same, as

seen in the publications of Russia, China, Taiwan, Canada,

the United States, Spain, Brazil, and Colombia, among others.

Even smaller countries such as Chile in Latin America, which

more timidly, only implemented elective courses in the third

and fourth years of secondary school as a first step in the

implementation of the teaching of computational thinking in

school. In Chile, although there is no decisive support from

the State in this area, the Kodea Foundation of Chile has

created a curriculum with didactic material from first grade

to fourth grade, which allows schools to have free access to

everything necessary to incorporate computational thinking at

school (www.ideodigiltal.cl).

Comments on other reviews considered

In 2016, Brackmann et al. conducted a review on

computational thinking entitled “Computational thinking:

Panorama of the Americas” in which he reflects on the impact

of computers in the life of human beings, whose technology

advances exponentially, a pace that unfortunately schools cannot

follow, or at least cannot follow closely, since the development

of the economy around technology encourages its development,

and for schools it is more difficult to follow that pace since

they depend on public policies, where states are much slower

in adapting to changes. The review defines the concept of

computational thinking as the skills of abstraction, critical

thinking, collaboration, and problem-solving, among other

skills. This publication describes an overview of the state of the

art of computational thinking in the Americas, to contextualize

and guide the incorporation of computational thinking in basic

education schools (Brackmann et al., 2016).

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2022.997222
https://cspathshala.org/
https://cspathshala.org/
http://www.ideodigiltal.cl
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Belmar 10.3389/fcomp.2022.997222

In the review made by Hsu et al. (2019), he bases the main

part of his findings on defining and redefining the concept

of computational thinking, but lacks a detailed description of

the skills that compose it, such as those mentioned in the

previous paragraph, and does not touch on the relevance of

such skills being incorporated in the TIMSS test, and that

this will generate an increase in the gap between countries

that have incorporated such knowledge vs. those who have

not yet done so. He mentions Chile as an example, but in

that country, the National Digital Languages Plan is more of

an idea that is still not implemented in 2022, as there are 2

elective courses for 3rd year and 4th year of secondary education,

which schools are not obliged to teach and which in general

are not taught because they do not have teachers. Returning

to the review of Hsu et al. (2019), it does not mention or

inquire how significant it would be to have one or more didactic

strategies for teaching computer programming (scaffolding)

and thereby transition to computational thinking skills such as

abstraction, decomposition, sequencing, algorithmization, and

problem-solving-oriented skills.

It should be noted that the present review is a part of a

larger research, whose main objective is the construction and

validation of a test to be applied in the first year of higher

education with computer science students taking the subject of

introduction to programming with the Python programming

language. Thus, it seems very pertinent to share the results and

conclusions of Tang et al. (2020), which conducted a thorough

review of the assessment of computational thinking. Part of his

results and conclusions indicates that of the studies carried out,

all of them are made for students in elementary and secondary

education, and no dedication to higher education is observed,

which is shared by this author, since of all the articles reviewed

in the total search, which were more than 200, of which 101

articles were reviewed exhaustively, the focus is undoubtedly on

school education rather than at the level of vocational training.

Another aspect that is important to note is that the studies were

conducted in informal education, which undoubtedly affects

student’s performance, since there is not the incentive of formal

education that implies that failing a subject would lead the

student to repeat a course, so the pressure on the student to do

well on the test would be greater, and thus, the results would be

better (Tang et al., 2020).

In the code-centered review conducted by Kite et al. (2021),

they highlight the importance of computational programming

for transitioning to learning computational thinking and

point out that they recognize the historical relationship of

computational thinking with computer science. In the review,

Kite et al. (2021) point out that there are significant gaps in

the conceptualization of computational thinking, highlighting

the teaching of computational thinking and the professional

development of teachers who will be in charge of teaching

computational thinking, which gives rise to the idea on which

new research can be based, highlighting the search for code-

centered skills and the search for skills from interdisciplinary

practices. It is highlighted that of the 80 articles reviewed by

Kité et al. 49% of the published research focused on code,

highlighting specific issues of computational programming,

such as algorithms, abstraction, modularization, debugging,

parallelization, loops, and conditionals (Kite et al., 2021).

The importance of teaching computational thinking through

computational programming has the characteristic of being

a concrete matter, which allows going from the concrete to

the abstract that are the skills of computational thinking. It

is beautiful to see the students who make their first program

that is taught in programming and that only displays by

console the message “hello World,” they feel satisfaction and

feel that they have made their first achievement, and perhaps

without knowing it, they have acquired their first practice

of abstraction. One way to integrate computational thinking

in all students, says Kite et al. (2021), is to incorporate

its teaching in the basic and high school curriculum in a

mandatory way, which helps to mitigate the digital divide

between students, as opposed to making it voluntary, which

will generate students who will have advantages over those

who for some reasons or another prefer other types of

subjects, whether art, history, or craft workshops (Kite et al.,

2021).

