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Smaller progress measures and
separating automata for parity
games

Daniele Dell’Erba* and Sven Schewe*

Department of Computer Science, University of Liverpool, Liverpool, United Kingdom

Calude et al. have recently shown that parity games can be solved in

quasi-polynomial time, a landmark result that has led to several approaches

with quasi-polynomial complexity. Jurdzinski and Lazic have further improved

the precise complexity of parity games, especially when the number of

priorities is low (logarithmic in the number of positions). Both of these

algorithms belong to a class of game solving techniques now often called

separating automata: deterministic automata that can be used as witness

automata to decide the winner in parity games up to a given number of states

and colors. We suggest several adjustments to the approach of Calude et al.

that lead to smaller statespaces. These include and improve over those earlier

introduced by Fearnley et al. We identify two of them that, together, lead to a

statespace of exactly the same size Jurdzinski and Lazic’s concise progress

measures, which currently hold the crown as the smallest statespace. The

remaining improvements, hence, lead to a further reduction in the size of

the statespace, making our approach the most succinct progress measure

available for parity games.

KEYWORDS

parity games, progress measures, value iteration, separating automata, quasi-

polynomial algorithms

1. Introduction

Parity games are two-player perfect information turn-based zero-sum games of

infinite duration played on finite directed graphs. Each vertex, that is labeled with an

integer color, is assigned to one of the two players even or odd. A play consists of an

infinite sequence of players’ moves around the graph, and the winner is determined by

the parity of the largest color encountered along the play. Hence, the player even wins if

it is an even color, and player odd wins otherwise.

Parity games have been extensively studied for their practical applications, to

determine their complexity status, and to find efficient solutions.

From a practical point of view, many problems in formal verification and synthesis

can be reformulated in terms of solving parity games. Computing winning strategies for

these games is linear-time equivalent to solving the modal µ-calculus model-checking

problem (Emerson and Lei, 1986; Emerson et al., 2001). Parity games can be applied to

solve the complementation problem for alternating automata (Grädel et al., 2002) or the
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emptiness of the corresponding nondeterministic tree

automata (Kupferman and Vardi, 1998). These automata,

in turn, can be used to solve the satisfiability and model-

checking problems for several expressive logics (Berwanger

and Grädel, 2004; Chatterjee et al., 2010; Mogavero et al., 2010,

2012; Benerecetti et al., 2013), such as µ-calculus (Wilke, 2001;

Schewe and Finkbeiner, 2006) and ATL* (Alur et al., 2002;

Schewe, 2008).

On the complexity-theoretic side, determining the winner of

a parity game is a problem that lies in NP ∩ co-NP (Emerson

et al., 2001), being memoryless determined (Martin, 1975;

Emerson and Jutla, 1991; Mostowski, 1991), and it has even been

proved to belong to UP ∩ co-UP (Jurdziński, 1998), and later

to be solvable in quasi-polynomial time (Calude et al., 2017).

However, determining whether they belong also to P is still an

open problem.

The existing algorithms for solving parity games can be

divided into two classes. The first one collects approaches that

solve the game by creating a winning strategy for one of the two

players in the entire game. This can be done by either employing

a value iteration over progress measures (Jurdziński, 2000) or

iteratively improving the current strategy (Vöge and Jurdziński,

2000; Fearnley, 2010; Friedmann, 2013). To the second class

belong approaches that decompose the solution of a game into

the analysis of its subgames in a divide-and-conquer concept. To

do so, these approaches partition the game into a set of positions

that satisfy certain properties. Then, these portions of the game

are recursively solved and by suitably composing them also the

initial game is solved. The name of the sets employed by the

technique depends on the properties: attraction set (Zielonka,

1998; Schewe, 2007), region (Benerecetti et al., 2016, 2018a,b),

tangle (van Dijk, 2018), and justification (Lapauw et al., 2020).

Many algorithms from both classes have been refined to

achieve a quasi-polynomial upper bound since the contribution

of Calude et al. (2017). This seminal algorithm works as a value-

iteration approach with compact measures for which a poly-

logarithmic size witness is sufficient, rather than storing the

entire history of the play that is exponential. The same approach

has been refined improving the complexity result (Fearnley et al.,

2017; Jurdziński and Lazic, 2017), while the same complexity

has been achieved by several different approaches such as the

register-index algorithm (Lehtinen, 2018) and the bounded

version of the recursive algorithm (Parys, 2019). Interestingly,

all known quasi-polynomial algorithms can be derived by the

separation approach which also provides a lower bound for these

techniques (Czerwinski et al., 2018).

1.1. Contribution

We adjust the definitions of witnesses, the data structure first

used by Calude et al. (2017) and the way they are updated in

several ways. In the following, we provide a high-level idea of

our contribution in comparison with other approaches (Calude

et al., 2017; Jurdziński and Lazic, 2017; Fearnley et al., 2019).

This description makes use of the notion of witness and can be

skipped by non expert readers.

The most clear-cut improvement is the increased

succinctness of the resulting structures. The main contributor

to this improvement is the one that skips the double occurrence

of odd colors in the classic witnesses. Where the highest color

is even, this improvement alone obtains a statespace of quite

different structure to, but the same size as, the currently smallest

statespace from Jurdzinski and Lazic approach (Jurdziński and

Lazic, 2017). Integrating this with the small refinement from

Fearnley et al. (2019), in which when the maximal color is

odd, we can just reset the witness to its initial value instead of

recording this maximal odd value, extends the refinement to the

case where the maximal color is odd.

The other advantages are minor. They include not recording

odd colors in the least relevant position (known from Fearnley

et al., 2019 broadly halving the statespace) and a novel way of

counting the length of even chains represented by witnesses,

which broadly halves the staspace at the points where the

complexity jumps—when at the even chains that need to be

considered reach a new power or 2—but successively loses this

advantages, losing it completely which the even chains that

need to be represented can reach the next power of 2 minus

1). Integrating these two improvements provide a statespace

reduction from just under 2 to just under 4 of our approach

over (Jurdziński and Lazic, 2017). A minor additional saving

is reached by also skipping minimal colors when they are odd

(Fearnley et al., 2019).

The second improvement is a re-definition of the semantics

of witnesses, moving from the classic witnesses to color witnesses,

where all positions with the same color in a witness refer to one

chain, instead of referring tomany. This re-definition accelerates

the convergence, though the acceleration is muted where it is

used for value iteration.

1.2. Outline

We discuss a variation of the algorithm of Calude et al.

(2017), partly in the original version and partly in the variation

suggested by Fearnley et al. (2019), to extend this approach to

value iteration.

After the general preliminaries, we recap this approach in

Section 3, using a mild variation of the witness fromCalude et al.

(2017) for a basic update rule up′ that updates a witness b when

reading a state with color v, and an antagonistic update rule au′

that updates a witness b when reading a state with color v.

We then amend those rules in two steps. The first step

(Section 4) reduces the statespace but otherwise retains the

classic lines of Fearnley et al. (2019). It is a simple extension

that carries the easiest to spot improvement of this study: the
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reductions from the statespace of the witnesses used, leading to

more concise witnesses.

The backbone of the statespace reduction is to simply restrict

the number of times an odd color occurs in a witness to at

most once. Where the maximal color is even, this change alone

leads to a perfect match in size with the statespace of Jurdziński

and Lazic (2017), which is currently the smallest. This perfect

match is a bit surprising, as the structure of the statespace is

very different.

The remaining changes extend the restriction to the case

where the maximal color is odd and collects some further minor

reductions that roughly lead to a spatespace reduction that is

usually in a range between 2 and 4, where the advantage is

strongest when the number of states with an even number of

colors is a power of 2.

Subsequently, we re-interpret the semantics of a witness

in Section 5. This change in semantics does not change the

statespace, but it allows for updating the witnesses faster. Faster

updating is mainly improving the basic update rule, but to

some extent also the antagonistic update rule, leading to faster

convergence in both cases.

We then turn to an estimation of the new statespace in

Section 6. For this, we proceed in several steps. We first look

at the two classic statespaces, considering the previously most

concise one those of Calude et al.’s original QP algorithm

(Calude et al., 2017).

We then turn on using those improvements to Calude et al.

(2017) that lead to a statespace of size equal to that of Jurdziński

and Lazic (2017). This is done in order to be able to show that the

two statespaces are of precisely the same size, but also to have

a clear understanding of which improvements remain beyond

this, and to focus on how they influence the statespace.

We then exemplify how the three statespaces compare in size

in Section 7.

