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Introduction: A goal of inbodied interaction is to explore how tools can be

designed to provide external interactions that support our internal processes.

One process that often su�ers from our external interactions with modern

computing technology is our breathing. Because of the ergonomics and low-

grade-but-frequent stress associated with computer work, many people adopt

a short, shallow breathing pattern that is known to have a negative e�ect on

other parts of our physiology. Breathing guides are tools that help people

match their breathing patterns to an external (most often visual) cue to practice

healthy breathing exercises.However, there are two leading protocols for how

breathing cues are o�ered by breathing guides used in non-clinical settings:

simple paced breathing (SPB) and Heart Rate Variability Biofeedback (HRV-b).

Although these protocols have separately been demonstrated to be e�ective,

they di�er substantially in their complexity and design. Paced breathing is a

simpler protocol where a user is asked to match their breathing pattern with

a cue paced at a predetermined rate and is simple enough to be completed

as a secondary task during other activities. HRV-b, on the other hand, provides

adaptive, real-time guidance derived from heart rate variability, a physiological

signal that can be sensed through a wearable device. Although the benefits of

these two protocols have been well established in clinical contexts, designers

of guided breathing technology have little information about whether one is

better than the other for non-clinical use.

Methods: To address this important gap in knowledge, we conducted the first

comparative study of these two leading protocols in the context of end-user

applications. In our N=28 between-subject design, participants were trained

in either SPB or HRV-b and then completed a 10-minute session following

their training protocol. Breathing rates and heart rate variability scores were

recorded and compared between groups.

Results and discussion: Our findings indicate that the exercises did not

significantly di�er in their immediate outcomes – both resulted in significantly

slower breathing rates than their baseline and both provided similar relative

increases in HRV. Therefore, there were no observed di�erences in the

acute physiological e�ects when using either SPB or HRV-b. Our paper

contributes new findings suggesting that simple paced breathing – a
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straightforward, intuitive, and easy-to-design breathing exercise – provides the

same immediate benefits as HRV-b, but without its added design complexities.

KEYWORDS

guided breathing, simple paced breathing, heart rate variability biofeedback (HRV-b),

heart rate variability (HRV), guided breathing technology

Introduction

Guided breathing exercises – where the breath is actively

controlled – have been shown to lead to both immediate

and long-term benefits for health, including reduction in

the symptoms of chronic stress (Kennedy and Parker, 2018),

lower blood pressure in individuals with hypertension (Schein

et al., 2001), increased resistance to relapse in depression

(Caldwell and Steffen, 2018), increased effectiveness of substance

dependence treatments (Eddie et al., 2015), and increased

cognitive executive functioning (Prinsloo et al., 2011; Sutarto

et al., 2013). Guided breathing exercises work because our

breathing influences the state of our body. When we control

our breath, we create change throughout the entire body,

which, like other forms of exercise, can positively benefit health

and wellness.

Given the documented health benefits observed during

clinical use (see Gevirtz, 2013 for a review), it is not surprising

that many commercial products have been developed to support

guided breathing exercises outside of clinical settings. For

example, clinically backed guided breathing tools such as

HeartMath’s EmWave1 and MindMedia’s BioTrace+2 (Figure 1-

left) are marketed based on the promise of health benefits that

can be achieved with continued use. Similarly, a wide variety

of breathing guides are readily available at minimal cost on

mobile app stores (e.g., casual use by healthy individuals is

not well understood. To address this gap in knowledge, we

compare the relative effectiveness of the two most prominent

protocols used in existing guided breathing technologies: heart

rate variability biofeedback (HRV-b) – a comparatively more

complex protocol that employs real-time sensing and feedback

to guide breathing – and, paced breathing – a simpler protocol

that guides breathing in a consistent and rhythmic pattern (that

is not based upon sensed physiological data). Although research

has established that HRV-b may be more effective in clinical

contexts (Brown and Gerbarg, 2005; Logtenberg et al., 2007;

Gevirtz, 2013; Critchley et al., 2015; Ma et al., 2017; Russell et al.,

2017; Steffen et al., 2017), it is not yet well-understood how the

effectiveness of each protocol differs during casual use and, in

1 heartmath.com/emwave

2 mindmedia.com/en/products/biotrace-software

turn, how best to balance any differences in effectiveness with

each protocol’s inherent differences in design complexity.