Finally, as well as the code-centered review by Kite et al.

(2021), the review by Ogegbo and Ramnarain (2021), which

focuses on the teaching of computational thinking in science

classrooms, stands out. Regarding the conceptualization of

computational thinking, both the articles reviewed by the

author and the systematic reviews all conclude that there

is no agreement on the skills of computational thinking,

a concept that remains under permanent construction and

is redefined as it is applied in different contexts, such as

in the arts, language, or science. It should be noted that

computational thinking has important consequences for the

teaching of science subjects at all levels of education, primary,

secondary, and tertiary or higher, especially now that it has been

incorporated into the TIMSS tests, a situation that will mark

future generations. For Ogegbo, an important result yielded by

his review is the concrete concepts of computational thinking

skills, which would be composed of: (a) “Decomposition”

skill that involves dividing a complex task into smaller parts

into manageable components; (b) “Pattern recognition” which

involves identifying and defining trends within a problem;

(c) “Abstraction,” a skill that involves identifying particular

similarities and differences between comparable problems to

work toward a solution, i.e., understanding the problem in

its timeless dimension and not linked to a particular subject;

(d) “Algorithm design,” which involves the development of

step-by-step guidelines to solve a problem; and “Automation,”

which involves the use of technological tools to mechanize

Frontiers inComputer Science 14 frontiersin.org

https://doi.org/10.3389/fcomp.2022.997222
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Belmar 10.3389/fcomp.2022.997222

the solutions to the problems posed (Ogegbo and Ramnarain,

2021).

It should be noted that both the code-based approach and

the science classroom approach have certain similarities in

terms of applicability, since in the area of science, applications

through the use of code are of greater applicability, which has

a greater tendency to obtain concrete results. Computational

thinking skills are very important for the society of the twenty-

first century, which will allow the generations in formation

to insert themselves in the global world in an advantageous

way and that the new reality of the digital world is a factor

that facilitates life and that the complexity is neutralized by

the new set of skills that computational thinking delivers.

Several aspects in which computational thinking may impact

are that it will increase the gap between those who have

their skills with those who do not have it, in addition to

being voluntary in some countries and mandatory in others,

some will be at an advantage over others, and there is also

the economic gap between the countries of those who have

already implemented it and currently only make improvements,

and those who are still only a topic of discussion that is

very distant.

Economic and employment impact

A diagnosis made in 2017 points out that the emerging

society seen from the technologicalization, is dictated by

algorithms, artificial intelligence, automated processes, and

robots, which impacts the work and the population, a scenario

that does not bring good hopes for those who are not part

of the doings in technology, because the technological era will

bring workers, low wages, and unemployment. This is the

uncertainty of millions of people in the world. The advance

of automation threatens at least 14% of current jobs in the

world, a figure that has been ratified by the OECD for the last

2 years. In total, 14% of jobs in the 36 richest economies in

the world have a high probability of being automated (García,

2018).

A study by McKinsey Global Institute indicates that in

Chile, 3.2 million jobs could be replaced by automated systems

in the next 20 years. In more developed nations such as the

USA, the impact of automation would be 46% of current

employment. But in Mexico, the McKinsey report estimates

that robots and software could do 52% of the work that

exists in that country, while in Peru, the percentage reaches

53%, in Brazil 50% and in Argentina 48%. In the Chilean

case, the report estimates that retail and commerce in general

would save US$9 billion in wages if 51% of the jobs that have

the potential to be automated were replaced; manufacturing

industries would save US$6 billion and the administrative and

public sector would save US$10 billion in wages. Nationally,

the savings in wages would be US$41 billion (Manyika et al.,

2017).

The speed of substitution of human labor by automated

systems is also affected by demographics. On the one hand,

it is expected that by 2050, over one-third of the world’s

population will be over the age of 50, an indicator that only

covered 17.5% of the world’s population in 1950. On the

other hand, according to published analyses, people over 50

years of age have limitations when performing complex tasks

involving technology, being largely surpassed by people of

younger ages. This is consistent with the studies that point to the

conclusion that the older a country’s population is, the greater

the acceleration in the adoption of automated systems. The

latter would explain why, in relative terms, countries such as

the United States and the United Kingdom lag behind Germany,

Japan, and South Korea in industrial robotics (Rivera-Taiba,

2019).

