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Nine insights from internet
engineering that help us
understand brain network
communication

Daniel J. Graham*

Department of Psychological Science, Hobart and William Smith Colleges, Geneva, NY,
United States

Philosophers have long recognized the value of metaphor as a tool that

opens new avenues of investigation. By seeing brains as having the goal

of representation, the computer metaphor in its various guises has helped

systems neuroscience approach a wide array of neuronal behaviors at small

and large scales. Here I advocate a complementary metaphor, the internet.

Adopting this metaphor shifts our focus from computing to communication,

and from seeing neuronal signals as localized representational elements to

seeing neuronal signals as traveling messages. In doing so, we can take

advantage of a comparison with the internet’s robust and e�cient routing

strategies to understand how the brain might meet the challenges of network

communication. I lay out nine engineering strategies that help the internet

solve routing challenges similar to those faced by brain networks. The internet

metaphor helps us by reframing neuronal activity across the brain as, in part, a

manifestation of routing, which may, in di�erent parts of the system, resemble

the internet more, less, or not at all. I describe suggestive evidence consistent

with the brain’s use of internet-like routing strategies and conclude that, even

if empirical data do not directly implicate internet-like routing, the metaphor

is valuable as a reference point for those investigating the di�cult problem of

network communication in the brain and in particular the problem of routing.

KEYWORDS

computer metaphor, internet metaphor, systems neuroscience, theoretical

neuroscience, packet switching, brain dynamics, network communication,
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Metaphor consists in giving the thing a name which

belongs to something else.

Aristotle, Poetics xxi, tr. Bywater

Mathematics is the art of giving the same name to

different things.

Henri Poincaré, The Future of Mathematics, 1908

Introduction

Philosophers have long recognized that the development of

a new metaphor can encourage researchers to take unorthodox

ideas seriously (Bartha, 2022). In the sciences, new metaphor

can spur theorists to build classes of models different from those

that already exist. Each newmetaphor succeeds not by capturing

the exact workings of the analogized system but rather by

giving us a new vision of some otherwise unapproachable entity.

Theory in the physical sciences has been especially reliant on

insights from a succession of metaphors, each an improvement

on its predecessor: the container space metaphor for the physical

universe gives way to Einstein’s fabric of space time.

Metaphor is just as important if not more so to biological

theory. Its foundational idea, Darwinian evolution, was

crystalized in the metaphor of a tree. Darwin’s tree of life was not

literally a tree—all life does not spring forth from a single plant.

Instead, the metaphor brings together several key properties of

the system: rootedness, or the idea that the base of the system

of living organisms on earth has one or a small number of

main roots; divergence, or the idea that branches spread out

and bifurcate, but rarely inosculate (rejoin); and relatedness,

or the historical dependence and elaboration of distal twigs

on proximal branches. Though graphical depictions of various

proposals for the chain of life preceded Darwin, no one before

him had seen the problem in this way. The metaphor has

proven transformative. It remains in common use today even as

knowledge of phylogenetic complexity unknown to Darwin has

accumulated (Quammen, 2018).

We needed a metaphor for the brain, and
“the computer” has served us well

As attested by the present Research Topic articles—

and indeed most issues of any research journal in the

neurosciences—researchers rely on the computer metaphor

when studying the brain, even if they disagree about its

formulation and in what way it is useful (e.g., Richards and

Lillicrap, 2022). Historically, McCulloch and Pfeiffer (1949)

saw single neurons as a transistor in a “multi-gridded”

brain. Most prominently today, the metaphor inheres when

neuronal “representation” is seen as having the effect of

generating elements of Turing machine symbols and operations

(Richards and Lillicrap, 2022), or when neuronal tuning

properties are seen to serve as elements in a particular code (e.g.,

Olshausen and Field, 1996). One thing different instantiations

of the computer metaphor seem to have in common is that

they see things from the point of view representational elements

(see also Poldrack, 2021; Anderson and Champion, 2022; Brette,

2022; Hipólito, 2022; John, 2022). In this view, activity in a

given neuron embodies an act of representation in one form or

another (see e.g., Baker et al., 2022). A given pattern of activity in

neurons and/or across neuronal populations is seen to indicate

the brain’s invocation of a particular coding element (e.g., for

visual data, as a basis function, or as the features in some layer of

a convolutional neural network).

The “brain-as-representation machine” metaphor is also

made visible in works such as Gidon et al. (2022). These

authors propose a thought experiment regarding the nature

of consciousness and ask whether “replay” of neuronal signals

via external means is equivalent to an identical endogenous

experience. Whatever one thinks about the thought experiment,

it assumes brain function consists only of representational

processes, to the point where the authors illustrate the

procedure of the thought experiment with cartoon “play” and

“record” icons.

This view concretizes a particular understanding of the

brain’s goals, and facilitates the importation of ready insights,

tools, and methods from other fields, especially mathematics,

to attack the difficult problem of understanding the purpose

and meaning of neuronal signals. This effort has propelled the

field through a period of rapid advances in the 20th and 21st

centuries (Cobb, 2020; Lindsay, 2021). The metaphor helped

identify a problem to be solved, and offered a range of more

and less literal implementations to consider. Even as the limits

of the metaphor are probed, it retains value as an impetus and

sometimes a foundation for more precise understanding.

A new metaphor: The internet

As useful as the representational metaphor is, it cannot

capture all system goals when the system is as complex as

the brain. Brains instantiate many goals. For this reason, not

all signals extracted from the brain should necessarily be seen

to serve the goal of representation. Here I argue for another

class of metaphors that we can invoke in addition to other

metaphors: the internet (Danilova and Mollon, 2003; Graham

and Rockmore, 2011; Oka et al., 2015; Graham, 2021).

The internet and the brain are clearly different, just as

physical computers, and indeed Turing machines, are different

from the brain. But, taking inspiration from the history of

computational neuroscience and its metaphorical framework,

we can profit from considering the conceptual infrastructure

for communication on the internet as a point of reference to

the problem space of network communication in the brain.
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This can help us determine which neuronal signals relate to

communication and which to representation, and in what way

representation and communication relate to each other.

If neurons compute, there is of course a superficial

correspondence between the brain as a whole and the

internet, since both systems involve the networked linkage

of many localized computational units. But one can’t simply

wire computers together and expect them to communicate

reliably. Even the simplest computer networks of the Web

1.0 era required “phenomenally complex” network engineering

(Meyers, 2004). A comprehensive and cohesive conceptual

framework is needed to make it work.

In adopting the internet metaphor, we attempt to see

the brain from the point of view of messages, rather than

representational elements. In neuronal terms, this shift implies a

consideration not only of how neurons relate to environmental

inputs and behavioral outputs—“outside-in neuroscience”—

but especially a consideration of how neurons relate to each

other—an “inside out” approach (Buzsáki, 2019; Fields et al.,

2022; Mayner et al., 2022). More specifically, the goal is to

understand how the brain’s vast and interconnected network of

elements organizes message passing within itself by examining

a variety of possible schemes for communication (Graham

et al., 2020). This approach is consonant with other integrative

conceptions of brain function such as neural re-use (Steriade,

2004; Anderson, 2010), neuronal recycling (Dehaene, 2005),

computational flexibility (Pessoa et al., 2019), and emergence

(e.g., Varley and Hoel, 2022), among others, and can be seen as

a way to bring these related proposals together under a common

and more concrete framework.