2. Preliminaries

Parity games are turn-based zero-sum games played between

two players, even and odd, over finite graphs. A parity gameP is

a tuple (Ve, Vo, E,C,φ), where

• (V = Ve ∪ Vo,E) is a finite directed graph, where the set V

of vertices is partitioned into a set Ve of vertices controlled

by the player even and a set Vo of vertices controlled by

player odd, and where E ⊆ V × V is the set of edges;

• C ⊆ N = {1, 2, 3, . . .} is a finite consecutive set

of colors, such that C = {1, 2, . . . , max{C}} or C =

{2, 3, . . . , max{C}} holds; and

• φ :V → C is the coloring functions that maps each vertex

to a color.

We define C− = Cr
{

max{C}
}

if the highest color max{C}

is odd, and C− = C if the highest color max{C} is even. We also

require that every vertex has at least one outgoing edge.

Intuitively, a parity gameP is played between the two players

by moving a token along the edges of the directed graph (V ,E).

A play of such a game starts at some initial vertex v0 ∈ V where

the token is placed at the beginning. The player controlling this

vertex then chooses a successor vertex v1 such that (v0, v1) ∈ E,

and the token is moved to this successor vertex. In the next

turn, the player controlling the vertex v1 makes his choice by

picking a successor vertex v2 where to move the token, such that

(v1, v2) ∈ E, and so on. In this manner, both players move the

token over the arena and, thus, form an infinite play of the game.

Formally, a play of a game P is an infinite sequence of

vertices 〈v0, v1, . . .〉 ∈ Vω such that, for all i ≥ 0, we have that

(vi, vi+1) ∈ E. We denote as PlaysP(v) the set of plays of the

gameP that origins in a vertex v ∈ V and asPlaysP the set of all

plays of the game. We omit the subscript when the arena is clear

from the context. The colormapping φ :V → C can be extended

from vertices to plays by defining the mapping φ :Plays→ Cω

as 〈v0, v1, . . .〉 7→ 〈φ(v0),φ(v1), . . .〉.

A play 〈v0, v1, . . .〉 is won by the player even if

lim supi→∞ φ(vi) is even, and by player odd otherwise.

A prefix of a play (or play prefix) is a non-empty initial

sequence 〈v0, v1, . . . , vm〉 of a play 〈v0, v1, . . .〉.

For a play ρ = 〈v0, v1, . . .〉 or play prefix ρ =

〈v0, v1, . . . , vn〉, an even chain of length ℓ is a sequence of

positions p1 < p2 < p3 < . . . < pℓ (with 0 ≤ p1 and, for

plays prefixes, pℓ ≤ n) in ρ that has the following properties:

• for all j ∈ {1, . . . , ℓ}, we have that φ(vpj ) is even, and

• for all j ∈ {1, . . . , ℓ − 1} the colors in the subsequence

defined by pj and pj+1 are less than or equal to φ(pj)

or φ(pj+1). More formally, we have that all colors

φ(vpj ),φ(v(pj)+1), . . . ,φ(vp(j+1) ) are less than or equal to

max
{

φ(vpj ),φ(vpj+1 )
}

.

A strategy for the player even is a function σ :V∗Ve → V

such that
(

v, σ (ρ, v)
)

∈ E for all ρ ∈ V∗ and v ∈ Ve.

If a strategy σ only depends on the last state, then is called

memoryless (σ (ρ, v) = σ (ρ′, v) for all ρ, ρ′ ∈ V∗ and v ∈

Ve). A play 〈v0, v1, . . .〉 is consistent with σ if, for every prefix

ρn = v0, v1, . . . , vn of the play that ends in a state of player even

(vn ∈ Ve), σ (ρn) = vn+1 holds. The player even wins the game

starting at v0 if the player has a strategy σ such that either all

plays 〈v0, v1, . . .〉 consistent with σ satisfying lim supi→∞ φ(vi)

(i.e., the highest color that occurs infinitely often in the play)

is even, that, being the game finite (i.e., the number of states

is finite), simplifies in all plays 〈v0, v1, . . .〉 consistent with σ

contain a loop vi, vi+1, . . . , vi+k, that satisfies vi = vi+k and

that max{φ(vi), . . . ,φ(vi+j)} is even. In both cases, σ might

be memoryless.
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A separating automaton (Bojańczyk and Czerwiński, 2018)

for parity games with a set of colors C and a bounded number

of up to b states with even color1, is a deterministic reachability

automatonA = (Q,C, q0, δ,won), where

• Q is the set of states, with q0,won ∈ Q, q0 is the initial state

and won is the target state (and sink), and

• δ :Q× C→ Q is the transition function (with δ(won, v) =
won for all v ∈ C),

such that, for all parity games with colors⊆ C that have no more

than b states of even color, the following holds:

• if v ∈ V is a winning state for the player even, then there

is a positional strategy σ for the player even such that, for

every play ρ from v consistent with σ , φ(ρ) is accepted by

A (i.e.,A reaches the target state won); and
• if v ∈ V is a winning state for player odd, then there is

a positional strategy σ for player odd such that, for every

play ρ from v consistent with σ , φ(ρ) is rejected byA (i.e.,

A does not reach the target state won).

3. Classic Witnesses

We adjust the approach from Calude et al. (2017) and

Fearnley et al. (2019), and this section is predominantly taking

the representation from Fearnley et al. (2019). It does, however,

change some details in the definitions of i-witnesses that end

in an odd priority and the definition of the value of a witness

slightly to suit the rest of the article better. Where the proofs are

affected, they are adjusted and given, but the proofs are mostly

unaffected by these minor details.

3.1. Classic forward witness

We start with describing the old witness without making its

semantics formal (as we do not need it in this article), and will

turn to the new concise witness (Section 4) and the color witness

(Section 5) afterwards.

3.1.1. i-Witnesses

Let ρ = v1, v2, . . . , vm be a prefix of a play of the parity game.

An even i-witness is a sequence of (not necessarily consecutive)

positions of ρ

p1, p2, p3, . . . , p2i ,

1 The bound b is often given instead of the number of states.

of length, exactly 2i, and an odd i-witness is a sequence of (not

necessarily consecutive) positions of ρ

p0, p1, p2, . . . , p2i

of length exactly 2i + 1, that satisfy the following properties:

• Position: Each pj specifies a position in the play ρ, so each

pj is an integer that satisfies 1 ≤ pj ≤ m.

• Order: The positions are ordered. Thus, we have pj < pj+1

for all j < 2i.

• Evenness: All positions but the final one are even. Formally,

for all j < 2i, the color φ(vpj ) of the vertex in position pj is

even.

For position p2i , its color φ(vp2i ) is even for an even

i-witness, and odd for an odd i-witness.

• Inner domination: The color of every vertex between pj and

pj+1 is dominated by the color of pj or the color of pj+1.

Formally, for all j < 2i, the color of every vertex in the

subsequence vpj , v(pj)+1, . . . , vp(j+1) is less than or equal to

max
{

φ(vpj ),φ(vpj+1 )
}

.

• Outer domination: The color of p2i is greater than or equal

to the color of every vertex that appears after p2i in ρ.

Formally, for all k in the range p2i < k ≤ m, we have that

φ(vk) ≤ φ(vp2i ).

It follows from these properties that an i-witness contains an

even chain of length 2i.

3.1.2. Witnesses

We define C_ = C− ∪ {_} as the set of colors plus the _

symbol. A witness is a sequence2

bk, bk−1, . . . , b1, b0,

such that each element bi ∈ C_, and that satisfies the

following properties:

• Witnessing: there exists a family of i-witnesses, one for

each element bi with bi 6= _. We refer to such an i-witness

in the run ρ. We will refer to this witness as

pi,1, pi,2, . . . , pi,2i

for even i-witnesses and

pi,0, pi,1, . . . , pi,2i

2 While k can be viewed as "big enough" or as "of arbitrary size" for the

definition, we will later see that a length k+1, with k = ⌊log2(e)⌋, where e is

the number of vertices with an even color, or any other su�cient criterion

for the maximal length of an even chain, is su�cient.
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for odd i-witnesses. Thus, even i-witnesses are in particular

even chains of length 2i, while odd i-witnesses extended

even chains that start with an even chain of length 2i (and

are extended by a further position).

• Dominating color: For each bi 6= _, we have that bi =

φ(vpi,2i ). That is, bi is the outer domination color of the

i-witness.

• Ordered sequences: The i-witness associated with bi starts

after a j-witness associated with bj whenever i < j.

Formally, for all i and j with i < j, if bi 6= _ and bj 6= _,

then pj,2j < pi,1 when the i-witness is even, and pj,2j <

pi,0 otherwise.

For a little bit of extra conciseness, we also require that b0 is

either even or _.