In this work, among other things, we seek to link the

effect of the advance in the implementation of algorithms

as executors of repetitive functions at work, which will leave

out of the labor activity a significant number of jobs and

those who work in them around the world. Thus, jobs such

as accountants, secretaries, cashiers, truck and bus drivers,

warehouse workers, and instructors in various areas will be

the first to lose their respective jobs. Other professions such as

doctors, engineers, architects, and researchers are less feasible

to automate; however, there will also be certain types of

functions of these professionals that will be automated. In

this context, it is important to have adequate training in

information technology to be competitive in the world ahead,

since in the future, there will be two main categories of

jobs: either you are highly specialized or you will have to

dedicate yourself to the area of services such as gardening

or delivery.

Conclusions

At the conclusion of this review, and after having read

and analyzed a multitude of articles, of which dozens of them

correspond to other reviews, the author, as a computer science

engineer, notes that research runs on two separate threads,

on the one hand, the various computer implementations

developed by computer engineers and, on the other hand,

educators, This has generated that in those countries where

the teaching of computational thinking has been implemented

or is in the implementation stage, there is a lack of

trained teachers in computer science to carry out such a

monumental task, and where there are, they are absolutely

insufficient. The concept of computational thinking and the

skills that compose it are still being discussed in education,

whereas computer science publishes multiple applications that

educators do not understand or do not have the tools to

Frontiers inComputer Science 15 frontiersin.org

https://doi.org/10.3389/fcomp.2022.997222
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Belmar 10.3389/fcomp.2022.997222

transfer this knowledge to the new generations through the

educational system.

In the analyzed and compared reviews of Shute et al. (2017),

Moreno-León et al. (2018), Hsu et al. (2019), Li et al. (2020),

Tang et al. (2020), Kite et al. (2021), and Ogegbo and Ramnarain

(2021), among others, coincidences were found in that all the

articles take as initial reference (Wing, 2006) from where the

concept of computational thinking and its skills were mentioned

and defined for the first time. Afterward, there are coincidences

that there is no consensus among researchers regarding the skills

that define computational thinking, and finally, we all agree that

computational thinking is the fundamental skill of the twenty-

first century. As for the differences between the reviews, they are

rather superficial, some spendmore time on qualitative research,

and others on analyzing quantitative research, but no significant

differences are evident.

From the reviews and articles read, the contribution

made by Grgurina (2021) stands out in her work entitled

“Getting the Picture: Modeling and Simulation in Secondary

Computer Science Education,” in whose work she incorporates

the concept of modeling and simulation as foundational skills

of computational thinking, so that it includes formulating

problems, organizing and analyzing data logically, representing

data through models, and automating solutions. Thus, looking

toward school-based training, these skills enhance attitudes

such as: confidence in dealing with complexity, persistence

in working with difficult problems, tolerance for ambiguity,

the ability to deal with open-ended problems, and the

ability to work with others to achieve a common goal and

communicate it. Grgurina describes computational thinking

in terms of its main concepts, such as: data collection,

data analysis, data representation, problem decomposition,

abstraction, algorithms and procedures, automation, modeling,

and simulation.

From the comparisons with the aforementioned reviews,

it stands out that the present review emphasizes the lack of

evaluation instruments at the three educational levels tomeasure

the computational thinking and the inexistence of didactic

strategies to implement the teaching of computational thinking,

in this sense, it will propose in two future publications a didactic

methodology for the teaching of computational programming

and a test to measure its results. It should be borne in mind

that something that is not mentioned in any of the reviews is

that computational programming is the necessary scaffolding

for teaching computational thinking, so it is necessary to

differentiate from those who see both concepts as synonymous,

when in fact, they are two different rungs of the same ladder. The

above implies that it will necessarily be necessary to implement

the teaching of computational programming as a previous step

for students to acquire the skills of computational thinking.

Undoubtedly, the implementation of computational

thinking in the educational system: primary, secondary, and

tertiary, which will prepare future professionals with the skills

of the twenty-first century, is of utmost importance in terms

of its progressive impact on the future of humanity. It should

be noted that in countries where computational thinking is

being implemented in schools, it has become a fundamental

policy, so that these countries are the ones who will dominate

the economy, technology and manage advanced knowledge.

Moreover, these countries will train the professionals who

will occupy the best jobs, those with STEM characteristics,

essentially engineers, doctors, and scientists, among others.

In addition, it should be noted that these countries are

mainly located in Europe, Asia, Oceania, and North America.

Unfortunately, the countries of the continents of Africa and

Latin America are not in this group of advanced countries, with

the exception of some, such as Brazil, Colombia, Peru, Chile,

and Argentina, among others, whose universities are working

on projects aimed at implementing computational thinking

in schools. This leads to the conclusion that in the coming

decades, the socioeconomic differences between rich and poor

countries will become even more extreme. Thus, the poorest

countries will see their development possibilities diminish and

their economies will continue to be based on mineral extraction

and tourism.