Historically, the goal of understanding network

communication was an initial impetus for the cybernetics

movement and has antecedents going back at least to Spencer

(1896). Pavlov (1927) and Sherrington (1947) highlighted the

problem as well, in part by making a comparison with telephone

and rail networks. But the advent of the modern internet in the

second half of the twentieth century, based on the conceptual

underpinning of packet-switched networking, transformed

understanding of distributed network communication. This

development had ramifications far and wide, and brain science

soon took notice. Just ahead of the launch of NSFNet, Poggio

(1984) had begun to sketch out a fundamental role for routing

in the brain, using the existing ARPANET’s packet-switched

routing system as an analogy. Since that time, others have built

models of routing on brain networks, though such ideas do

not always explicitly reference the internet. These include the

dynamic routing model (Olshausen et al., 1993) and the notion

of routing by synchrony (also called communication through

coherence: Fries, 2005; Mishra et al., 2006; Nádasdy, 2010), with

additional routing-based insights being offered by Wolfrum

(2010) and Navlakha et al. (2018), among others. The present

work is an attempt to unify and advance these investigations via

a more systematic examination of the characteristics of effective

routing, and to point out some of the challenges inherent in

network communication. Of particular importance is how the

internet flexibly deals with interacting signals that make use of

shared resources.1

What is routing?

Routing systems govern how messages travel among nodes

that are connected by links. Internet protocol embodies one

routing strategy, while other strategies include those underlying

postal and traditional telephone systems. Routing is necessary

when communicating nodes are separated in space by distances

much larger than the size of a node, and when nodes are not

all directly connected to one another. As such, routing requires

a degree of mutual trust among nodes and a preparedness for

faults and errors.

Though it is implemented locally, routing allows nodes

across the network to select different targets across the network

at will (Graham, 2014). Routing presumes that some nodes can

receive messages over multiple incoming edges and transmit

them over multiple outgoing edges, based on some rules or

algorithms. In the case of converging inputs, routing rules

arbitrate among messages arriving on different incoming edges.

When outgoing edges diverge, routing serves to direct messages

on outgoing edge(s). Routing thus serves to manage congestion

and enable flexibility in message passing.

Routing strategies become irrelevant if the number of

incoming and outgoing edges at all nodes is the same and

messages arriving at a node on edge a always leave on edge b.

However, the term “node” in this case loses its meaning. Each

path of incoming and outgoing edges through the node can be

simplified in a network description as a single edge, and the node

and indeed the network as such disappears.

Routing processes in the brain

While brains can manage message flow by reorganizing

connectivity (e.g., Fauth and Tetzlaff, 2016), this process is too

slow to direct neuronal signals over millisecond, second, and

minute timescales. Even if changes in network structure do alter

message flow, routing processes are still necessary to achieve

reliable, selective communication. Thus, if it is at all sensible

to describe brains as networks composed of nodes and edges,

then we need to consider how to find and execute paths on an

essentially fixed network, and how signal interactions might be

managed in brains like ours that have no central controller.

1 Others have noted additional metaphorical links to how applications

on the internet, such as the World Wide Web, organize distributed

information (Varela et al., 2001; Gri�ths et al., 2007). However, these

applications do not relate to routing per se, which is the focus of the

current paper.
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What evidence is there that brains need to perform routing

of the kind described here? Though directmeasurement of signal

flow over structurally identified neuronal networks is not yet

robustly achievable, there are many levels of organization where

the need for routing is apparent, and where suggestive evidence

of routing processes has been found.

In terms of brain region structural connectivity, there is

clearly the possibility of routing, even if it is not normally

described in this way. Treating regions as nodes, with messages

incoming and outgoing along white matter tracts, signals arising

in a given region—say V1—can be sent via axons originating

in layer 2/3 or 4 directly to other regions (say V2), or along

projections via the thalamus to other cortical regions (with

potential for modulation of these signals by the cortical target),

or to thalamus and back to a different part of V1, or to other

cortical areas, and then on to propagate to other destinations

(see e.g., Reichova and Sherman, 2004; Anderson and Martin,

2016). Routing in this core of the network can happen very

quickly: signals can be relayed on round-trips between thalamus

and cortex in as little as 9 milliseconds (Briggs and Usrey,

2007). Though white matter signals may arrive in structurally

segregated parts of a region, they stand a good chance of

interaction given the high interconnectivity within regions, and

therefore appear subject to some system of routing.

Brain imaging studies have given functional indications

of routing at the regional level. In humans, Cole et al.

(2013), found evidence that frontal and parietal areas flexibly

communicate with different modalities as well as other systems

(e.g., motor) at different times. Gerraty et al. (2018) found

evidence that striatal nuclei can selectively engage different

cortical targets in different behavioral contexts. Mechanisms

that allow this kind of routing may involve synchronization of

subthreshold oscillations between or among areas (Singer, 1999;

Fries, 2005; Womelsdorf et al., 2007; Nádasdy, 2010; Gisiger

and Boukadoum, 2011; Palmigiano et al., 2017; Javadzadeh

and Hofer, 2021; Boroujeni and Womelsdorf, 2022; Sakalar

et al., 2022). Oscillatory mechanisms may also contribute to

routing functions within regions (e.g., communication between

subpopulations in V1; Gray et al., 1989).

At the level of single neurons, the ability to route or

“steer” messages on different paths has long been posited

for single neurons (Waxman, 1972; Scott, 1977). Several

single neuron-level cortical mechanisms have recently been

observed that could dynamically manage incoming messages.

For example, input selection may be partly shaped by

exclusive-or (XOR) gating at dendrites (Gidon et al., 2020)

or via other dendritic gating mechanisms (Steriade and

Paré, 2007; Gollisch and Meister, 2010; Oz et al., 2021).

Steering via axon gating is also possible given considerable

axonal branching in cortex (Winnubst et al., 2019) which

has long been suspected to allow transmission control at

branch points. Axonal mechanisms of routing could also

involve axon-axon interactions (e.g., Epsztein et al., 2010).

Other mechanisms that could perform routing at the single

neuron level have been suggested such as ephaptic interactions

(Sheheitli and Jirsa, 2020); glia-mediated synapses (Möller

et al., 2007); and local spreading of neuroendocrine molecules

(Bargmann and Marder, 2013). Probabilistic modeling of signal

transmission among four neurons in hippocampus provides

suggestive evidence consistent of a highly flexible capacity

for routing in the brain (Nádasdy et al., 1999), though

this study’s results can be interpreted in other ways; see

Section Introduction and Box 1 for a detailed discussion of

this study.

To integrate and understand how these kinds of

neurobiological mechanisms may be deployed to perform

routing, it is helpful to consider the strategies and goals that led

to the construction of the modern internet. I offer nine insights

that helped make the modern internet possible and begin to

apply these ideas to the brain. The goal is to move toward

more concrete models and hypotheses, though these are yet to

be developed.