Heart rate variability biofeedback works by using a sensing

technology (such as ECG) to capture changes in heart rate

variability (i.e., HRV - a measure of the natural variations in

timing between consecutive heart beats; Shaffer et al., 2014).

HRV-b systems typically use a visual representation to show

the user how their heart rate rises and falls in relation to

their breathing (see Figure 1-left). The user is instructed to

align their inhalations with increases in their heart rate, and

exhalations with decreases in their heart rate. Although this may

initially seem abstract, with some guidance and practice, and

because changes in heart rate are relatively rhythmic, users can

typically learn to follow HRV-b guidance quickly. This specific

process amplifies HRV and is believed tomaximize physiological

benefits (Lehrer, 2013; Lehrer and Gevirtz, 2014). The HRV-b

protocol is described in greater detail below.

In contrast, paced breathing is somewhat simpler. A paced

breathing system provides a rhythmic guidance cue. For

example, this cue could be a circle displayed on a mobile phone

that slowly and rhythmically grows and shrinks; users breathe in

as the circle grows and breathe out as the circle shrinks (Figure 1-

right). Importantly, paced breathing systems do not typically use

a sensing technology to provide adaptive guidance, everyone gets

the same guidance based on a pre-determined breathing rate

(typically, six breaths per minute, Eddie et al., 2015). This is

believed to work for a similar reason as HRV-b, as breathing in

a slow rhythmic way approximates the beneficial physiological

conditions created by HRV-b.

The main distinction between these approaches is that HRV-

b is adaptive and paced breathing is not. However, to provide this

adaptivity, HRV-b requires both a sensing technology to collect

heartbeat data and close attention for users to observe and adapt

their breathing in real time. Paced breathing does not have these

requirements, and because it is static and predictable, it has been

suggested that it can even be practiced while performing other

tasks; for example, during information work (Moraveji et al.,

2011; Ghandeharioun and Picard, 2017; Tabor et al., 2021) or

while driving (Paredes et al., 2018).

Importantly, there are clear differences in how systems that

support either HRV-b or paced breathing can be designed.

However, it has not been established whether the added

complexity of HRV-b translates to greater physiological benefit

in non-clinical settings. For clinical populations, HRV-b has

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2022.926649
https://heartmath.com/emwave
https://mindmedia.com/en/products/biotrace-software
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Tabor et al. 10.3389/fcomp.2022.926649

FIGURE 1

Commercially available Heart Rate Variability Biofeedback (HRV-b) and Paced Breathing tools. (Left) Biotrace+ Clinical HRV-b Software (Mind

Media): Clinical populations align their breathing (blue) with a real-time representation of their heart rate (red), with the goal of creating smooth,

large waves in their heart rate signal. (Right) Breathe Easy (Mood Tools): Users time their inhales and exhales with the rhythmic expansion and

contraction of the onscreen circle (blue). This app employs a simple paced breathing protocol – users select a constant, predetermined

breathing rate at the start of each session.

often been treated as the gold standard because it provides

the real-time, full-resolution biofeedback with which to align

breathing (Lehrer and Gevirtz, 2014). This may not necessarily

be the case during non-clinical use of breathing exercises (e.g.,

commodity grade sensors may not be capable of providing

adequate feedback; untrained users may not be able to fully

operationalize the feedback provided), which leads to a key

gap in design knowledge. On the one hand, if the “cheaper

and easier” paced breathing protocol leads to benefits that are

comparable with HRV-b in this context, designers could rely on

a much simpler protocol when integrating breathing exercise

into their tools without the need for specialized equipment. On

the other hand, if HRV-b holds clear benefit above and beyond

paced breathing, designers and users may accept the additional

overheads of HRV-b, deeming them necessary to receive the

maximum benefit for their time and effort.