When comparing the progress of countries in the teaching

of computational thinking in schools, it is necessary to see the

progress of the states in public policies that establish this subject

in the compulsory curriculum, as is the case of England in 2013

and the countries of Europe in general since 2016, or other

Asian countries such as Japan, South Korea, and China where

computational thinking is defined as the skills of the twenty-first

century and will be the engine of technological and economic

development. However, in developing countries, such as Latin

America and Africa, although there are several initiatives of

universities in doing research on the teaching of computational

thinking, the states have other priorities, so the issue is not in

the discussion of public policy, but rather, the development of

the teaching of computational thinking is done by particular

initiatives of universities and some other foundation, which

leaves them behind in the race to create and develop new

technologies to deliver better employment alternatives and thus

greater welfare to the population.

However, there is still hope for those countries where large

investments in technology are arriving and leading to the hiring

of many professionals and technicians in the technological area,

which has prompted the updating of the educational system,

at least in the interest of meeting the growing demand for

advanced professionals, which begins to turn the machinery of

the state, which slowly show proposals for the implementation of

computational thinking in schools. An example of a European-

rich country is England, which implemented the teaching of

computational thinking in schools since 2013.

It is also diagnosed that in the coming years, there will

be a high number of jobs that will be automated, jobs such

as supermarket cashiers, bank tellers, truck and bus drivers,

Frontiers inComputer Science 16 frontiersin.org

https://doi.org/10.3389/fcomp.2022.997222
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Belmar 10.3389/fcomp.2022.997222

warehouse operators, and accountants, and all those that

perform repetitive tasks and that constitute activities that can

be performed by an algorithm. This will inevitably lead to

massive job losses of 3 to 4 million in the case of Chile in the

next 10–20 years, and in developed countries where, although

the impact will be less, it will also cause greater social and

economic instability.

A guideline proposed to countries that have not yet begun

the process of implementing the teaching of computational

thinking in schools should be the following:

- Put the subject in the public discussion.

- Governments should seek the support of experts in

technology and education to make a diagnosis of

the situation.

- Implement an educational reform that incorporates

the teaching of computer programming in

compulsory education.

- That teacher-training universities update their curricula to

incorporate the teaching of programming languages such

as Scratch, Alice, and Python, so that they can successfully

implement the new challenges.

- That industry becomes a part of the educational process

by investing in software development and educational

robotics in order to push the teaching process in an

accelerated manner.

Finally, in the language subject, Scratch should be learned

to generate animations of the stories they have to read, to

make the subject entertaining and responsive to the children’s

concerns. In natural sciences, some aspects of nanotechnology,

its elements, and how infinitely small things are part of our

natural world should be shown. In history, different levels should

incorporate all the continents, and their history can be recreated

with Scratch or Alice applications, building applications such

as Age of Empires. In the arts, designs should be created with

apps, not working with paintings, which besides being messy,

limit creativity, and move away from the central focus, which

is technology training. Educational robotics and gamification

should be the main branches that collaborate in the training of

future professionals.

The limitations of this review and
recommendations to be made

A study that allows us to know the number

of teachers trained by country, to teach computer

programming and thereby transition to the knowledge of

computational thinking.

A gender study that shows the participation of women in the

world of computational sciences.

A study that makes an inventory of the instruments duly

validated to measure computational thinking at the three

educational levels.

A study that quantifies and shows the didactic strategies that

exist to teach computational programming.

A study of the universities in the world that have

incorporated the teaching of computational thinking in teacher

training curricula.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material, further inquiries

can be directed to the corresponding author.

Author contributions

The author confirms being the sole contributor of this work

and has approved it for publication.

Funding

This research was carried out entirely with our

own resources.

Conflict of interest

The author declares that the research was conducted in

the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Frontiers inComputer Science 17 frontiersin.org

https://doi.org/10.3389/fcomp.2022.997222
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Belmar 10.3389/fcomp.2022.997222

References

Adell-Segura, J., Llopis-Nebot, M. Á., Esteve-Mon, F. M., and Valdeolivas-
Novella, M. G. (2019). The Debate on Computational Thinking in Education.
Castello: RIED; Iberoamerican Journal of Distance Education.

Alyahya, D., and Alotaibi, A. (2019). Computational thinking skills and its
impact on TIMSS achievement: an instructional design approach. Issues Trends
Learn. Technol. 7, 3–19. doi: 10.2458/azu_itet_v7i1_alyahya

Angeli, C., and Giannakos, M. (2020). Computational thinking education: Issues
and challenges. Comput. Hum. Behav. 105, 106185.

Angeli, C., and Valanides, N. (2020). Developing young children’s
computational thinking with educational robotics: an interaction effect
between gender and scaffolding strategy. Comp. Hum. Behav. 105, 105954.
doi: 10.1016/j.chb.2019.03.018

Atas, M. (2015). The reduction of speaking anxiety in EFL learners through
drama techniques. Procedia Soc. Behav. Sci. 176, 961–969.