Nine insights from internet engineering applied
to network communication in the brain

Internet routing protocol specifies communication

procedures and standards across essentially all modern

computer and mobile device networks. However, the internet

is defined not so much by its physical implementation in

linkages among devices but rather as a set of rules governing

the treatment of messages. The core framework for internet

communications is the open systems interconnection (OSI)

model. The OSI model is not a theory rooted in basic

mathematics or physics. Rather, it comprises two broad

branches: (1) a conceptual architecture for overall engineering

design to route messages successfully and (2) a hierarchy of

protocol standards. The simplified “layers” of the OSI protocol

model are briefly summarized in Figure 1.

The design goals of the OSI model and their implementation

on the modern internet are especially relevant for the

study of processes of routing in the brain, or what

might be called “communicatory neuroscience.” The

following sections highlight strands of neurobiological

evidence that are suggestive of—but do not verify—

neuronal implementations of sophisticated routing

strategies in the mammal brain; two lines of evidence are

examined in more detail and framed as interrogatives in

Boxes 1, 2.

Insight 1: Routing must be flexible

The internet’s flexibility is its central goal. In terms of

function, any sender and receiver, no matter their degree

of separation on the vast network, can communicate at will
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FIGURE 1

A simplified conceptual design of the internet protocol stack,
based on the open systems interconnection (OSI) model.
Network topology determines the passage of messages across
the network between hosts. The flow of data across the network
is organized into conceptual layers. A message originates in the
application layer and descends by way of the transport layer and
internet layer to a physical layer link (e.g., wire or fiber-optic
cable). At intermediary routers, messages ascend only to the
internet layer, which plans out the message’s forward route. The
message then returns to the physical layer for onward travel.
This diagram omits the presentation layer and the session layer,
which are less relevant for our purposes, and can be seen as part
of the application layer.

with each other, as long as a limited set of protocol is

followed. Crucially, flexible communication is delivered over

shared resources. As Danilova and Mollon (2003) observe,

“The essential feature of the Internet is that it eliminates

the need for a dedicated cable between any particular

pair of computers that need to communicate.” Flexibility

is needed not only in who communicates with whom, but

also what path messages take once targets are chosen (see

Insight 2) and what kinds of information nodes exchange

(Insight 5). Achieving the overarching goal of flexibility shapes

all other features, and these features are described in the

remaining sections.

Flexibility is similarly fundamental to the brain. Full

interconnectivity is impossible: in the human brain, it would

require a 20 km-wide head (Nelson and Bower, 1990). Moreover,

the behaviors and tasks brains need to accomplish in the world

and the brain’s network infrastructure strongly suggest flexible

control of information flow (Kreiter, 2020; Safron et al., 2022).

The most well-developed models of neuronal mechanisms

for this kind of flexibility relate to perceptual invariances

(Olshausen et al., 1993; see also Wiskott, 2006) and attention

(e.g., Mishra et al., 2006) but other “outside-in” functions like

flavor perception, decision making, reasoning, problem-solving,

sociality, planning, language, creativity, and many others also

plainly require flexible management of information flow. The

brain’s routing strategies must support the accomplishment

of highly varied tasks based on highly varied inputs, and

do so on a network structure that is fixed in the short

term. To take one example, it is possible for the brain to

extract different information from the same scene or context

depending on one’s goal (Günseli and Aly, 2020). Likewise,

decision making, whether modeled as evidence accumulation

in frontal neurons (Gold and Shadlen, 2007), or as some other

“choosing” process, must include delivery of chosen outputs

to distinct neuronal subsystems along paths that were equally

viable before the decision was “made.” Flexibility may also

help the brain to reroute signals around focal lesions without

growing new connections (Zalesky et al., 2007; Fornito et al.,

2015).

From an “inside-out” perspective, flexibility is suggested

by the evidence noted above of selective targeting at the

regional level and by the fact that there are numerous short

paths between most pairs of regions (considered further

in the next section). At the single cell level, suggestive

but not conclusive evidence for flexible steering of signals

comes from the in vivo electrophysiological study of

Nádasdy et al. (1999) discussed in Box 1. However, tracing

signal propagation across neuronal networks with known

connectivity, which could provide more conclusive evidence of

flexible routing, remains an unsolved problem in neuroscience

(see Box 1).

Insight 2: Routing should take
advantage of network structure

The founders of the modern internet saw that network

topology and the design of routing protocol were inextricably

linked. The two key innovations that led to the internet—

distributed network architecture and packet-based protocol—

were conceived in tandem by Baran (1964); see also

Boehm and Baran (1964).2 I will deal with the effects of

network architecture first, and consider its packeted nature in

the next section.

Baran realized that a distributed network—one that

compromised between a star-shaped network and a lattice—

would allow short paths between almost any pair of nodes,

2 British researcher Donald Davies made essentially the same two

proposals, also in 1964.
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BOX 1 Evidence for flexible routing in hippocampal circuits?

In Nádasdy et al. (1999), extracellular tetrode recordings were obtained from hippocampal CA1 pyramidal layer neurons in 18 rats during sleep and conditioned

wheel running. Clustering was performed on multi-channel signals to identify four individual neurons. The researchers then used Monte Carlo models to track

temporal patterns of spikes as they appeared to propagate between four hippocampal neurons. In particular, they used shuffling of spike train patterns to identify

patterns of spike timing in different neurons that could not be reasonably explained as chance occurrences. They interpreted these spike trains as messages passed

from neuron to neuron, which allows one to trace their putative paths of propagation, bearing in mind that ground-truth connectivity was not measured. Some of

the results obtained from this analysis are shown in Figure 2.

FIGURE 2

Exchange of spike train messages among four neurons over time in the rat hippocampus during wheel running. Messages are seen to pass among
four neurons, labeled A–D. Colors indicate messages traveling on the same path. Horizontal axis indicates time (0–200ms). Data from Nádasdy
et al. (1999), figure redrawn from Buzsáki (2004).

Interpreting these signal transmissions as messages, as the authors do, single neurons appear to have the ability to direct signals on different paths to the same

or different targets. These patterns of message flow also vary systematically between behavioral conditions (see Figure 4 in Nádasdy et al., 1999). Arrival times of

spike train messages show both short and long delays (latencies), indicating that messages may travel over one or more intermediaries when traveling between the

measured neurons (some delays were over 100 milliseconds). It is important to note that each of the message paths suggested here is not a one-off, but is rather a

path observed at least a dozen times, which suggests that polysynaptic (multi-hop) transmission is reliable. In sum, one interpretation of these data is that the routing

protocol that controls this subnetwork allows all of the following flexible behaviors:

• Sending messages to different destinations.

• Sending messages on different paths to the same destination.

• Sending messages on a given route with a small or large variation in timing.

• All of the above on polysynaptic paths.

• Flexibly changing routing in different behavioral contexts.

As noted above, connectivity was not measured in this study. One certainly cannot rule out the possibility that the observed patterns are artifacts of analysis, or

epiphenomena. It could certainly be the case that cells not recorded from are driving the four cells studied. For example, a given “control” cell could produce a

particular spiking pattern, which could be relayed by four sets of intermediaries that provide different delays such that that pattern appears at its observed targets at

corresponding times. Yet this interpretation would not necessarily invalidate the view that the system is demonstrating flexible routing. Intermediaries would need

to faithfully transmit the control message of the spike train in mostly unaltered form and they would need to “protect” these messages from interference from other

incoming signals, all while being able to change control patterns reliably both within and across behavioral states. For a common control cell to generate different

patterns of delay in the four observed neurons, the intermediaries would need to dynamically change their latencies, and/or selectively direct messages on different

intermediary paths.