In our work, we present the first study that directly compares

the acute physiological benefits of paced breathing with HRV-b

in a non-clinical setting. In a between-subjects study consisting

of 28 participants, we demonstrate that both exercises created

measurable physiological markers of benefit, and that the

magnitude of these effects do not differ significantly between the

two exercises. That is, both exercises led to comparable decreases

in respiration rate and increases in heart rate variability, which

are the immediate goals of the exercises.

Our findings suggest that, in non-clinical use cases, the

simpler paced breathing exercise is as an effective alternative

to HRV-b. Although our current work does not examine

longer-term positive health effects achieved through continued

practice, our findings can immediately inform the design of

guided breathing technologies that target the acute benefits of

guided breathing exercise. Our work provides new directions

for future research in the design of technology that supports

breathing exercise for everyday use. Further, we provide essential

information for the design of inbodied interactions (schraefel,

2020) that leverage breathing as a means to “tune” our

physiological processes for positive health benefits (schraefel,

2020).

Related work

We organize our related work by first presenting relevant

background on the physiology of guided breathing exercises,

then summarizing previous research in HCI that has explored

the design of tools that make use of breathing and heart rate

variability sensing and systems that provide support for guided

breathing exercise.

What is heart rate variability?

Our heart is often conceptualized as beating in a constant

and uniform pattern. However, in reality, the beat-to-beat timing

between each successive heartbeat varies – a phenomenon

known as heart rate variability (HRV). In the context of

breathing exercises, HRV is often visualized as the waveform

created by plotting a sequence of rr-intervals – the elapsed time

in milliseconds between each pair of consecutive heart beats

(Shaffer et al., 2014). In the remainder of this paper, we refer to

this representation of HRV as a heart rate wave, which is visible

in Figure 1-left, but described in greater detail in Figure 3.

Heart rate variability occurs because our heart rate is

governed by many physiological processes that are frequently

in contention with one another. Respiratory sinus arrhythmia

(RSA) and the baroreflex are two of these processes relevant

to guided breathing exercise. RSA causes our heart rate to

oscillate in unison with our breathing – inhales lead to
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faster heart beats to streamline gas exchange, whereas exhales

lead to slower heart beats to conserve energy as the lungs

expel spent fuel (Yasuma and Hayano, 2004). RSA oscillations

occur at an individual’s current breathing rate, which typically

range from 8 to 24 cycles per minute during spontaneous

(i.e., unguided/natural) breathing (Calais-Germain, 2006).

Conversely, the baroreflex causes our heart rate to oscillate in

a way that maintains a stable blood pressure (i.e., a negative

feedback loop) (Chapleau, 2012). Although the exact rate varies

by individualized traits such as height, weight, and gender,

baroreflex oscillation typically occur proximate to six cycles per

minute (Lehrer, 2013).

The goal of guided breathing exercise is
high-amplitude, low-frequency HRV

Research has demonstrated that, with sustained practice,

guided breathing exercise can lead to a wide range of health

and wellness benefits (e.g., a survey of documented benefits is

presented in Gevirtz, 2013). As is the case with many forms of

exercise, these benefits are contingent on the effectiveness of

each practice session, which is characterized by the creation of

high-amplitude, low-frequency oscillations in HRV (Lehrer and

Gevirtz, 2014). This is accomplished by slowing the breathing

to match the frequency of the baroreflex, which causes the

influences of the RSA and baroreflex to come into alignment and

resonate (see Figure 3). Although the theoretical underpinnings

of why this leads to health and wellness benefits is beyond the

scope of the current paper, a detailed explanation can be found

in Lehrer and Gevirtz (2014), Eddie et al. (2015), or Tabor et al.

(2019).

Protocols for delivering guided breathing
exercise

Due in part to the physiological benefits attainable through

breathing exercise, many technology-mediated breathing guides

have been developed. As outlined in the remainder of this

section, it is common for designs to target either a heart

rate variability biofeedback (HRV-b) or simple paced breathing

(SPB) protocol – often motivating the added complexity

of HRV-b based on the promise of more fully realizing

exercise benefits.