Bain, C., Dabholkar, S., and Wilensky, U. (2020). Confronting frame alignment
in CT infused STEM classrooms. CoolThink@ JC 91: 91–94.

Bergner, N., Röpke, R., Schroeder, U., and Krömker, D. (2018).
Hochschuldidaktik der Informatik HDI. Berlin: University Press.

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., and Engelhardt, K. (2016).
Developing Computational Thinking in Compulsory Education – Implications for
Policy and Practice; EUR 28295 en JRC: European Union.

Brackmann, C., Barone, D., Casali, A., Boucinha, R., and Muñoz-
Hernandez, S. (2016). “Computational thinking: panorama of the
Americas,” in 2016 International Symposium on Computers in
Education (SIIE) (Salamanca: IEEE), 1–6. doi: 10.1109/SIIE.2016.775
1839

Brackmann, C., Román, M., Robles, G., Moreno, J., Casali, A., and Barone,
D. (2017). “Development of computational thinking skills through unplugged
activities in primary school,” in Proceedings of the 12th Workshop on Primary and
Secondary Computing Education (Madrid), 65–72. doi: 10.1145/3137065.3137069

Brown, N., and Wilson, G. (2018). Ten quick tips for teaching programming.
PLoS Comput. Biol. 14, e1006023. doi: 10.1371/journal.pcbi.1006023

Buitrago, F., Casallas, R., Hernández, M., Reyes, A., Restrepo, S., and
Danies, G. (2017). Changing a generation’s way of thinking: teaching
computational thinking through programming. Rev. Educ. Res. 87, 834–860.
doi: 10.3102/0034654317710096

Calderon, A., Catherine, T., and Crick, T. (2017). An Investigation into
Susceptibility to Learn Computational Thinking in Post-Compulsory Education.
doi: 10.1007/978-3-319-93566-9_14

Carnegie Mellon Center for Computational Thinking. (2010). Available online
at: https://www.cs.cmu.edu/~CompThink/

Cheng, Y., Sun, P., and Chen, N. (2018). The essential applications of educational
robot: requirement analysis from the perspectives of experts, researchers and
instructors. Comput. Educ. 126, 399–416. doi: 10.1016/j.compedu.2018.07.020

Ching, Y., Hsu, Y., and Baldwin, S. (2018). Developing computational thinking
with educational technologies for young learners. TechTrends 62, 563–573.
doi: 10.1007/s11528-018-0292-7

Coppelli, G. (2018). Economic globalization in the 21st century.
Between globalization and de-globalization. Estudios Int. 50, 57–80.
doi: 10.5354/0719-3769.2018.52048

Cruz, S. S. T., Rojas, O. E., Hurtado, J. A., and Collazos, C. A. (2013).
“ChildProgramming process: a software development model for kids,” in
2013 8th Computing Colombian Conference (8CCC) (Armenia: IEEE), 1–6.
doi: 10.1109/ColombianCC.2013.6637535

CSTA Computational Thinking Task Force. (2011). Operational Definition of
Computational Thinking for K-12 Education (Vol. 2013).

da Cruz Alves, N., Von Wangenheim, C., Hauck, J., Borgatto, A.,
and de Andrade, D. (2020). An item response theory analysis of the
sequencing of algorithms & programming concepts. CoolThink@ JC 9, 1–11.
doi: 10.5753/educomp.2021.14466

Daungcharone, K., Panjaburee, P., and Thongkoo, K. (2019).
A mobile game-based C programming language learning: results
of university students’ achievement and motivations. Int. J.
Mob. Learn. Organ. 13, 171–192. doi: 10.1504/IJMLO.2019.0
98184

de Paula, B., Burn, A., Noss, R., and Valente, J. (2018). Playing beowulf:
bridging computational thinking, arts and literature through game-
making. Int. J. Child Comp. Interact. 16, 39–46. doi: 10.1016/j.ijcci.2017.
11.003

Fanchamps, N., Specht, M., Hennissen, P., and Slangen, L. (2020). The Effect
of Teacher Interventions and SRA Robot Programming on the Development of
Computational Thinking.Hong Kong: The Education University of Hong Kong.

Fotaris, P., Mastoras, T., Leinfellner, R., and Rosunally, Y. (2016). Climbing
up the leaderboard: an empirical study of applying gamification techniques to a
computer programming class. Electro. J. e-learn. 14, 94–110.

García, F. (2018). Editorial computational thinking. IEEE Rev.
Iberoam. Tecnol. Aprendizaje Salamanca: University Press. 13, 17–19.
doi: 10.1109/RITA.2018.2809939

Gómez, M., Palacio, L., Manrique, B., Villada, B., and Arbeláez, S. (2019).
“Successful experiences of teaching programming and robotics in elementary and
middle school education,” in 2019 14th Iberian Conference on Information Systems
and Technologies (CISTI) (IEEE), 1–6.