Nevertheless, the results of Nádasdy et al. (1999) are ambiguous. More than two decades after this study, it remains very difficult to trace signals as they traverse

multiple nodes of known connectivity in a brain network (see van der Meij and Voytek, 2018; Hodassman et al., 2022). Models that rely on inferring causality

linking separate measurements of structure and activation (e.g., Javadzadeh and Hofer, 2021) can be misleading (see, e.g., Mehler and Kording, 2018; Brette, 2019;

Bruineberg et al., 2021).

But though tracing signal propagation faces great procedural challenges, part of the reason why studies that directly trace signal propagation remain rare may be

that we have not yet fully appreciated the challenges of flexible routing. As a result, we have limited expectations about what neuronal signatures to expect. Often, we

see a neuron’s “job” as participating in a computation or representation, where correlations between predicted patterns of activity and observed activity in a given

context are seen as sufficient evidence that the brain is carrying out the proposed computation. Approaches like Nádasdy et al. (1999), on the other hand, see spike

trains as indications that there are messages to be propagated (see also Luczak et al., 2013; discussed in Insight 4; Grosmark and Buzsáki, 2016). In this view, some

aspect of a spike-based message passed between neurons maintains coherence as it propagates, though its structure may be subject to new transformations as it

travels—analogously to the way an internet data packet is wrapped in different containers at different points in its journey (e.g., frames and flows). Approaches that

build on this insight may lead to advances in our understanding.
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BOX 2 Could thalamo-cortical loops deliver message acknowledgments (ACKs)?

The thalamus lies near the center of the human brain, and appears to play the role of network backbone (see Hilgetag et al., 2016). Under the “higher-order relays”

picture of connections between thalamus and cortex (Sherman and Guillery, 1998, 2001, 2002; see Figure 3), the thalamus contains first-order relays (e.g., lateral

geniculate), which receive inputs from the sensorium (e.g., retina). First-order relays pass those inputs on to first-order cortical targets (e.g., V1), which reciprocate

back to the same area of the thalamus. The thalamus also contains higher-order relays such as the pulvinar, which receive input from first-order cortical territories,

and have connections back to those first-order areas, as well as connections to “higher-order” cortical areas (e.g., V2). In this way, information can travel widely in

the cortex in just a few hops via thalamic relays.

FIGURE 3

A schematic, hypothetical model under which thalamic relays provide ACKs over the “higher-order relays” organization of thalamo-cortical
circuits (Sherman and Guillery, 1998, 2001, 2002). Under the scheme proposed in the current paper, messages containing “content” are sent by
“driver” neurons, while “modulators” return ACK-like messages back to thalamic senders, either directly or by way of the thalamic reticular nucleus.
If the driver’s message is delivered successfully, modulator ACK messages would prevent resending. If a timely ACK is not received, a driver in
thalamus could be triggered to resend the missing message. Note that an ACK sent from cortex to thalamus confirming receipt implicitly confirms
that the message successfully traveled on an earlier leg from cortex to thalamus (since thalamic excitations are seen as signals relayed from
elsewhere), perhaps obviating the need for ACKs on the earlier leg. Figure adapted from Reichova and Sherman (2004).

Given the comparatively large distances traveled between cortex and thalamus and the possibility of spike failure (which is more common in long axons), as well

as other types of message loss or corruption, some system of delivery verification would seem appropriate for this core of the brain network. The conventional idea

that descending connections serve to “adjust the weights” of incoming signals (e.g., as a way to modulate attention) does not explain why long loops to the thalamus

would be required—weights could in principle be adjusted by local circuits in cortex itself, without the cost, delay, and risk of making a long projection back to the

thalamus. Instead, this architecture appears better suited to flexible and verifiable message passing among cortical areas via the thalamus.

Cortico-thalamo-cortical communication in the Sherman and Guillery picture is thought to be mediated by two parallel links that go in opposite

directions: (1) “driver” connections originate in higher-order thalamic nuclei, traveling to higher-order cortical areas (drivers are also considered to

include projections from first-order thalamic relays, such as LGN, to first-order cortical areas, such as V1, and projections from layer 5 of first-order

cortical areas to higher-order thalamic relays, such as pulvinar); (2) “modulator” projections originate in layer 6 of the areas targeted by higher-

order thalamic relay drivers, and descend to the thalamus to synapse onto the dendritic arbors of drivers (Sherman and Guillery, 1998, 2001, 2002).3

Drivers form a minority of inputs but are seen to deliver primary messages. Modulators are much more numerous, and can affect the likelihood of transmission of

driver signals but do not seem to alter the content of those signals (e.g., they do not change receptive field properties of first-order thalamic relays from LGN to V1;

Reichova and Sherman, 2004). Modulators also connect to the thalamic reticular nucleus, which can exert inhibitory influence on most connections between the

thalamus and cortex.

3 Signals also travel via far more numerous cortico-cortical connections within gray matter. These connections seem to be classifiable as drivers

or modulators (Sherman and Guillery, 2011) and could conceivably support an acknowledgment system that runs in parallel to the postulated

thalamocortical system. However, such direct, short-range cortico-cortical connections may be reliable enough to not require ACKs.

(Continued)
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BOX 2 (Continued)

By thinking of the brain in terms of messages and routing, we can sketch a scheme by which thalamic relays could provide ACKs. Messages containing “content”

are sent by drivers, while modulators return ACK-like messages back to thalamic senders, either directly or by way of the thalamic reticular nucleus. If the message

is delivered successfully, modulator ACK messages would prevent resending via inhibition. If a timely ACK is not received, a driver in thalamus could be triggered

to resend the missing message. In this scheme, ACKs are not performed to confirm receipt of driver messages sent from cortex to thalamus. This may be a sensible

strategy. An ACK sent from cortex to thalamus confirming receipt implicitly confirms that the message successfully traveled on an earlier leg from cortex to thalamus

(since thalamic excitations are seen as signals relayed from elsewhere). Too many ACKs can clog a system so providing ACKs on only half of each loop could make

better use of bandwidth. One would predict that a capacity exists in the thalamus (possibly in the reticular nucleus) for buffering in case ACKs are not received in

the thalamus and driver messages need to be resent.4

Matsuyama and Tanaka (2021) have recently found in vivo electrophysiological evidence of “switch-type” neurons in higher-order thalamic nuclei in primates that

produce strong bursts after initial visual-auditory stimulus presentation (flash and tone), but become suppressive with repetition (see also Guo et al., 2017; Sieveritz

and Raghavan, 2021). This kind of behavior could serve as a building block for a system of ACKs like that described here (see also Crabtree, 2018). However, more

detailed models than can be offered here are needed. Indeed, the message acknowledgment scheme proposed here is merely a first step toward a model under a

reconceptualization of brain networks as communication systems, which co-exist with computational architectures. The scheme is not a model in and of itself. It

should also be emphasized that a solution like ACKs might make sense in cortical-subcortical loops but would not make sense in, for example, spinal reflex arcs,

where motor fibers need not receive neural feedback from muscles, but can rather rely on sensory feedback directly.

but without central switchboards. Short characteristic path

length (i.e., low average shortest path length) would later be

recognized as a defining property of “small-world” networks,

along with high clustering (Watts and Strogatz, 1998). Routing

design can take advantage of networks with short paths

between nodes. On the modern internet, this is achieved

through backbone nodes and peering, i.e., building short cuts

between subnetworks to achieve robust interconnection of

diverse entities spread across large distances. Not only are

paths short on a distributed network, Baran realized, there are

usually multiple short paths available, allowing compensation

for lost nodes and links, as well as for changes in traffic

volume. The system is designed specifically so that, as new

conditions arise, new routes are chosen, even as network

structure remains the same. This has been termed “robust yet

fragile” behavior (Li et al., 2004; Doyle et al., 2005; Sneppen et al.,

2005).