Note that the witness does not store the i-witnesses

associated with each position bi. However, the sequence is a

witness only if the corresponding i-witnesses exist. Moreover,

the colors in a witness are monotonically increasing for growing

indices (and thus increase from right to left), since each color

bj (weakly) dominates all colors that appear afterwards ρ as a

consequence of the dominating color property and the ordered

sequences property.

3.1.2.1. Forward and backward witnesses

The forward witnesses described so far were introduced

in Calude et al. (2017), while we now describe the backward

witnesses and an ordering over them that have been introduced

in Fearnley et al. (2019). For each play, prefix ρ = v1, v2, . . . , vm,

we define a reverse play ←−ρ = vm, vm−1, . . . , v1; a backward

witness is a witness for←−ρ , or for a prefix of it.

3.1.2.2. Order on witnesses

The set C_ is ordered by the relation � such that even

numbers are better than odd numbers, higher even numbers

are better than smaller even numbers, smaller odd numbers are

better than higher odd numbers, and every number is better than

_. Formally, a � b if b = _ ; or a is even and b is either odd or

a ≥ b; or a ≤ b and they are both odd.

Using�, we define an order⊒′ over witnesses that compares

two witnesses of the same size lexicographically, where the most

significant element is bk and the least significant element is b0.

Each element is compared using the order�. The biggest witness

has a special value won; i.e., won ⊒′ b holds for all witnesses b.

3.1.2.3. The value of a witness

While there is, in principle, a countable set of witnesses, it

suffices to take into consideration only those witnesses that do

not require the existence of an even chain that is longer than the

number states with even color. With this in mind, we define the

value of a witness as the length of an even chain.

For example, b = 8, 5, 2 is a forward witness for a run

prefix with a color trace 9, 6, 7, 8, 7, 2, 8, 3, 2, 4, 5, 3, 2, 3, 2, where

the red, blue, and green color are used to visualize the even

chains (extended, for the sequence in blue). A run for which b

is a forward witness always includes an even chain of length 6,

which consists of the even chain of the leading positions with

even priority (in this case: 8) as well as the even chain defined by

the first odd color (in this case: 5). For example, this is the even

chain shown in cyan: 9, 6, 7, 8, 7, 2, 8, 3, 2, 4, 5, 3, 2, 3, 2.

Formally, we define the following functions for each witness

b = bk, bk−1, . . . , b0:

• Even positions: even(b) = {i ∈ N0 |

bi is an even number}

(in the example above, these are positions with index 2

and 0, whose label is 8 and 2, respectively);

• Relevant i-witnesses: evenodd(b) = even(b) if b does not
contain an odd number,

otherwise, evenodd(b) = {i ∈ even(b) | i > o} ∪ {o},

with o = max{i ∈ N | bi is odd};

(in the example above, these are positions with index 2

and 1, whose label is 8 and 5, respectively); and

• Value of witness: value(b) =
∑

i∈evenodd(b)
2i;

(in the example above, this is equal to 6).

Remark. The value function from Fearnley et al. (2019) is

different from the one defined above., as it uses
∑

i∈even(b)
2i. The

latter is the sum of the length of the even chains that refer to even

entries in the witness.

In the example above, the value function from Fearnley et al.

(2019) is the sum of the concatenated even chains in red and

green, with a joint length of 5. We will discuss the impact that

this difference has on the statespace at the end of Section 6.

We can show that the value of b corresponds to the length of

an even chain in ρ that is witnessed by b.

Lemma 1. Fearnley et al. (2019) If b is a (forward or backward)

witness of ρ, then there is an even chain of length value(b) in ρ.

If we count the number of vertices with even colors in the

game as e = |{v ∈ V : φ(v) is even }|, then we can observe that

in case we have an even chain longer than e then ρ contains a

cycle, as there is a vertex with even color visited twice in this even

chain. Moreover, the cycle is winning for the player even, since

the largest priority of its vertices must be even. As a consequence,

if the player even can force a play that has a witness whose value

is strictly greater than e, even wins the game.

Lemma 2. Fearnley et al. (2019) If, from an initial state v0, the

player even can force the game to run through a sequence ρ, such

that ρ has a (forward or backward) witness b such that value(b)
is greater than the number of vertices with even color, then player

even wins the parity game starting at v0.

For this reason, we only need witnesses with value ≤ e, as

every witness of value > emust contain a winning cycle.
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We will refer to the set of classic witnesses as W = {b |

b is a witness with value(b) ≤ e} ∪ {won}.

3.2. Updating witnesses

Forward witnesses can be constructed incrementally by

processing the play one vertex at a time. The following lemmas

assume that we have a play prefix ρ = v0, v1, . . . , vm, and a new

vertex vm+1 that we are going to append to ρ in order to create

ρ′. The value d = φ(vm+1) denotes the color of the new vertex

vm+1. We will suppose that b = bk, bk−1, . . . , b1, b0 is a witness

for ρ, and we will construct a witness c = ck, ck−1, . . . , c1, c0

for ρ′.

We present three lemmas that allow us to perform this task.

Lemma 3. Fearnley et al. (2019) Suppose that d is even, there

exists an index j such that:

• bi is even for all i < j,

• bj is odd or equal to _, and

• bi ≥ d or equal to _ for all i > j.

If we set ci = bi for all i > j, cj = d, and ci = _ for all i < j,

then c is a witness for ρ′.

Note that we returned to the original definition from Calude

et al. (2017) by restricting this updating rule from Lemma 3,

called “overflow rule,” to even numbers, whereas the witnesses

from Fearnley et al. (2019) also allowed this operation to be

performed in the case where d is odd. The reason for this

change is that it reduces the statespace: while this reduction is

insignificant in most cases, it is quite substantial if e = 2p − 1

for some power p ∈ N, as it leads to an increase in the length

of the witness. Since statespace reduction is a core target of this

article, we opted to be precise here. A full discussion about the

statespace is reported in Section 6.

Note that the next lemmas (and their proofs) are essentially

independent of the variation of Lemma 3 with respect to the

version reported in Fearnley et al. (2019).

Lemma 4. Fearnley et al. (2019) Suppose that d ∈ C− and there

exists an index j such that:

• d > bj 6= _ and

• bi ≥ d or equal to _ for all i > j.

Then setting ci = bi for all i > j, setting cj = d if j 6= 0 (and

cj = _ if j = 0), and setting ci = _ for all i < j yields a witness

for ρ′.

There is a tiny difference in the proof of this lemma with the

one from Fearnley et al. (2019), as we require the length of the

j-witness to be 2j + 1 when cj is set to d. But either bj was odd

before, in which case replacing the last index of the j-witness by

m+1 still produces a witness of length 2j+1, or it was even, and

in that case, we can instead appendm+ 1 to the old j-witness.

Lemma 5. Fearnley et al. (2019) Suppose that d ∈ C− is odd

and, for all j ≤ k, either bj = _ or bj ≥ d. If we set ci = bi for all

i ≤ k (i.e., if we set c = b), then c is a witness for ρ′.

When we want to update a witness with the raw update rule

upon scanning another state vm+1 with color d = φ(vm+1), we

select the according lemma if d ∈ C−. Otherwise, i.e., when

d = max{C} and odd, we re-set the witness to _, . . . , _ (which

is a witness for every play prefix).

For a given witness b and a vertex vm+1, we denote with

• Raw update: ru′(b, d) the raw update of the witness to c, as

obtained by the update rules described above.

• Update: up′(b, d) is either ru′(b, d) if value
(

ru(b, d)
)

≤ e

(where e is the number of vertices with even color), or

up′(b, d) = won, otherwise.
In particular, up′(won, d) = won holds for all d ∈ C.

• Antagonistic update: au′(b, d) = min⊑′
{

up′(c, d) |
b⊑′c ∈W

}

.

3.2.1. Basic and antagonistic update game

With these update rules, we define a forward and a backward

basic update game played between the two players even and

odd. In this game, they produce a play of the game as usual: if

the pebble is in a position assigned to even, then even selects a

successor, and if the pebble is in a position assigned to odd, then

odd selects a successor.

Player even can stop any time he likes and evaluate the game

using b0 = _, . . . , _ as a starting point and the update rule

bi+1 = up′(bi, vi) (in the basic update game) and bi+1 =

au′(bi, vi) (in the antagonistic update game), respectively.

For a forward game, even would process the partial play

ρ+ = v0, v1, v2, . . . , vn from left to right, and for the backward

game he would process the partial play ρ− = vn, vn−1, . . . , v0.

In both cases, even has won if, and only if, bn+1 = won.

Theorem 1. Fearnley et al. (2019) Player even has a strategy

to win the parity game if, and only if, even has a strategy to

win the classic forward, respectively, backward basic, respectively,

antagonistic update game.