González, M. (2015). “Computational thinking test: design guidelines and
content validation,” in Proceedings of EDULEARN 15 Conference (Bogota),
2436–2444.

Gougeon, L., and Cross, J. S. (2021). “Japanese elementary schools’ playful
programming curriculum considerations: readiness, limitations and teacher
training,” in 2021 IEEE International Conference on Engineering, Technology &
Education (TALE) (Wuhan: IEEE), 23–28. doi: 10.1109/TALE52509.2021.9678771

Grgurina, N. (2021). Getting the Picture: Modeling and Simulation in Secondary
Computer Science Education Naples: University Press.

Grover, S., and Pea, R. (2018). Computational thinking: a competency whose
time has come. Comp. Sci. Educ. Perspect. Teach. Learn. Sch. 19:1257–58.
doi: 10.5040/9781350057142.ch-003

Hsu, Y. C., Irie, N. R., and Ching, Y. H. (2019). Computational thinking
educational policy initiatives (CTEPI) across the globe. TechTrends 63, 260–270.
doi: 10.1007/s11528-019-00384-4

Huang, P., and Hwang, Y. (2013). An exploration of EFL learners’ anxiety and
e-learning environments. J. Lang. Teach. Res. 4, 27.

Jiménez Toledo, J. A., Collazos, C. A., and Ortega, M. (2021). discovery model
based on analogies for teaching computer programming. Mathematics 9, 1354.
doi: 10.3390/math9121354

Khenner, E. (2019). Introduction to informatics as part of the university-
wide general education curriculum. Международный научный журнал

«Современные информационные технологии и ИТ-образование»

15, 805–814. doi: 10.25559/SITITO.15.201904.805-814

Kite, V., Park, S., and Wiebe, E. (2021). The code-centric nature of
computational thinking education: a review of trends and issues in
computational thinking education research. Sage Open 11, 21582440211016418.
doi: 10.1177/21582440211016418

Klunnikova, M., Bazhenova, I., Pak, N., and Kirgizova, E. (2020). Developing
students computational thinking with a recursive polydisciplinary approach. J.
Phys. 1691, 012190. doi: 10.1088/1742-6596/1691/1/012190

Kong, S., Hoppe, H., Hsu, T., Huang, R., Kuo, B., Li, K., et al. (2020). Proceedings
of International Conference on Computational Thinking Education 2020. Hong
Kong: The Education University of Hong Kong.

Lee, P., and Low, C. (2020). Implementing a computational thinking curriculum
with robotic coding activities through non-formal learning. CoolThink@
JC 150:150–151.

Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L.
D., et al. (2020). On computational thinking and STEM education. J. STEM Educ.
Res. 3, 147–166. doi: 10.1007/s41979-020-00044-w

Liang, Y., and Hsu, T. (2020). Comparison of the learning behaviors of the third
grader students integrating robots and the computational thinking board game in
Singapore and Taiwan. CoolThink@ JC 47, 47–51.

Lockwood, J., and Mooney, A. (2017). Computational thinking in education:
where does it fit? A systematic literary review. arXiv Preprint arXiv:1703.07659.

Manyika, J., Chui, M., Miremadi, M., Bughin, J., George, K., Willmott, P., et al.
(2017). A future that works: automation. Employ. Product. 148, 1–135.

Master, A., Cheryan, S., Moscatelli, A., and Meltzoff, A. N. (2017). Programming
experience promotes higher STEMmotivation among first-grade girls. J. Exp. Child
Psychol. 160, 92–106. doi: 10.1016/j.jecp.2017.03.013

McLaren, B., Adams, D., Mayer, R., and Forlizzi, J. (2017). A computer-based
game that promotes mathematics learningmore than a conventional approach. Int.
J. Game Based Learn. 7, 36–56. doi: 10.4018/IJGBL.2017010103

Moreno-León, J., Román-González, M., and Robles, G. (2018). “On
computational thinking as a universal skill: a review of the latest research on