In the brain, the connectomics movement has shown that

network architecture is also characterized by short average path

lengths between nodes (see, e.g., Sporns, 2012). Cortical areas

of the macaque monkey are on average about 1.5 hops from

each other, and in the mouse the value is closer to 1 (e.g.,

Knoblauch et al., 2016; Gǎmǎnut et al., 2018). The value for

the entire primate connectome is not known but I predict it

is around 3 or 4 for most pairs of neurons (see also Parsons

et al., 2022). This implies that a given brain component can

and does interact with most other components via redundant

short paths.

4 On the internet, nodes use bu�ers to perform queueing, or lining up

incoming messages in a small memory allocation based on when they

arrived, and directing them on the proper outgoing path one-by-one. In

the brain, hypothetical bu�ers might only need to store a single message,

and for only a brief period. Delay circuit-like mechanisms for such bu�ers

have been proposed (Goldman-Rakic, 1996; Funahashi, 2015), and some

models of connectome dynamics include node bu�ers (Mišić et al., 2014;

Fukushima and Leibnitz, 2022). Bu�ers remain hypothetical but with the

impetus of the internet metaphor, they invite further investigation.

Moreover, connectivity in the brain is redundant at multiple

levels. Populations of e.g., neurons tuned to the same feature

such as orientation columns, are usually connected to common

target populations. At the level of brain regions, the network

statistic of “communication efficiency” (Latora and Marchiori,

2001) gauges the number of parallel short paths between a given

pair of nodes. This and related measures [“search information”

based on the measure of Rosvall et al. (2005)] are found to

be accentuated in brain networks, and conducive to effective

communication, in comparison to randomly rewired networks

of the same degree sequence (see e.g., Avena-Koenigsberger

et al., 2017; Seguin et al., 2018).

However, in the brain, the existence of short paths implies

that signals passed between components stand a good chance of

interacting with each other en route, potentially in deleterious

ways. This problem necessitates systematic routing strategies.

The likelihood of signal interactions on networks is greatly

reduced if the network has a different architecture, such as

a lattice or a tree, but this would engender longer paths

(but note that some network architectures that differ from

that of the internet and that of the connectome, such as

random Erdos-Renyi graphs, also have short characteristic path

lengths). Shortest path measures are often used in network

neuroscience to evaluate the ways that network architecture

affects communication among nodes. However, shortest paths

are only short if there is no possibility of message interaction,

and therefore of errors, congestion, and delay. As Seguin

et al. (2019) have argued, it is implausible that the brain has

global awareness of network structure necessary for finding

all shortest paths (but see Mišić et al., 2015). But it is less

plausible still that the brain can always use shortest paths without

running into congestion. Instead, in the following sections, I

consider local, protocol-based approaches to management of

short (but not necessarily shortest) paths and specifically how

the internet packages messages and shares communication links.

These strategies can serve as potential points of reference for

how the brain achieves parsimonious and reliable movement

of messages.
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The internet has additional architectural motifs such as

scale-free architecture (Barabási and Albert, 1999; Caldarelli

et al., 2000) and rich clubs (Zhou and Mondragón, 2004;

Colizza et al., 2006). Brains show some of these motifs (e.g.,

Van den Heuvel and Sporns, 2011). However, wiring patterns

in the brain are diverse. We should expect that specialized

motifs will shape the design of the brain’s routing strategies.

But these motifs should co-exist with global rules and the

network-wide phenomenon of short average path lengths. In this

context message interactions must be managed. Because they

produce nonlinear effects, principled numerical simulations of

routing protocols on brain networks may help us uncover

novel relationships between network structure and message

interactions on networks (see Hao and Graham, 2020).

Insight 3: Routing can exploit shared
resources

The existence of routing presupposes that one has specified

the nature of a message. Paul Baran’s second insight related to

the structure of messages. He realized that message components

need not be sent in contiguous units of arbitrary size, the way a

phone conversation or a postal letter is. Instead, messages can

be divided up into equal-sized chunks—packets—and spread

through the network dynamically. This approach was married

to a strategy of sharing resources and treating everyone’s packets

as interchangeable. Sharing in this way requires a leap of faith

that “my” message parts won’t get lost among those belonging

to everyone else as they travel across the network, since no one

has exclusive access to intermediary links. Baran and others

deliberately imbued each part of the network with sharing and

with trust in the wider network—this is the “openness” of the

OSI model. Organizing the use of shared resources over an

open, small-world network is accomplished by a collection of

communication engineering tricks, which are described in the

remaining sections.

If communication resources in the brain are shared, as

connectome structure described in Insight 2 implies, the system

might need to employ solutions like those of the internet.

It is worth considering if a shared resources strategy is

consistent with the finding of “non-necessary” neurons in the

frontal lobe, whose activity correlates with task performance,

but which can be lesioned without noticeable effect on task

performance (Tremblay et al., 2022). This result does not

necessarily make sense from the point of view of optimal

representation/computation or information theoretic efficiency.

But it could fit into a routing framework. These neurons could

be providing shared paths for relevant signals to traverse. In

a distributed routing system with shared resources, no single

router is strictly necessary, since signals can be actively rerouted.

Removing one or several “non-necessary” nodes performing

routing may not lead to a visible effect. In Tremblay et al.

(2022) data, task performance-related activity peaks at different

latencies in the “non-necessary” areas compared to “necessary”

areas. This is consistent with a picture where different parts

of the network are capable of flexibly transmitting the same

messages over different paths.

Of course, much caution is due here. Without knowing

network structure, results like Tremblay et al. (2022) can’t on

their own provide direct evidence for shared resources. Sharing

may in fact be more important in the resource-limited and

metabolically costly cortical white matter networks (Mollon

and Danilova, 2019; Mollon et al., 2022) than in local cortical

circuits. Despite the difficulty of recordings from intracortical

white matter links at present (e.g., Li et al., 2016), a recognition

of the importance of these signals as potentially evidence for

shared resources could spur innovation in recording methods.

In any case, evidence from human brain imaging of neural

re-use (Anderson, 2010) and from neuroanatomy indicating

computational flexibility (Pessoa et al., 2019) seems consistent

with some level of shared resources in cortex.

Insight 4: Routing requires
self-awareness

If signals have the ability to interfere with each other in a

communication network that shares resources, each node would

do well to exploit knowledge of its network environment to

plan out a good route for messages it transmits. The system

as a whole requires a kind of self-awareness—an on-going

process for tracking network conditions and message deliveries.