This can be formulated in a way that, for a given set

C of colors and e states with even color, the deterministic

reachability automaton with states W, initial state _, _, . . . , _,

update rules up′ (or au′), and reachability goal to reach won is a

separating automaton.

Corollary 1. For a parity game with e states and k = ⌊log2(e)⌋

and W the space for witnesses of value ≤ e, length k + 1
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and colors C, both U = (W;C; _, . . . , _; up′;won) and A =

(W;C; _, . . . , _; au′;won) are separating automata.

The advantage of the antagonistic update rule is that it is

monotone: b ⊑′ c → au′(b, d) ⊑ au′(c, d). This allows for
using au′ in a value iteration algorithm (Fearnley et al., 2019).

4. Concise witness

In this article, we suggest a change in the semantics of the

witness, and a related reduction of the statespace of witnesses to

C ( W. While this section focuses on condensing the statspace,

in the next one we will adjust the semantics and improve the

update rule.

The main theoretical advancement is the smaller statespace

we will define in this section, as it directly translates into

improved bounds, slightly outperforming the currently leading

QP algorithm in this regard.

Toward this goal, we define a truncation operator

↓1 : W→ C

that, for every odd color o ∈ C−, leaves only the leftmost

occurrences of o in a witness and replaces all other occurrences

of o in b by _.

For example, ↓1 _, 7, _, 7, 5, 4, _, 3, 3, _, 2 =

_, 7, _, _, 5, 4, _, 3, _, _, 2, and ↓1 3, 3, 2 = 3, _, 2. We also

have ↓1 won = won.
Note that the definition of ↓1 entails

even(↓1 b) = even(b) ,

as well as

value(↓1 b) = value(b) .

Building on the definition of ↓1, we continue with the

following definitions.

• C = {↓1 b | b ∈W},

• Raw update: ru(b, d) =↓1 ru′(b, d),
• Update: up(b, v) =↓1 up′(b, d),
• Order over witnesses: for all b, c ∈ C, b ⊑ c if, and only if,

b ⊑′ c (i.e., ⊑ is simply a restriction of ⊑′ from W to C),

and

• Antagonistic update: au(b, d) = min⊑
{

up(c, d) | b ⊒ c ∈

C
}

To justify the use of the concise witness space C, we first

show that, for all witnesses, c ∈ W in the old witness space, it

holds that ↓1 ru′(c, d) =↓1 ru′(↓1 c, d). Thus, if we truncate

only after, or both before and after, a raw update does not change

the result.

Lemma 6. If b =↓1 c, then ru(b, d) =↓1 ru′(c, d).

Proof. We look at the effect the different update rules have on b

and c. Lemma 3 would (for the same j) change the tail (starting

with the j-witness) of c and b in the same way to d, _, . . . , _,

and they either both do or do not satisfy the prerequisites for its

application. Thus, the ↓1 operator would remove exactly those

positions > j from ru′(c, d) that it removed from c.

When Lemma 4 applies, then it does so for the same index

j, and it simply overrides the tail starting there with d, _, . . . , _

(or with _ if j = 0). As all higher positions are unchanged and

greater or equal to d, b =↓1 c implies ru(b, d) =↓1 ru′(c, d).
When the conditions of Lemma 5 apply either for both, b

and c or for neither of them, then we note that Lemma 5 does

not change the witness.

Finally, if d = max{C} and is also odd, then ru′(b, d) =
ru′(c, d) = _, . . . , _, which implies ru(b, d) =↓1 ru′(b, d) =↓1
_, . . . , _ =↓1 ru′(c, d).

This immediately extends to the update rule up/up′, as they

differ from ru/ru′ only in treating won, and to au/au′

by monotonicity.

Corollary 2. If b =↓1 c, then up(b, v) =↓1 up′(c, v) and

au(b, v) ⊒↓1 au′(c, v).

The observation that ↓1 up′(↓1 c, v) = up(↓1 c, v) =↓1

up′(c, v) can be extended to every run prefix: truncating in every

step and truncating at the end has the same effect. Thus, by a

simple inductive argument, the statewon is reached with up and

up′ at the same time (or not at all in either case).

Theorem 2. The player even has a strategy to win the parity

game if, and only if, even has a strategy to win the concise forward

/ backward basic update game.

Proof. This follows from Theorem 1: because the same runs are

winning when using up and up′ due to Corollary 2, the same

player wins the classic and the concise basic update game.

Theorem 3. The player even has a strategy to win the parity

game if, and only if, even has a strategy to win the concise forward

/ backward antagonistic update game.

Proof. For the ’if ’ case, we observe that Corollary 2 implies

with the monotonicity of au that, when even wins the

classic antagonistic update game, even also wins the concise

antagonistic update game (with the same strategy). Together

with Theorem 1, this provides the “if ” case.

For the “only if ” case, we observe that the monotonicity of

au entails that, when odd wins the basic concise update game,

then odd wins the antagonistic update game (with the same

strategy). Together with Theorem 2, this provides the “only

if ” case.

Corollary 3. For a parity game with e states of even color and

k = ⌊log2(e)⌋ and W the space for witnesses of value ≤ e, length

k + 1 and colors C, both U = (C;C; _, . . . , _; up;won) and
A = (C;C; _, . . . , _; au;won) are separating automata.
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To give intuition to their states, if U is in a state b 6= won,
it means that b is a witness for the play prefix, while won means

that the play prefix contains an even chain of length > e, and

thus an even cycle.

If A is in a state b then there is a state c ⊒ b with

this property.

As a final remark, in the rare cases where even colors are

scarce, their appearance in C can also be restricted: if only e#

states have an even color e, then the number of occurrences

of e in a concise witness can be capped to e#, too, as more

occurrences of e without an intermediate occurrence of a higher

color would imply that an accepting cycle is in the word.

However, for this to reduce the statespace, e# ≤ ⌊log2(e)⌋

is required, and the closer it comes to ⌊log2(e)⌋, the lesser the

saving. In particular, for e# = ⌊log2(e)⌋, we would just save a

single state.

5. Color witnesses

In this section, we use the same data structure as before—

the concise witnesses from the previous section—but adjust

its semantics.

We introduce two changes to the semantics of witnesses

that accelerate the progress to victory for even when update

operations are made. The changes are applied to the concise

witnesses C.

Before formalizing how wemake our witnesses more flexible

and how we use this to re-define the raw update function (and,

through this, the update function and the antagonistic update),

we describe several examples of how we change the semantics

of witnesses.

5.1. Motivating examples

5.1.1. Merging witnesses

If we consider the classic witness b = 4, 4, _, it referred to

two i-witnesses that each end on a state with color 4, one of

length 4 and one of length 2.

For example, b = 4, 4, _ is a classic forward witness for a

run prefix with color trace 9, 6, 7, 8, 7, 2, 4, 3, 2, 4 (where the red

and blue color are used to visualize the even chains), whereas

9, 6, 7, 8, 7, 2, 2, 3, 4, 4 is not.

We will instead view this as a single color witness for color 4,

which then refers to a single even chain of length at least 6.

For example, b = 4, 4, _ is a forward color witness for a run

prefix with color trace 9, 6, 7, 8, 7, 2, 2, 3, 4, 4: as we are content

with an even chain of length 6, it does not matter that the fourth

position of this chain has an entry different to 4.

As a consequence, when passing by a state with the color 6,

we can now update the witness to 6, 6, 6, as this would require a

single even chain of at least length 7 that ends in a 6.

5.1.2. Shifting witnesses

If we consider the witness b = 4, 2, _, it referred to two i-

witnesses, where the first has length 4 and ends on color 4, while

the second has length 2 and ends on color 2.

We will allow making the latter sequence shorter, so long as

the former sequence is extended accordingly. For example, when

the sequence that ends in 4 has length 5, then it would suffice, for

the witness to represent the even chains if the sequence that ends

in 2 has length 1.

For example, b = 4, 2, _ is a forward color witness for a run

prefix with color trace 9, 6, 7, 8, 7, 2, 2, 4, 3, 2 (where the red and

blue colors are used to visualize the even chains)3.

Similarly, for b = 6, _, 4, 2, 2, it would be allowed that the

length of the even chain that ends in 6 is 18, the subsequent

sequence that ends in 4 is 3, and the length of the sequence that

ends in 2 is 2. If the length of the sequences ending in 6, 4, and 2

are ℓ6, ℓ4, and ℓ2, respectively, the constraints would be ℓ6 ≥ 16,

ℓ6 + ℓ4 ≥ 20, and ℓ6 + ℓ4 + ℓ2 ≥ 23.

When passing by a state with the color 8, we can now update

the witness to 8, 8, _, _, _, as this would require a single sequence

of at least length 24 that ends in an 8.