Frontiers inComputer Science 18 frontiersin.org

https://doi.org/10.3389/fcomp.2022.997222
https://doi.org/10.2458/azu_itet_v7i1_alyahya
https://doi.org/10.1016/j.chb.2019.03.018
https://doi.org/10.1109/SIIE.2016.7751839
https://doi.org/10.1145/3137065.3137069
https://doi.org/10.1371/journal.pcbi.1006023
https://doi.org/10.3102/0034654317710096
https://doi.org/10.1007/978-3-319-93566-9_14
https://www.cs.cmu.edu/~CompThink/
https://doi.org/10.1016/j.compedu.2018.07.020
https://doi.org/10.1007/s11528-018-0292-7
https://doi.org/10.5354/0719-3769.2018.52048
https://doi.org/10.1109/ColombianCC.2013.6637535
https://doi.org/10.5753/educomp.2021.14466
https://doi.org/10.1504/IJMLO.2019.098184
https://doi.org/10.1016/j.ijcci.2017.11.003
https://doi.org/10.1109/RITA.2018.2809939
https://doi.org/10.1109/TALE52509.2021.9678771
https://doi.org/10.5040/9781350057142.ch-003
https://doi.org/10.1007/s11528-019-00384-4
https://doi.org/10.3390/math9121354
https://doi.org/10.25559/SITITO.15.201904.805-814
https://doi.org/10.1177/21582440211016418
https://doi.org/10.1088/1742-6596/1691/1/012190
https://doi.org/10.1007/s41979-020-00044-w
https://doi.org/10.1016/j.jecp.2017.03.013
https://doi.org/10.4018/IJGBL.2017010103
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

Belmar 10.3389/fcomp.2022.997222

this ability,” in 2018 IEEE Global Engineering Education Conference (EDUCON)
(Santa Cruz de Tenerife: IEEE), 1684–1689. doi: 10.1109/EDUCON.2018.8363437

Ogegbo, A. A., and Ramnarain, U. (2021). A systematic review of
computational thinking in science classrooms. Stud. Sci. Educ. 58, 203–230.
doi: 10.1080/03057267.2021.1963580

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann,
T. C., Mulrow, C. D., et al. (2021). The PRISMA 2020 statement: an
updated guideline for reporting systematic reviews. Int. J. Surg. 88, 105906.
doi: 10.1016/j.ijsu.2021.105906

Paucar-Curasma, R., Villalba-Condori, K., Arias-Chavez, D., Le, N. T., Garcia-
Tejada, G., and Frango-Silveira, I. (2022). Evaluation of computational thinking
using four educational robots with primary school students in Peru. Educ. Knowl.
Soc. 23, e26161. doi: 10.14201/eks.26161

Pellas, N., and Vosinakis, S. (2018). The effect of simulation games on learning
computer programming: a comparative study on high school students’ learning
performance by assessing computational problem-solving strategies. Educ. Inform.
Technol. 23, 2423–2452. doi: 10.1007/s10639-018-9724-4

Pérez, D., Hijón, R., Bacelo, A., and Pizarro, C. (2020). Can computational
thinking be improved by using a methodology based on metaphors and scratch
to teach computer programming to children?. Comp. Hum. Behav. 105, 105849.
doi: 10.1016/j.chb.2018.12.027

Pérez, D., Hijón, R., and Martín, M. (2018). A methodology proposal based
on metaphors to teach programming to children. IEEE Rev. Iberoam. Tecnol.
Aprendizaje 13, 46–53. doi: 10.1109/RITA.2018.2809944

Portnoff, S. (2018). The introductory computer programming course is first and
foremost a language course. ACM Inroads 9, 34–52. doi: 10.1145/3152433

Psycharis, S., Kalovrektis, K., and Xenakis, A. (2020). A conceptual framework
for computational pedagogy in STEAM education: determinants and perspectives.
Hellenic J. STEM Educ. 1, 17–32. doi: 10.51724/hjstemed.v1i1.4

Radin, B. A., and Hawley, W. D. (2013). The Politics of Federal Reorganization:
Creating the US Department of Education.Washington: Elsevier.

Repenning, A. (2017). Moving beyond syntax: lessons from 20 years
of blocks programing in AgentSheets. J. Vis. Lang. Sent. Syst. 3, 68–91.
doi: 10.18293/VLSS2017-010

Rivera-Taiba, T. (2019). Effects of automation on employment in Chile. J. Econ.
Anal. 34, 3–49. doi: 10.4067/S0718-88702019000100003

Rojas, A., and García, F. J. (2020). Assessment of computational thinking for
learning computer programming in higher education. J. Dist. Educ. 20, 1–36.
doi: 10.6018/red.409991

Román-González, M., Pérez-González, J., and Jiménez-Fernández, C. (2017).
Which cognitive abilities underlie computational thinking? Criterion validity of
the Computational Thinking Test. Comput. Hum. Behav. 72, 678–691.

Seow, P., Wadhwa, B., Lim, Z., and Looi, C. (2020). Towards Using
Computational Modeling in Learning of Physical Computing: An Observational
Study in Singapore Schools Singapore: University Press.