Internet routers monitor local network status to ensure they

and their neighbors are aware of the existence of paths on

shared links and current traffic load over those links. All

devices wishing to join the network must support these core

mechanisms of network monitoring. Mechanisms include keep

alives which are regular heartbeat-like messages sent out by a

router to all of its network neighbors to let them know the

router is in service. There are also echo requests, which are

small probe messages sent to a specific address, which must be

reciprocated by the receiver, with all intermediaries reporting

transit times for each leg of the journey. Perhaps most important

of all are acknowledgments or ACKs, which are small return-

receipt messages sent in retrograde fashion after a tranche of

packets is successfully received. Note that these mechanisms

are superfluous in computers: schematically, connectivity—

e.g., two-way buses between processors and memory banks—is

simple and highly reliable. Consider messages from processors

to memory requesting stored data: the delivery of the data

itself serves as confirmation that the request was received.

Consequently, stand-alone computers do not generally require

components to monitor each other or confirm signal receipt.

The brain, however, would seem to require systems for

monitoring the operation of its communication network. Like
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the internet, such mechanisms would need to operate in

distributed fashion over a network whose components are

separated by comparatively long distances, suffer some degree

of errors, and must trust each other.

Subnetworks in the brain could use spontaneous activity as

a kind of keep alive-like message. In this scheme, spontaneous

firing facilitates message passing along the same routes as those

traveled by evoked signals. There is suggestive evidence of this.

Mohajerani et al. (2013) used voltage sensitive dyes in the

exposed cortex ofmice, combined with prior connectomicmaps,

to show that both spontaneous and stimulus-evoked activity

produced similar motifs of signal transmission. Mohajerani

et al. (2013) call this pattern of spontaneous activity a

“reverberation” of sensory signals, but perhaps it is better

conceived as a preparation for transmitting such signals in the

future. Spontaneous signals in this view serve as network status

messages. Complementing these results is a microelectrode

study in rat auditory cortex, Luczak et al. (2013), investigating

what they called “packetization.” Packets as defined in the study

were repeating sequences of spike trains in different recorded

neurons, much like the putative trajectories of Nádasdy et al.

(1999), but rather unlike internet protocol packets. Luczak et al.

(2013) found that spontaneous and stimulus evoked packets

were similar in structure (see Luczak et al., 2015). This finding is

consistent with the idea that neurons exchange content-bearing

messages and network status messages on the same footing and

over the same conduits. However, these findings are merely

suggestive and do not serve as direct evidence of a keep-alive

scheme. One intriguing avenue would be for experimentalists to

test whether individual neurons or groups of neurons reliably

pass signals on polysynaptic paths in ways that can be predicted

based on prior patterns of spontaneous activity from the target

of the path.

If patterns of transmission treat different types of messages

(i.e., stimulus-evoked “content” and spontaneous network

status signals) in similar ways, cortico-thalamic connection

architecture would seem to naturally possess properties

appropriate for providing delivery verification. Core brain

networks would also appear to have a need for such a function.

See Box 2 for a discussion of possible neuronal substrates in the

thalamo-cortical networks that could support ACKs.

These hypothetical mechanisms for network status

monitoring and delivery verification do not exactly mirror those

used on the internet. Nevertheless, the metaphorical framework

of the internet spurs us to conceptualize and investigate the

brain in new and potentially transformative ways, which could

help explain other puzzling problems at the core of brain

organization. For example, the notion of a self-aware system

of distributed, communicating elements offers a novel way to

approach processes of allostasis in the brain (e.g., Sterling, 2012;

Katsumi et al., 2022): the brain may need updates not only about

the nature of planned or performed action but also knowledge

of the network’s readiness to carry out such actions.

Insight 5: Routing should be
interoperable

Packaging all data into a standard size and structure,

i.e., packets, not only allows sharing of resources, it also

allows signals of different kinds—including messages with

representational “content,” as well as signals related to network

status monitoring, and other kinds of messages—to travel

together on the same network, all directed by the same routing

rules. The potential for any imaginable data to be put into a

packet was a basic part of ARPANET design, even though only

two functions, remote login and file transfer, were possible on

the original network, and indeed for decades afterward. Today

this vision has been realized.

In the brain, we know there is a fundamental interoperability

among cortical territories: for example, in sighted subjects,

primary visual areas begin processing tactile stimuli within

hours or days during blindfolding (Pascual-Leone and

Hamilton, 2001), and this activity supports enhanced tactile

sensitivity. This is not enough time to build extensive new

connectivity—nor, presumably, to change the system’s basic

routing strategy. The influences of the messages of touch and

their routing in vision processing systems were there all along

and appear interoperable with vision-related signals in this

part of the brain’s communication network. Indeed, practically

any real-world cognitive task requires integrating memories

or knowledge from different domains (see e.g., Zeki, 2020).

The requirement of interoperability applies not only between

systems that deal in messages of different functional kinds

but between systems of distinct phylogenetic ages, origins,

and structure, such as cortical regions with six cell layers

(isocortex/neocortex) and those with three or four layers

(e.g., paleocortex).

Interoperability can be achieved in part by obviating the

need to inspect or decode messages at most nodes. A router

doesn’t need to know what a packet contains. This is part

of the cleverness of the internet: content is dealt with by

senders and receivers, not by processing intermediaries. Could

the same be true for neurons of the cortex? Consider that a

“visual” neuron in V1 encoding an edge doesn’t “know” about

edges. Instead, it is responding based on inputs that traverse

a particular network of connections before arriving at that

neuron. However, its pattern of activity is often seen, under the

computing/representational metaphor, as evidence that visual

neurons do in fact “know” something about edges or faces or

motion, because their spikes can be predicted fairly well from,

e.g., deep learning models of visual representation (Yamins et al.,

2014). We can draw inspiration from the design of internet

routing to help us move beyond this kind of thinking. To

complement the computer metaphor-based framework, I argue

that we should start to consider things from the message’s

point of view: where a message originates, how it propagates
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and is transformed, how routing mechanisms deal with it and

ensure it takes an efficient, reliable path, and where and when it

is “delivered”.

Insight 6: Routing should be scalable

The principles that govern internet routing are fully scalable:

new links and nodes can be added gracefully, with modest

cost to network operation. Network communication systems

with topology and routing protocol that differ from those of

the internet have less graceful scaling. Circuit-switched systems

running on star-shaped networks, for example, risk overload

without carefully planned growth: intuitively, if your neighbor

adds a landline on a traditional telephone network, it will not

affect communication over your landline. However, if too many

new lines are added, switching stations risk running out of lines,

preventing anyone not already using a line from starting a call.

In contrast, the internet was specifically designed to scale upwith

modest cost and without central planning. Thanks to this design

insight, most facets of internet routing strategy have required

little fundamental modification even with rapid increases in

nodes, links, and traffic.

The brain also undergoes upscaling in both ontogeny

and phylogeny (though brains additionally experience network

downscaling in the form of pruning and cell death). We should

therefore expect a routing system in the brain that allows

graceful scaling of message-passing; the system should by its

nature avoid sharp discontinuities or precipitous changes, much

as the internet does. It also must deal with the costs to network

communication as it scales up.