5.1.3. Blocked shifting

This shifting cannot be done through an odd color: for

b = 4, 3, 2, 2, the requirement for the rightmost sequence

would be to be of length at least three and to end in a

2. It is, however, possible to shift some of the required

lengths of the sequence that ends in 3 to the sequence

that ends in 4: if the length of the sequences ending in 4

and 3 are ℓ4 and ℓ3, respectively, the constraints would be

ℓ4 ≥ 8 and ℓ4 + ℓ3 ≥ 13. (Recall the odd witnesses

need to be one position longer to contain an even chain

of the same length.) Thus, reading a 6 would lead to

the witness 6, 6, _, 6.

5.2. Color witness

The biggest change is that an i-color witness (i-cowit) refers

to the color i, rather than to the position bi in the witness.

Consequently, we do not have a fixed length of an i-color witness

and refer to the length of the witness for each color i that appears

in a witness as ℓi.

As before, we focus in our description on forward witnesses,

with backward witnesses being defined accordingly.

3 Note that b = 4, 2,_ is not a classic forward witness for this sequence,

whereas b′ = 4,_, 2 is: the red even chain can be shortened (by dropping

one 2, e.g., to 9, 6, 7, 8, 7, 2, 2, 4, 3, 2) to an even chain of length 4, which

would in and by itself be a 2-witness, whereas the blue even chain is

merely a 0-witness.
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5.2.1. i-color witness (i-cowit) with value ℓi

Let ρ = v1, v2, . . . , vm be a prefix of a play of the parity game.

An even i-cowit is a sequence of (not necessarily consecutive)

positions of ρ

p1, p2, p3, . . . , pℓi

of length exactly ℓi, and an odd i-cowit is a sequence of (not

necessarily consecutive) positions of ρ

p0, p1, p2, . . . , pℓi

of length exactly ℓi + 1, that satisfy the following properties:

• Position: Each pj specifies a position in the play prefix ρ, so

each pj is a positive integer that satisfies 1 ≤ pj ≤ m.

• Order: The positions are ordered. Thus, we have pj < pj+1

for all j < ℓi.

• Evenness:All positions but the final one are even. Formally,

for all j < ℓi the color φ(vpj ) of the vertex in position pj

is even.

For position pℓi , its color φ(vpℓi
) = i. Then, the color

of that position is even for even i-cowit, and odd for odd

i-cowit.

Note that this entails that an i-cowit has ℓi initial even

positions that define an even chain of length ℓi.

• Inner domination: The color of every vertex between pj

and pj+1 is dominated by the color of pj or the color of

pj+1. Formally, for all j < ℓi, the color of every vertex in

the subsequence vpj , vpj+1, . . . , vpj+1 is less than or equal to

max
{

φ(vpj ),φ(vpj+1 )
}

.

• Outer domination: The color of the vertex vpℓi
in position

pℓi is i, i.e., i = φ(vpℓi
). Moreover, i is greater than or equal

to the color of every vertex that appears after position pℓi in

ρ. Formally, for all k in the range pℓi ≤ k ≤ m, we have that

φ(vk) ≤ i.

5.2.2. Color witnesses

Similar to a concise witness, a color witness is a sequence

bk, bk−1, . . . , b1, b0,

of length4 k+1, such that each element bi ∈ C_, and that satisfies

the following properties.

• Properties of the sequence:

defining i-positions as the positions in b that have

value i,

positions(i, b) = {j ≤ k | bj = i} for every i ∈ C−, the

sequence has to satisfy the following constraints:

4 k = ⌊log2(e)⌋ again su�ces, where e is the number of vertices with an

even color.

– order: for i > j, we have that bi ≥ bj or _ ∈ {bi, bj}

holds; and

– conciseness: for all odd i ∈ C−,
∣

∣positions(i, b)
∣

∣ ≤ 1

and b0 6= i hold.

• Witnessing:

• ordered witnesses: for i > j with positions(i, b) 6= ∅
and positions(j, b) 6= ∅, the j-witness starts after the i-
witness ends. That is pi,ℓi < pj,1 if j is even and pi,ℓi <

pj,0 if j is odd.

• using the following definitions,

• next odd color: odd(i, b) = inf{j > i |

j odd and positions(j, b) 6= ∅} defines the next higher
odd color than i that occurs in the color witness (note

that odd(i, b) = ∞ if no such color exists),

• unblocked colors: unblocked(i, b) = {j < odd(i, b) |
j ≥ i and positions(i, b) 6= ∅} is the set of all colors
that are at least i, but strictly smaller than odd(i, b,
and

• unblocked positions: ubp(i, b) =
⋃

j∈unblocked(i,b)
positions(i, b) is the set of positions

labeled by an unblocked color,

we have that
∑

unblocked(i,b)
ℓi ≥

∑

j∈ubp(i,b)
2i holds

for all i ∈ C−.

It should be noted that neither the i-cowit-s associated with

each color, nor the value of the ℓi are stored in a color witness.

However, in order for a sequence to be a color witness for an

initial sequence of a run, the corresponding i-cowit-s must exist.

5.3. Updating color witnesses

We now show how forward color witnesses can be

constructed incrementally by processing the play one vertex at a

time. Throughout this subsection, we will suppose that we have

a play ρ = v0, v1, . . . , vm, and a new vertex vm+1 that we would

like to append to ρ to create ρ′. We will use d = φ(vm+1)

to denote the color of this new vertex. We will suppose that

b = bk, bk−1, . . . , b1, b0 is a color witness for ρ, and has i-cowit-

s with individual lengths ℓi. We will construct a witness c =

ck, ck−1, . . . , c1, c0 for ρ′ and discuss how its inferred i-cowit-s

look like.

We present four lemmas that allow us to perform this task.

Lemma 7. Suppose that d ∈ C− is odd and, for all j ≤ k, either

bj = _ or bj > d. If we set ci = bi for all i ≤ k, then c is a color

witness for ρ′.

Proof. Since d < bj for all j, the outer domination of every e-

color witness implied by b is not changed. Moreover, no other
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property of any e-color witness is changed by the inclusion of

vm+1 in the initial sequence, thus, by setting c = b, we obtain a

color witness for ρ′.

Note that the proof of Lemma 7 does not use that d is odd

and holds similarly when d is even; however, in that case, Lemma

10 provides a better update for the color witness.

Lemma 8. Suppose that d ∈ C− is odd, and there exists an index

j such that bj 6= _, d ≥ bj, and, for all i > j, either bi = _ or

bi > d hold. Then setting:

• ci = bi for all i > j,

• cj = d if j 6= 0 and cj = _ if j = 0, and

• ci = _ for all i < j

yields a color witness for ρ′.

Proof. For all e > d, the e-color witness (if any) implied by b

can be kept: the outer domination of every such e-color witness

implied by b is not changed. Moreover, no other property of any

such e-color witness is changed by the inclusion of vm+1 in the

initial sequence.

For the bj-color witness, we either update the last vertex to

m+ 1 (if bj is odd) or append m+ 1 to it (if bj is even). In both

cases, the inner domination rules are valid (due to the inner and

outer domination rules for the bj-color witness) and the outer

domination rule holds trivially. Moreover, the side constraints

for the length carry over from those for b (when bj is odd), for

ℓd, by adding one to the length constraint while also appending

one state (when bj is even).

Thus, c is a color witness for ρ′.

Lemma 9. Suppose that d is even, there exists a maximal index j

such that bj < d, and bj is odd. Then setting:

• for all i ≥ j, ci = d if bi < d and ci = bi, otherwise,

• for all j > i ≥ 1, ci = _, and

• c0 = d.

yields a color witness for ρ′.

Proof. We simply append all i-cowit-s that exist for b in the

interval i ∈ {bj, . . . , d}. We append them in the given order

(from the largest i to the lowest, bj), and then replace the last

index (which is from the bj-covit) bym+ 1.

The inner domination rules are valid (due to the inner and

outer domination rules for the i-cowit-s involved, and by bj < d.

The outer domination rule trivially holds.

The only new rule to be considered is the rule on the joint

length of the i-cowit-s in ubp(d, c), but this is the same length

(as only the last element is changed) and the same constraint as

for the sum of the length of the i-cowit-s in ubp(bj, b).

Lemma 10. Suppose that d is even and there is no index j′ such

that bj′ < d and bj′ are odd. Let j be the maximal index (which

might be 0) such that:

• for all i > j, bi is even, bi = _, or bi > d;

• either bj = _, or bj > d and bj is odd; and

• for all i < j, bi is even.

If we set:

• ci = bi for all i > j with bi > d or bi = _

• ci = d for all i > j with bi ≤ d (and thus even),

• cj = d, and

• for all i < j, bj = _,

then c is a color witness for ρ′.