Shah, V. (2019). CSpathshala: bringing computational thinking to schools.
Commun. ACM 62, 54–55. doi: 10.1145/3343445

Sharma, K., Papavlasopoulou, S., and Giannakos, M. (2019). Coding games
and robots to enhance computational thinking: how collaboration and
engagement moderate children’s attitudes? Int. J. Child Comp. Interact. 21,
65–76. doi: 10.1016/j.ijcci.2019.04.004

Shute, V. J., Sun, C., and Asbell-Clarke, J. (2017). Demystifying
computational thinking. Educ. Res. Rev. 22, 142–158. doi: 10.1016/j.edurev.2017.
09.003

So, H. J., Jong, M. S. Y., and Liu, C. C. (2020). Computational thinking education
in the Asian Pacific region. Asia Pac. Educ. Res. 29, 1–8. doi: 10.1007/s40299-019-0
0494-w

Souza, I., Andrade, W., and Sampaio, M. (2019). “Analyzing the effect of
computational thinking on mathematics through educational robotics,” in 2019
IEEE Frontiers in Education Conference (FIE) (Covington, KY: IEEE), 1–7.

Tang, X., Yin, Y., Lin, Q., Hadad, R., and Zhai, X. (2020).
Assessing computational thinking: a systematic review of empirical
studies. Comput. Educ. 148, 103798. doi: 10.1016/j.compedu.2019.1
03798

Topalli, D., and Cagiltay, N. (2018). Improving programming skills
in engineering education through problem-based game projects with
scratch. Comput. Educ. 120, 64–74. doi: 10.1016/j.compedu.2018.
01.011

Vallance, M., and Towndrow, P. (2016). Pedagogic transformation, student-
directed design and computational thinking. Pedagogies Int. J. 11, 218–234.
doi: 10.1080/1554480X.2016.1182437

Wing, J. (2006). Computational thinking. Commun. ACM 49, 33–35.
doi: 10.1145/1118178.1118215

Wing, J. (2011). Research notebook: computational thinking—what and why.
Link Magaz. 6.

Wu, L., Looi, C., Multisilta, J., How, M., Choi, H., Hsu, T., et al. (2020). Teacher’s
perceptions and readiness to teach coding skills: a comparative study between
Finland, mainland China, Singapore, Taiwan, and South Korea. Asia Pac. Educ.

Res. 29, 21–34. doi: 10.1007/s40299-019-00485-x

Yi, L., and Ting, H. (2020). “Effects of using mobile phone programs to control
educational robots on the programming self-efficacy of the third grade students,”
in Proceedings of International Conference on Computational Thinking Education.
p. 31–35.

Zhang, K., Chen, X., and Wang, H. (2019). “Research on the mixed-learning
model and the innovative talent cultivation mechanism based on computational
thinking,” in Recent Developments in Intelligent Computing, Communication and
Devices (Singapore: Springer), 59–65. doi: 10.1007/978-981-10-8944-2_8

Zhou, T., and Hsu, T. (2020). Learning behaviors analysis of the six grader
students integrating educational robots with the computational thinking board
game. CoolThink@ JC 144, 144–148.

Frontiers inComputer Science 19 frontiersin.org

https://doi.org/10.3389/fcomp.2022.997222
https://doi.org/10.1109/EDUCON.2018.8363437
https://doi.org/10.1080/03057267.2021.1963580
https://doi.org/10.1016/j.ijsu.2021.105906
https://doi.org/10.14201/eks.26161
https://doi.org/10.1007/s10639-018-9724-4
https://doi.org/10.1016/j.chb.2018.12.027
https://doi.org/10.1109/RITA.2018.2809944
https://doi.org/10.1145/3152433
https://doi.org/10.51724/hjstemed.v1i1.4
https://doi.org/10.18293/VLSS2017-010
https://doi.org/10.4067/S0718-88702019000100003
https://doi.org/10.6018/red.409991
https://doi.org/10.1145/3343445
https://doi.org/10.1016/j.ijcci.2019.04.004
https://doi.org/10.1016/j.edurev.2017.09.003
https://doi.org/10.1007/s40299-019-00494-w
https://doi.org/10.1016/j.compedu.2019.103798
https://doi.org/10.1016/j.compedu.2018.01.011
https://doi.org/10.1080/1554480X.2016.1182437
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1007/s40299-019-00485-x
https://doi.org/10.1007/978-981-10-8944-2_8
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Review on the teaching of programming and computational thinking in the world
	Introduction
	Contextualization
	Teaching of computer programming

	General objective and research questions
	Method
	Search terms and databases consulted
	Selection of articles

	Results: The main research
	Contextualization
	Computational thinking—Research and concepts
	The results will be shown in the following two categories
	Lines of research in programming education applied

	Pedagogical and didactic elements
	Pedagogical and didactic practices

	Discussion and implementation of programming education
	Main considerations
	Comments on other reviews considered
	Economic and employment impact

	Conclusions
	The limitations of this review and recommendations to be made

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