Heart rate variability biofeedback

Heart rate variability biofeedback (HRV-b) is often

considered the gold-standard slow breathing exercise in clinical

settings (Lehrer et al., 2000; Gevirtz, 2013; Lehrer, 2013).

Originally designed as a clinical exercise for reducing blood

pressure in people with hypertension (Lehrer et al., 2000),

HRV-b uses visual feedback to display the patient’s heart

rate wave, breathing rate, and other physiological signals in

real time (Lehrer, 2013; Lehrer and Gevirtz, 2014) (visible in

Figure 1-left). Supported by guidance and instruction from a

trained clinician, the patient uses this feedback to align their

breathing with the on-screen heart rate wave to create the

desired high-amplitude, low-frequency waveform (Lehrer, 2013;

Shaffer et al., 2014; Steffen et al., 2017).

Since its inception, HRV-b has been demonstrated to be

both an effective standalone and supplemental treatment of a

wide range of adverse conditions and illnesses (Gevirtz, 2013).

In addition to clinical use, commercially available tools now

exist that allow HRV-b to be also used in non-clinical settings

(e.g., BreatheSync3, HeartMath EmWave4). Adaptations of the

exercise have also been proposed in research including the use

of different modalities of feedback (Weffers and Alina, 2010;

Bergstrom et al., 2014; Yu and Song, 2015; Yu et al., 2015,

2018a,b,c; Frey et al., 2018) and even into more engaging game-

like settings (Kuikkaniemi et al., 2010; Al Rihawi et al., 2014; Qin

et al., 2014; Sonne and Jensen, 2016; Patibanda et al., 2017; Sonne

et al., 2017).

Many of these HRV-based designs motivate the added

protocol complexity based on the promise of maximizing

exercise benefits. However, despite its effectiveness, HRV-b

has several limitations that prevent it from being a widely

accessible and easily deployable exercise. While the biofeedback

provided inHRV-b helps people breathe in a way that maximizes

physiological effects (known as one’s coherent or resonant

frequency breathing rate, which generally ranges between 4.5

and 6.5 bpm, Lehrer, 2013), this feedback is derived from real-

time sensor readings. This means that users are required to

wear a sensor when practicing the exercise. For example, the

EmWave5 system uses a smartphone attached PPG ear-clip

to monitor HRV, providing biofeedback visualizations during

exercise. Further, focused attention is required to continuously

monitor and respond to real-time changes in physiology,

which means HRV-b is best practiced while solely focused on

the exercise (and would be difficult to sustain while actively

engaged in another work task). Although HRV sensing has also

recently been shown to be achievable using the camera and

flash on a mobile phone (Plews et al., 2017; Bánhalmi et al.,

2018), (i.e., bypassing the need for external/dedicated sensors),

users still must actively use the sensor and focus on adapting

their breathing to the provided feedback (e.g., BioZen, 2019;

Breathmix - Biofeedback Breath Pacer, 2019; HRV Biofeedback,

2019).

3 www.breathesync.com

4 store.heartmath.com/tech

5 store.heartmath.com/emwave2
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TABLE 1 An illustrative sample of existing guided breathing technology designs.

Guidance

protocol

Intended

salience

Target setting Stimulus

modality

Example guide designs

HRV-b Active focus Relaxation Audio Yu et al., 2018a

Visual Abtahi et al., 2014; Liang et al., 2018; Yu and Song, 2015; Yu et al., 2018b

Serious game Visual Wollmann et al., 2016

Work Visual Ren, 2019

SPB+HRV-b Active focus Relaxation Audio Harris et al., 2014

Visual Hair and Gutierrez-Osuna, 2017

SPB Active focus Relaxation Audio Wongsuphasawat et al., 2012; Mladenović et al., 2018; Leslie et al., 2019

Audio+ Visual Zhu et al., 2017

Haptic Bumatay and Seo, 2015; Ban et al., 2018

Serious game Visual Sonne and Jensen, 2016

Active focus+

Ambient use

Relaxation Audio Hamon et al., 2018

Ambient use Daily life Haptic Paredes and Chan, 2011; Papadopoulou et al., 2019

Driving Audio Zepf et al., 2020

Audio+Haptic Paredes et al., 2018

Work Audio+ Visual Ghandeharioun and Picard, 2017

Haptic Yu et al., 2015

Visual Moraveji et al., 2011

This tables presents an illustrative comparison of breathing guide designs that have been proposed in research to date. Designs are grouped and organized by the guidance protocol (i.e.,

HRV-b vs. SPB), intended salience (i.e., requiring active attentional focus during use vs. an ambient/environmental cue), target setting, and stimulus modality employed.