Proof. We simply append all i-cowit-s that exist for b in the

interval i ∈ {2, . . . , d}. We append them in the given order (from

the largest i to the lowest), and then appendm+ 1.

The inner domination rules are valid (due to the inner and

outer domination rules for the i-cowit-s involved. The outer

domination rule trivially holds.

The only new rule to be considered is the rule on the joint

length of the i-cowit-s in ubp(d, c), but this is one more than

the length (as only the last element is appended) and the same

constraint as for the sum of the length of the i-cowit-s in

ubp(2, b).

Again, if d = max{C} and odd, then the raw update of

the color witness is _, . . . , _, which is a color witness for every

play prefix.

When we want to update a witness upon scanning another

state vm+1 with color d = φ(vm+1), we can apply the update

rule from one of Lemmas 7 through 10.

For a given witness b and a vertex vm+1, we denote with

• Raw update: ru+(b, d) the raw update of the witness to c,

as obtained by the update rules described above.

• Update: up+(b, d) is either ru+(b, d) if value
(

ru(b, d)
)

≤ e

(where e is the number of vertices with even color), or

up+(b, vm+1) = won otherwise.

In particular, up+(won, d) = won for all d ∈ C.

• Antagonistic update: au+(b, v) = min⊑
{

up+(c, v) |
b⊑c ∈ C

}

.

We first observe that up+ is indeed “faster” than up in that

it always leads to a better (with respect to⊑) state:

Lemma 11. For all b ∈ C and all d ∈ C, up+(b, d) ⊒
up(b, d).

This is easy to check by the raw update rules, and it entails:

Corollary 4. For all b ∈ C and all d ∈ C, au+(b, d) ⊒
au(b, d).

Theorem 4. The following three claims are equivalent for both,

forward and backward witnesses:
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1. player even has a strategy to win the parity game,

2. player even has a strategy to win the fast basic update game

(using up+), and
3. player even has a strategy to win the fast antagonistic update

game (using au+).

Proof. (1) implies (3): By Theorem 3, that player even wins the

parity game entails that he wins the concise antagonistic update

game. As au+ provides (not necessarily strictly) better updates

(with respect to⊑) than au, and by the antagonistic update being
monotone by definition, this entails (3).

(3) implies (2): as up+ provides (not necessarily strictly)

better updates (with respect to ⊑) than au+ and au+
is monotone when au+ produces a winning sequence, so

does up+.
(2) implies (1): when up+ produces a win if, and only if,

ru+ produces a color witness with value > e, which according

to Lemmas 7 through 10 entails that it has an even chain whose

length is strictly greater than e. The play ρ must, at that point,

contain a cycle, since there must be a vertex with even color

that has been visited twice. Moreover, the largest priority on

this cycle must be even, so this is a winning cycle for the

player even.

Corollary 5. For a parity game with e states of even color, colors

C, k = ⌊log2(e)⌋ and C the space for concise witnesses of value ≤

e, length k+1 and colors C, bothU = (C;C; _, . . . , _; up+;won)
and A = (C;C; _, . . . , _;au+;won) are separating automata.

To give intuition to their states, for U being in a state b 6=

won means that b is a color witness for the play prefix, while

won means that the play prefix contains an even chain of length

> e, and thus an even cycle.

ForA being in a state bmeans that there is a state c ⊒ bwith

this property.

5.4. Faster conversion

While the method will speed up the progress to the

solution made by the update operations when using A =

(C;C; _, . . . , _;au+;won) a little, the difference is easier to see

when using U = (C;C; _, . . . , _; up+;won).
The classic QP algorithms (Calude et al., 2017; Jurdziński

and Lazic, 2017; Fearnley et al., 2019) have very simple

pathological examples. For example, Jurdziński and Lazic

(2017) would traverse the complete statespace for a state

with color 2 and a selfloop (or for a state with color

1 and a selfloop, depending on whose player’s side the

algorithm takes). Similarly, Calude et al. (2017) would

traverse very large parts of its statespace when fed with only

even colors.

Using our update rules for color witnesses, a loop with even

colors will always lead to acceptance within e+ 1 steps.

It is possible to make the update rules a bit more

robust against the occurrence of odd priorities that are then

immediately followed by higher even priorities by returning to

W as a statespace5.

6. Statespace

In this section, we compare the size of the statespace with

both the statespace from the construction of Jurdzinski and

Lazic (Jurdziński and Lazic, 2017)–which comes with the best

current bounds– and the original stataspace from Calude et al.

(2017).

We then discuss the effect of the five improvements over the

original approach from Calude et al. (2017):

1. the restriction of the number of occurrences of odd colors in

a witness to once,

2. not using any color that is higher than any even color;

3. not allowing for odd colors in the rightmost position (i.e., b0);

4. the removal of the color 1; and

5. moving from length to value restriction.

The first of these improvements are, individually, the most

powerful one. Three of the other improvements, (2), (3), and (4),

have already been discussed in this form in Fearnley et al. (2019).

We will show in Subsection 6.3.1 that applying only

improvements (1)—the progression from W to C from Section

4—and (2) leads to a statespace of exactly the same size as that

of Jurdziński and Lazic (2017).

Consequently, further improvements, (3)–(5), lead to a

strictly smaller statespace. The improvement from (3) alone

almost halves the statespace, while (4) alone has only a small

effect. The effect of rule (5) — which refers to the change of

the functions evenodd and value described in Section 3.1.2.3

— varies greatly: it is strongest when the bound on the length of

an even chain is a power of 2 (2p for some p ∈ N), where it leads

to halving the statespace, and vanishes if it is one less (2p − 1 for

some p ∈ N).

After briefly visiting the statespace from Fearnley et al.

(2019), we then turn to an experimental comparison of the

three statespaces of interest, confirming the quantification of the

advantage we have obtained over (Jurdziński and Lazic, 2017).

5 When using W, there would need to be some care taken with odd o-

witnesses: while the rules for overwriting lower numbers are as expected,

the point to bear in mind that the treatment of odd colors that already

occur in a witness (covered by Lemma 8) generalize to if there is already

a lowest position j with bj = o, then just replace all bi with i < j by _.

This is because, while two even color witnesses can be merged, two odd

color witnesses cannot, and there would be no means to mark them as

di�erent color witnesses.

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2022.936903
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Dell’Erba and Schewe 10.3389/fcomp.2022.936903

In this section, we use countsize
alg

for counting the number

of state minus one, estimating the number of states except for

the winning state (“won”), which all progress measures under

consideration have. The superscript size can be ℓ, saying that

only the length of the data structure (or: the ⌈log2(e+1)⌉ for the

maximal length e of an even chain) is taken into account; v if the

value of witness is taken into account (or: the maximal length e

of an even chain) is taken into account, and ℓ, v if both are used.

The subscript is either JL when counting the concise progress

measures from Jurdziński and Lazic (2017),O when considering

the original approach from Calude et al. (2017), ′1, 2′ when

adding improvements (1) and (2), or blank when considering

either improvement (1) through (4) or all improvements. In a

closing comparison with the statespace of Fearnley et al. (2019),

we use the subscript JKSSW.

6.1. Concise progress measures

We will not describe the algorithm, but the data structure,

which holds a winning state besides the states we describe. For

each even priority, there is a (possibly empty) word over two

symbols, say + and −, such that the words concatenated have

length at most ℓ = ⌈log2(e+ 1)⌉, where e is the number of states

with an even priority. That is, ℓ is the length of the witness and

color witness from the previous section (ℓ = k+ 1).

For Jurdziński and Lazic (2017) (i.e., alg = JL), with c

priorities {1, . . . , c} and n states with even priority (not counting

the winning state) we have the following counts:

• Induction basis, length: we start with the case in which we

bound the sum of the lengths of+ and− by 0 or 1.

When we bound the sum of the lengths by 0, then there

is only one sequence:

countℓJL(c, 0) = 1 ,

and when we bound it by 1, then we get:

countℓJL(2c, 1) = countℓJL(2c+ 1, 1) = 2c+ 1 ,

as there are c positions in which a sequence of length

1 can occur (one for each even priority in {1, . . . , 2c + 1}

or {1, . . . , 2c}, respectively), and there is one for the case in

which all sequences have length 0.

• Induction basis, colors: when there is only one even color

(i.e., 2), we have:

countℓJL(3, l) = countℓJL(2, l) = 2l+1 − 1 .

These are the binary words of length at most l.

• For all other cases, we define inductively:

countℓJL(2c+ 1, l) = countℓJL(2c, l) = countℓJL(2c− 2, l)

+ 2countℓJL(2c, l− 1) ,

where the first summand refers to the case where the

leading sequence (which refers to color 2c) is empty. In this

case, the length of the remaining sequences is still bound

by l, but the number of even colors has dropped by one.