Comparative investigations across mammals of different

brain sizes could provide evidence of the costs of scaling up

brain communication networks and could indicate a likely

underlying strategy, just as can be done with black-box routing

systems. As they scale up, brain divisions show consistent

relationships between regional volume and overall volume

(Finlay and Darlington, 1995), which are mediated by shifts in

neurodevelopmental timelines. Neuron numbers, neuron size,

neuron density, synapse numbers, and network topology scale

together in more complex ways. However, the net effect of

these relationships may have a global signature that reflects the

brain’s fundamental routing scheme. In particular, one could

examine costs related to transmission of intrabrain signals. If

these costs scale up monotonically but gradually in brains of

increasing size, this would suggest an internet-like system that

shares resources. In contrast, a routing system without shared

resources—analogous to circuit-switched telephone networks—

would show no increase in cost as the network grows since

links are exclusive. However, such a system would be at risk

of overload and could not scale organically. Cost in terms of

metabolism may be difficult to define and measure but may be

reflected in proxy measures. For example, the maximum speed

of transmission of messages over multi-hop paths (normalized

for distance traveled) could be such a proxy. All else being

equal, maximum speed under an internet-like routing scheme

would be hypothesized to slowly decrease (i.e., cost slowly

increases) in bigger brains. If we see no slow down with brain

size, this would be more consistent with a circuit-switched

system. Other proxies such as sparseness may offer purchase on

this question (see Graham, 2021). A detailed set of predictions

about interrelationships among brain scaling, routing strategy

and cost is outside the scope of the present paper but is

under development.

Insight 7: Routing should be e�cient

The internet would not have grown so gracefully if its basic

operation had been too energetically expensive. It continues

to succeed today despite massive network growth in part

because message transport over optical fibers is very efficient

(IEA, 2022). But beyond message transport, routing strategies

implemented at nodes can also grant efficiency, sometimes in

surprising ways.

Consider the back-off algorithm, a core tool found

throughout internet-like networks. These algorithms deal with

an ever-present problem: what to do when two messages

“collide” i.e., attempt to occupy the same frame or clock tick

at the input of, for example, an Ethernet router. When this

happens, both messages are destroyed. For each destroyed

message the router then essentially flips a coin—heads, a copy

of the message cached at its sender is allowed pass, tails, it

has to wait for the next tick. If a message collides on further

attempts and draws tails, it has to wait up to 2 ticks, then up

to 4 ticks, then up to 8 ticks. This algorithm is termed binary

exponential back-off. It results in an exponential distribution of

delays. The basic design principle of imposing randomized wait

times for colliding messages has been in place since the earliest

days of internet-based communication systems, starting with the

ALOHA packet-switched radio network in Hawaii (Kleinrock,

1976). Routinely injecting timing noise into message passing

systems remains a cornerstone of routing efficiency across the

internet. Notice that this is an example of an engineering

insight in communication that differs greatly from insights

exploited in the computer metaphor: adding timing noise at all

nodes would not have an obvious benefit for representational

systems (though deep learning systems do employ “drop-out”

for somewhat related purposes) but is demonstrably successful

when communication is the goal.

The possibility of something like exponential back-off in

the brain is worth consideration. The ubiquity of Poisson-like

spike generation in the mammalian cerebral cortex (see, e.g.,

Averbeck, 2009) produces exponentially-distributed interspike
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intervals (ISIs). If we see ISIs as delays, this behavior is consistent

with the brain performing exponential back-off as part of

its network communication strategy. If the brain uses similar

routing strategies as those described in this paper, exponentially-

distributed ISIs could serve to minimize the effects of collisions.

Though many processes generate exponential distributions, this

distribution is a hallmark of internet dynamics, so it is curious

that a similar distribution is found also throughout mammal

cortex. Exponentially-distributed ISIs are observed also for

spontaneous firing in cortex (Mazzoni et al., 2007) suggesting

that they are not due only to dynamics of stimulus experience

but also due to intrinsic factors. However, back-off algorithms,

like ACKs, require node buffers to allow resending, which

remain hypothetical in the brain (see Box 2).

We can take a wider view of efficiency. Progress in

understanding representational aspects of brain function

has been aided by efficiency arguments (e.g., Doi and

Lewicki, 2014), so a similar approach may be profitable

in terms of communication. It has long been clear that

transmitting signals down axons is very costly, leading to

wiring minimization models (see e.g., Cherniak et al., 2002;

Chklovskii and Koulakov, 2004). A recent estimate suggests

neuronal communication is in fact far more costly than neuronal

computation (Balasubramanian, 2021; Levy and Calvert, 2021).

With transmission already expensive, routing strategies in the

brain—whose costs were not considered in the estimate of Levy

and Calvert (2021)—must be shaped to a significant degree

by efficiency concerns. Sparse activity in time and space also

contributes to efficiency both on the internet and in the brain;

(see Graham, 2021; Graham and Rockmore, 2011) for further

discussion of the role of sparseness.

However, gauging the large-scale efficiency of routing

in the brain will be a major challenge because we lack a

mathematical formalism for describing information theoretic

limits on network communication. Shannon’s information

theory, which is widely invoked in studies of efficiency

in neuronal representations (e.g., Wainwright, 1999) applies

only to the case of “two-port” communication (Cover and

Thomas, 1991), i.e., point encoding and decoding with channel

noise. New approaches to the study of efficiency in network

communication broadly construed may be needed [see the

“network information theory” of El Gamal and Kim (2011);

see also Pastor-Satorras and Vespignani (2004), Sun et al.

(2015); and Amico et al. (2021)]. The problem in the network

case is that resources are shared. One needs to balance cost

and reliability when ongoing signal generation can influence

individual routing actions in very complex ways. The efficient

solutions the brain employs—if they can be determined, and if

they are in some sense optimal—may in fact help us understand

more fundamental principles of network information theory.

However, the internet’s demonstrable efficiency suggests that

basic principles of efficient network communicationmay already

be instantiated in its array of solutions.

Insight 8: Asynchronous routing can
simulate synchrony

Distributed strategies have advantages but also impose

constraints: the internet, for example, is fundamentally an

asynchronous communication system: senders and receivers

generally cannot establish complete, on-going circuits; full

“communion” is unachievable. However, because path lengths

are short and because delays on the network are miniscule by

human standards, a simulation of synchrony is possible. Human

senders and receivers readily perceive its real-time functions

(e.g., video chat) as synchronous and simultaneous.5

In the brain, anatomical and network distances are long

enough and propagation of neuronal excitations slow enough

that the system as a whole functions asynchronously, even if

our conscious experience makes it feel as if there is a fully

synchronous, delay-free “now” (see, e.g., Zeki and Bartels, 1998;

Hogendoorn, 2021). However, functions like object perception

may achieve short intervals of synchrony on subnetworks,

allowing faster and more coordinated action among dispersed

brain elements (Gray et al., 1989; Fries, 2005; Vezoli et al.,

2021; Uran et al., 2022).6 Elaborate systems of precisely-timed

delays are also a basic feature of cortical signaling, which helps

coordinate activity of asynchronous elements (Innocenti et al.,

2016).

Seemingly, routing in the brain, as on the internet, is

fundamentally asynchronous, but is capable of simulating

synchrony over short time scales among subgroups of nodes.