The two summands countℓJL(2c, l − 1) represent the cases,

where the sequence assigned to the highest even priority

starts with a + and −, respectively. Cutting off this leading

sign leaves countℓJL(2c, l− 1) in different states.

To estimate the number of concise progress measures,

countℓJL(c, l)+1, we put aside the winning state and the function
that maps all even priorities to the empty sequence.

For the remaining states, we first fix a positive length i ≤ l

of the concatenated words, and then the j ≤ ⌊c/2⌋ of the even

priorities that have a non-empty word assigned to them.

There are
( i− 1

j− 1

)

assignments of positive lengths to j

positions that add up to i. For each distribution of lengths, there

are 2i different assignments to words. Finally, there are
( ⌊c/2⌋

j

)

possibilities to assign j of the ⌊c/2⌋ different even priorities.

This provides an overall statespace of

2+

l
∑

i=1

min{i,⌊c/2⌋}
∑

j=1

2i ·
( ⌊c/2⌋

j

)

·
( i− 1

j− 1

)

.

6.2. Calude et al.

‘ We now continue with the statespace of the original quasi-

polynomial approach of Calude et al. (2017), hence, alg =O. The

statespace used in Calude et al. (2017) is slightly larger thanW, as

it only uses the length of the witness as a restriction and does not

exclude odd values for the rightmost position (“b0”) in a witness.

For the precise count of this statepace without the winning

state “won,” we have the following counts:

• Induction basis, length: sequences of length 1 (only

containing b0) whose color values are bounded by c, can

take c+ 1 values in {1, . . . , c} plus _. We, therefore, have:

countℓO(c, 1) = c+ 1 .

• For longer tails of sequences, we define inductively:

countO(c, l+ 1) = countO(c, l)+
c

∑

i=1

countO(i, l) .
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The summands refers to the possible values taken by the

leftmost postion (“bl”) of the tail (bl, bl−1, . . . , b0). The first

summand refers to the leading position being _ (“bl = _”).

This does not restrict the values the rest of the tail may take

any further as the highest color allowed to appear is still c.

The other summands refer to the value i (“bl = i”). When

the value of the leftmost position is i ≤ c, then the highest

color that may occur in the remaining positions is i.

The size of |W+| of the statespace can be given as:

2+

l
∑

i=1

( l

i

)

·
( i+ c− 1

i

)

.

The “2” refers to the winning state and the “empty” sequence

consists only of _ symbols (which is more convenient for us to

treat separately), and the sum refers to the states represented by

non-empty sequences of length l = ⌈log2(e+ 1)⌉, where e is the

number of states with an even priority. Note that the estimation

given in Calude et al. (2017) is slightly coarser, and their game

definition is slightly different from the normal definition of

parity games, but the bound can be taken from Fearnley et al.

(2019).

For the estimation, after fixing the positive i ≤ l positions

with values different to _, there are
( i+ c− 1

i

)

different

valuations when we have c priorities. For each i ≤ l, there

are
( l

i

)

different choices for the i positions containing some

number d ∈ C. This leads to
∑l

i=1

( l

i

)

·
( i+ c− 1

i

)

different

states that contain i ≤ l positions that have a value in C.

To obtain a better inroad to outline the differences, we first

take a closer look at the
( i+ c− 1

i

)

different valuations that we

may have for c priorities when we have fixed the i ≤ l positions

that are not marked as _.

For these positions, we can look at the cases where there are

j ≤ min(i, r) fixed different priorities. For that case, there are
( i− 1

j− 1

)

many assignments of these j priorities to the i positions.

Moreover, there are
( c

j

)

different options to select j of the

available r priorities. Thus, we get

( i+ c− 1

i

)

=

min{i,c}
∑

j=1

( c

j

)

·
( i− 1

j− 1

)

different combinations for all number of priorities put together,

providing the following size:

2+

l
∑

i=1

min{i,c}
∑

j=1

( l

i

)

·
( c

j

)

·
( i− 1

j− 1

)

.

6.3. Improvements

We now discuss the differences obtained when moving from

W+ to C by looking at the effect of the three optimisations we

have introduced. These are:

1. the restriction of the number of occurrences of odd colors in

a witness to once,

2. not using any color that is higher than any even color;

3. not allowing for odd colors in the rightmost position (“b0”);

4. the removal of the color 1; and

5. moving from length to value restriction.

6.3.1. (1) and (2) Restricted occurrence of odd
colors

Restricting the occurrence of odd colors to once, together

with the optimization of not using any color that is higher than

any even color, leads to a situation where the highest color

allowed in any position is even. To see this, we observe that

the banning of a potential odd color higher than any even color

guarantees this initially, where the highest color allowed is the

highest even color.

When an odd color o is used in the witness (“bl = o”), then

the highest color allowed to its right is o − 1, whereas when an

even color e is used in the witness (“bl = e”), then the highest

color allowed to its right is e.

We, therefore, only have to define our improved counting

function for even colors:

• Induction basis, length: apart from using only even bounds,

the base case remains the same:

countℓ1,2(2c, 1) = 2c+ 1 .

• For longer tails of sequences, we define inductively:

countℓ1,2(2c, l+ 1) = 1+ 2

c
∑

i=1

countℓ1,2(2i, l) .

The summands refer to the possible values taken by the

leftmost position (“bl”) of the tail (bl, bl−1, . . . , b0).

The first summand refers to the leading position being

1 (“bl = 1”). If this is the case, then all entries to its right

must be strictly smaller than 1 (which is not possible) or

_—consequently, they must all be _, which just leaves one

such tail.
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The other summands refer to the leading position

taking the value 2i or 2i + 1 when i < c (“bl = 2i” or

“bl = 2i+1”), in either case, themaximal value of the colors

occurring in the remaining tale is 2i.

The final two summands (for i = c) refer to the leading

position taking the value 2c or _ (“bl = 2c” or “bl = _”). In

both cases, the maximal value of the colors occurring in the

remaining tale is 2c.

While the representation is different, it is easy to see that

countℓ1,2(2c, l) = countℓJL(2c, l) holds.

To see this, we first observe that countℓJL(2, l + 1) = 1 +

2countℓJL(2, l) holds, and then by induction over c that:

countℓJL(2, l+ 1) = 1+ 2

c
∑

i=1

countℓJL(2i, l) .

Given that we also have countℓ1,2(2c, 1) = countℓJL(2c, 1),

we get the claim, because countℓJL(2c, l) cannot be derived in the

same way as countℓ1,2(2c, l).

6.3.2. (3) and (4) Removing odd colors from the
rightmost position and 1s

Removing odd colors from the rightmost positions only

changes the base case, while banning 1 from the other positions

merely removes the “1+” part from the inductive definition.

This leaves:

• Induction basis, length:

countℓ(2c, 1) = c+ 1 .

• For longer tails of sequences, we define inductively:

countℓ(2c, l+ 1) = 2

c
∑

i=1

countℓ(2i, l) .

When evaluating the term countℓ, the reduction from 2c+1

to c+ 1 is halving the value (rounded up) at the leaf of each call

tree, which provides more than the removal of “= 1” in each

node of the call tree. Together, they broadly halve the value.

6.3.3. (5) Taking the value into account

We start with using both the length and the value and

then remove the length in the next step to get a more concise

representation, but we note that, for a given length l, the value v

allowed always satisfies v < 2l.

First, we get another induction base, one by value:

• Induction basis, value:

countℓ,v(2c, l, 0) = 1 .

Regardless of the remaining length, if the value of the

tail is bounded by (and thus needs to be) 0, then it can only

consist of _ signs.

• Induction basis, length:

countℓ,v(2c, 1, 1) = c+ 1 .

• For longer tails of sequences and positive values, we

distinguish several cases. The first case is that v < 2l. Then

we have

countℓ,v(2c, l+ 1, v) = countℓ,v(2c, l, v) .

This is simply because filling the position l+ 1 with any

number, even or odd, would exceed the value budget.

This leaves the case v ≥ 2l, i.e.,:

countℓ,v(2c, l+ 1, v) =
∑c

i=1 countℓ,v(2i, l, v− 2l)

+
∑c

i=1 countℓ,v(2i, l, 2l − 1) .

This is because, when filling position lwith an even number,

it takes 2l from the budget of the value, leaving a remaining

budget of v− 2l.

When filling this position with an odd number, while

the value would be increased by 2l, this is within the value

budget. Moreover, if this position is still relevant to the

value, then the positions to its right no longer add to the

value of the sequence, as the leftmost odd position would

be the last to be considered.

We, therefore, set the value for the remaining tail to the

right to be the maximal value that can be obtained by this

tail, which is 2l− 1; this is a rendering of saying that for the

tail the values are not constrained.

The effect of adding value can vary greatly. It is larger when

the number of positions with even color is a power of 2, say 2l,

and it has no effect at all if it is 22 − 1. In the former case, if

the initial position is even, then all other positions need to be _.

Generally, we have

countℓ,v(2c, l, 2l − 1) = countℓ(2c, l) and

countℓ,v(2c, l, 2l−1) = countℓ(2c, l)/2+ c

for all l > 1.

Taking the value into account therefore broadly halves the

statespace when e is a power of 2, and has no effect when e is
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a predecessor of a power of 2, falls from 2l−1 to 2l − 1 for all

l > 1.

Looking at the definition of countℓ,v, it is easy to see that an
explicit reference to the length can be replaced by a reference to

the next relevant length, ⌊log2 v⌋. This provides:

countv(2c, 0) = 1 ,

countv(2c, 1) = c+ 1 , and

countv(2c, v) =
∑c

i=1 countv(2i, v− 2⌊log2 v⌋)

+
∑c

i=1 countv(2i, 2⌊log2 v⌋ − 1) otherwise.

6.4. Comparison with the statespace of

While improvement (1) is the most powerful of the

optimizations, the improvements (2)–(4) were present in

Fearnley et al. (2019), where the algorithm makes use of a

value function, namely value′(b) =
∑

i∈even(b)
2i. It is, therefore,

interesting to provide a count function for Fearnley et al. (2019).

We use the subscript JKSSW, and only use the count that uses

both length and value.

We get the following state counts:

countℓ,vJKSSW (c, 1, 0) = 1

countℓ,vJKSSW (c, 1, 1) = ⌊c/2⌋ + 1

if v < 2l : countℓ,vJKSSW (c, l+ 1, v) = countℓ,vJKSSW (c, l, v)

+
∑⌈c/2⌉

i=2 countℓ,vJKSSW (2i− 1, l, v)

if v ≥ 2l : countℓ,vJKSSW (c, l+ 1, v) = countℓ,vJKSSW (c, l, 2l − 1)

+
∑⌊c/2⌋

i=1 countℓ,vJKSSW (2i, l, v− 2l)

+
∑⌈c/2⌉

i=2 countℓ,vJKSSW (2i− 1, l, 2l − 1) .

To explain the difference to countℓ,v, one major difference is

that the highest color allowed in a position can be odd. The other

is that positions with odd color do not contribute to the weight,

which allows for adding positions with odd color the remaining

budget is lower than 2l.

Thus, the call tree for the calculation of countℓ,vJKSSW has

⌈c/2⌉ successors where v < 2l while the call tree for countℓ,v

has just one. For v ≥ 2l, the call tree has the same number of

successors (for even c) or just one additional successor (for odd

c), but the parameter falls slower.

7. Statespace comparison

In this subsection, we provide a graphical representation

of the statespace size for the three algorithms: Calude et al.

(2017), Jurdziński and Lazic (2017), and the improvement

described in this article. The size of the statespace on which

an algorithm works does not represent how well the algorithm

performs in practice. Indeed, in the context of parity games,

there are quasi-polynomial time algorithms that behave like

brute-force approaches. Therefore, they always require quasi-

polynomial many steps to compute the solution, while most

of the exponential time algorithms, instead, almost visit a

polynomial fraction of their statespace. The first improvement

we described does not affect the performance of the algorithm,

since both the original and the improved algorithm require the

same number of steps to solve a game, but the latter works

on a reduced statespace. To measure how big is the cut we

consider Figure 1 games with a fixed number of colors and

Figure 2 games with a linear number of colors in the size of the

game. The games in Figure 1 range from 23 to 215 positions

n. Therefore, the length of the measure, which is logarithmic

in n, constantly increases, while the colors are fixed to a value

of 10. As a consequence, the ratio of colors with respect to n

range from 80 to 0.02%. As expected, the cut with the original

algorithm significantly increases for games that are not dense

in colors as the lines tend to diverge on a logarithmic scale.

The ratio between Jurdzinski and Lazic approach (JL) and the

new improvement, instead, converges to a cut of 73% of the

statespace. The games of Figure 2, instead range from 28 to 29

positions n, so that the length of the measure is fixed, while

the number of colors constantly grows from 26 to 50. As a

consequence, we have that the ratio of colors with respect to n

is fixed to 10%. In this case, the scale is linear and, even if the

improved statespace is always smaller than the other two, the

cut tends to shrink.

8. Discussion

We have introduced three technical improvements over

the progress measures used in the original quasipolynomial

approach by Calude et al. (2017) and its improvements

by Fearnley et al. (2019). The first two reduce the statespace.

The more powerful of the two is a simple limitation of

the occurrences of odd colors in a witness to one. Where the

highest color is even, this alone reduces the size of the statespace

of Calude et al.’s approach to the currently smallest one of

Jurdziński and Lazic (2017). Where the highest color is odd,

we obtain the same by borrowing the simple observation that

this highest color does not need to be used from Fearnley et al.

(2019).

The second new means to reduce the statespace is the use of

witnesses that only refer to even chains of plausible size, namely

those that do not contain more dominating even states than the

game has to offer. A similar idea had been explored in Fearnley

et al. (2019), but our construction is more powerful in reducing

the size of the statespace. The effect of this step ranges from none

(where the number of states with even color is the predecessor

of a power of 2 (2ℓ − 1 for some ℓ ∈ N), then rises steeply to a
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FIGURE 1

Size of the statespace for games with a fixed number of colors on a logarithmic scale.

FIGURE 2

Size of the statespace for games with a linear number of colors on a linear scale.

factor of 2 for a power of 2 (2ℓ), and then slowly falls again, until

it vanishes at the next predecessor of a power of 2.

These improvements work well with the other

improvements from Fearnley et al. (2019), namely not

using the color 1 and disallowing odd values for the rightmost

position (“b0”) in a witness. These improvements broadly halve

the statespace, leading to a statespace reduction that broadly

oscillates between 2 and 4 when compared to the previously

leading approach.

The second improvement we have introduced is a re-

definition of the semantics of witnesses, moving from classic

witnesses to color witnesses. While it does not lead to a difference

in the size of the statespace, it does accelerate its traversal,

especially for the “standard” update rule that does not extend

to value iteration; in particular, it gets rid of the most trivial kind

of silly hard examples, such as cliques of states of player odd that

all have even color.

While the use of color witnesses clearly accelerates the

analysis, it is not as easy as for the statespace reduction to

formally quantify this advantage.
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Vöge, J., and Jurdziński, M. (2000). “A discrete strategy improvement algorithm
for solving parity games,” in CAV’00, LNCS 1855 (Chicago, IL: Springer),
202–215.

Wilke, T. (2001). Alternating tree automata, parity games, and modal
muCalculus. Bull. Belg. Math. Soc. 8, 359–391. doi: 10.36045/bbms/1102714178

Zielonka, W. (1998). Infinite games on finitely coloured graphs with
applications to automata on infinite trees. Theor. Comput. Sci. 200, 135–183.
doi: 10.1016/S0304-3975(98)00009-7

Frontiers inComputer Science 18 frontiersin.org

https://doi.org/10.3389/fcomp.2022.936903
https://doi.org/10.36045/bbms/1102714178
https://doi.org/10.1016/S0304-3975(98)00009-7
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Smaller progress measures and separating automata for parity games
	1. Introduction
	1.1. Contribution
	1.2. Outline

	2. Preliminaries
	3. Classic Witnesses
	3.1. Classic forward witness
	3.1.1. i-Witnesses
	3.1.2. Witnesses
	3.1.2.1. Forward and backward witnesses
	3.1.2.2. Order on witnesses
	3.1.2.3. The value of a witness


	3.2. Updating witnesses
	3.2.1. Basic and antagonistic update game


	4. Concise witness
	5. Color witnesses
	5.1. Motivating examples
	5.1.1. Merging witnesses
	5.1.2. Shifting witnesses
	5.1.3. Blocked shifting

	5.2. Color witness
	5.2.1. i-color witness (i-cowit) with value l
	5.2.2. Color witnesses

	5.3. Updating color witnesses
	5.4. Faster conversion

	6. Statespace
	6.1. Concise progress measures
	6.2. Calude et al.
	6.3. Improvements
	6.3.1. (1) and (2) Restricted occurrence of odd colors
	6.3.2. (3) and (4) Removing odd colors from the rightmost position and 1s
	6.3.3. (5) Taking the value into account

	6.4. Comparison with the statespace of

	7. Statespace comparison
	8. Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