The internet’s solutions, such as content delivery networks

used by Netflix and others, which store multiple copies of a

given resource at different points on the network, are worth

considering in reference to brain networks.

Insight 9: Routing should be unified,
but can be modified locally

Despite being composed of billions of dispersed elements,

the internet is a unified entity. However, unity is not imposed

from a central controller. Instead, a common set of routing rules

5 However, even the short time delays of the internet can become

noticeable. In a Zoom meeting, try this experiment: One person starts

to clap at a slow tempo. Then others try to match the beat. Participants

often become 180 degrees out of phase with the reference clap.

6 The idea of synchrony in digital computation and communication

systems is not entirely equivalent to synchrony in dynamical systems of

the kind described by Vezoli et al. (2021) and others. In dynamical systems,

synchrony usually implies periodicity and occurs when oscillators

coordinate the timing of their actions. In digital computing, synchrony

means that one system can interfere with the concurrent operation of

another system, but there is not necessarily periodicity.
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is implemented locally, and the rules can be locally modified to

some extent as well. For example, subnetworks can prioritize

some packets over others, and novel devices and protocol can

be added so long as basic protocol is followed. A few network

services on the internet are organized centrally (e.g., the domain

name server) but this is largely a convenience for human end-

users. Basic operations of message transmission require no

central entity (nor human intervention: connectable devices can

now be found and added to the network automatically; Mišić

and Mišić, 2014). Even key services like time keeping, which

is performed centrally in a computer, are decentralized on the

internet using network time protocol. The internet does include

modular elements (e.g., autonomous systems), which can exert

specialized, central control over a domain (e.g., firewalls). But

each module must ultimately be compatible with the wider

network by way of common routers. And in the operation of

an autonomous system (AS), most of the same “tricks” found

in parts of the network outside the AS are employed internally

as well.

Protocol in the brain may likewise be a global phenomenon

where a relatively small set of rules apply equally throughout,

but can be modified. It is reasonable to first consider if there is

a single protocol for the whole mammal or vertebrate brain. A

patchwork of multiple, non-overlapping networks, each with its

own protocol, seems more characteristic of nerve nets (Dupre

and Yuste, 2017) than of highly structured and interconnected

brains like those of mammals, birds, and especially humans

(Hofman, 1988). But we should not rule out the possibility of

overlapping neural systems running on different protocol that

achieve widespread influence on the network but with limited

functionality, such as the fast emergency alert system centered

on brainstem nuclei.

Unified protocol in the brain could tolerate considerable

local variation and tuning in different regions. Different species

may also show specialization in routing. Local modification of

global routing rules may influence brain organization within

a species. The cortex is typified by “unity and diversity” of

structure, shown in, for example, its laminar and columnar

architecture (Schüz and Miller, 2002). In different brain

regions, variations in a set of conserved genes could shape

overall routing strategies. Through the effect of interactions

of these genes, small tweaks in units controlling how routing

“protocol” is implemented during neurodevelopment could

generate significant changes in brain dynamics and function,

just as small tweaks to cell growth can affect brain size (e.g.,

“late equals large” Finlay et al., 2010). With local alteration

in routing could come a diversity of function. Through

such mechanisms, distributed specializations of protocol in

different brain systems could be engineered without sacrificing

global integration. The same basic process may help shape

phylogenetic variation.

These insights allow us to imagine a rich problem space that

we can consider in relation to the study of the brain’s strategy

for network communication. Internet engineering provides a

collection of effective strategies that may be similar to those the

brain uses. However, a full description of the neuronal toolkit

that could implement the above functions is needed. Testable

hypotheses will need to be developed, and these will require

more precise models of possible neuronal substrates than I have

offered here.

Discussion

A good metaphor in scientific theory indicates the span

and orientation of a problem to be solved. Like a microscope

or an electrode, metaphor is a tool, one used in service of

theory, rather than experiment. Metaphor is not sufficient for

theory, but can be its precursor. Metaphor can help us get

to a place where we can specify quantities of interest and

understand why measuring those quantities and not others will

be meaningful. Technological metaphor, because it refers to

engineered systems with goals, is of special potential use since

biological organisms and their brains are shaped by evolutionary

“engineering.” We can ask, “what would be a good way to design

a neuronal system that must operate under certain conditions,

such as those that permit flexible exchange of signals across

a densely connected network?” The routing strategies of the

internet, a technological system that was specifically designed

to solve such problems, are worth consideration in relation to

this question.

Yet if we grant that the brain must perform flexible routing,

the endeavor to understand its strategies in light of the internet

still faces major difficulties. One is addressing, a key feature of

any routing scheme, which shapes all other features. Selective

communication presupposes the existence of an addressing

system, though explicit address “headers” may not be required

in the brain. Schemes that invoke synchronous oscillations

(e.g., Fries, 2005; Nádasdy, 2010) seem to obviate the need for

“headers” that travel with a message, but such schemes have

not yet dealt with how targets are selectively chosen, nor how

congestion could be managed. Indeed, these problems have

not been recognized. If headers are needed, spike timing could

conceivably carry this information: most paths are likely to be

only a few hops in length, so header information could be small.

However, detailed models of this kind have not been elucidated

let alone tested.

Metaphors can bemisleading, especially if taken too literally.

This is true not least for the computer metaphor. A physical

computer, unlike the brain, has a clock that strictly synchronizes

all operations, while a Turing machine requires infinite “tape”

on which to order symbols. The brain is obviously not a literal

internet either.

Nor can we say that the internet is the only good solution to

the problem of dynamic network communication. There exist

an unknown number of possible schemes. One can imagine
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communication systems that include multiple senders and/or

receivers where a “multi-message” of distributed chunks travels

on parallel paths; along similar lines, it may be better to think in

terms of “sources” and “sinks” of signal flow (Mohajerani et al.,

2013) rather than single copies of messages with a single path.

Part of the problem here is that we lack a grounding of network

communication theory in terms of basic mathematics. This is a

contrast with the view of brains as computers and representation

machines, where we understand the fundamental limitations

and possibilities thanks to the well-understood underlying

theories of functions and computability.

But the internet’s demonstrable success—through pandemic,

war, and malicious attack—suggests it embodies basic insights

regarding the organization and integration of flexible message

flow on large, complex, growing networks. Ultimately, a turn

toward the internet metaphor accords with the longstanding

desire to understand the integration of computational functions

in the brain, and how distributed signals are related and bound

to one another (e.g., Popper and Eccles, 1977). The internet

metaphor offers more precise language and deeper analogies

compared to earlier analogies of brain integration, such as

“workspaces” (Dehaene and Changeux, 2005; Baldauf and

Deubel, 2010), “bulletin boards,” (Baars, 1997; Goyal et al., 2021),

“puzzle pieces” (Chater, 2018; John et al., 2022), or reactions

involving “catalysts” and “bonding” (Varela et al., 1991). Brain

science stands to profit from considering the internet’s strategies

and solutions and from asking how the brain might solve

similar problems. An understanding of routing in the brain has

the potential to illuminate many aspects of brains, not least

the decipherment of neural codes, but also evolutionary and

developmental patterns, functional differentiation, neurological

conditions affecting large-scale brain intra-communication

(e.g., multiple sclerosis and epilepsy), as well as intelligence

and consciousness.
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