Simple paced breathing

In an attempt to mitigate the design complexities inherent

to HRV-b, research has suggested that simpler breathing

exercises – that do not exhibit the attentional or real-time

sensing requirements of HRV-b – can still lead to physiological

benefits. For example, Song and Lehrer (2003) found that

regulated breathing at 6.0 bpm (irrespective of each participant’s

“optimal” breathing rate identified through HRV-b) led to

the desirable exercise effects. This is an important finding

for the design of technology-mediated breathing guides as it

suggests that the benefits of these exercises may be attainable

without the requirements for real-time sensing and constant

attention that accompany HRV-b. Conversely, however, a study

conducted by Steffen et al. (2017) suggests that breathing

exactly at one’s individualized resonance frequency is critical

for the full benefits of guided breathing exercise to occur. In

this study, the magnitude of exercise benefits was diminished

when breathing rates deviated from resonance frequency by

as little as one breath-per-minute (Steffen et al., 2017). This

conflicting evidence is a key motivator for our study and is

likely a contributing factor to the prevalence of both HRV-b and

SPB protocols in current guided breathing technologies. In our

research, we aim to better understand the relative effectiveness

and design tradeoffs between these two protocols during non-

clinical use.

Existing guided breathing technology
designs

To date, many guided breathing system designs have been

proposed both in research and commercially. Although these

designs employ a wide variety of guiding approaches and

stimulus modalities, these systems can largely be organized into

two categories according to the underlying exercise protocol

employed (i.e., HRV-b or SPB). Table 1 presents an illustrative

sample of the wide variety of existing breathing guide designs.

We organize this table by guidance protocol (i.e., whether

the design employed HRV-b, SPB, or both), intended salience

(i.e., whether the design was intended to require active user

focus or serve as a subtle ambient/environmental cue), target

setting (i.e., whether the design was intended for general-

purpose relaxation or was tailored for a specific setting such

as information work), and stimulus modality (i.e., whether the

employed visual, auditory, haptic, or a combination of guidance

stimuli). Although research has presented designs that satisfy

many different configurations of these design parameters to

date, there is still little information about how these designs

compare in utility and effectiveness. We believe that studying

how the influence of factors such as salience, setting, and

modality influence (such as our work comparing different

guidance modalities in an office environment, Tabor et al.,
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2021) will uncover valuable findings for the design of breathing

exercise technologies.

Breathing and heart rate variability in HCI
more broadly

The use of sensed breathing and heart rate variability has a

lengthy history inHCI research.We organize our presentation of

HCI research employing breathing (or breathing rate) and heart

rate (or heart rate variability) around the four main motivations

for the use of these physiological signals: (1) to identify user

state, (2) as an input to control interactive systems, (3) to support

mindfulness practices, and (4) to support therapeutic exercise.

To identify user state

Physiological input, in general, has received growing

attention from the HCI community as sensors become

commoditized and more reliable. Heart rate, HRV, and

respiration have been explored for some time to identify user

state in HCI such as, stress, fatigue, and anxiety (see Cowley

et al., 2016 for a review). The motivation for identifying state

is that, with an understanding of state, systems can adapt their

behavior to best suit the user (Rowe et al., 1998). For example,

Spire6 monitors breathing rate during normal daily activities

through a wearable stone and alerts user with real-time coping

strategies when “stressful” breathing patterns are detected.

To control an interactive system

Breathing has been widely used for direct control of

interactive systems. Much of the work that leverages breath as an

input modality has involved blowing (by forcefully pushing air

out) for general computer control or control of assistive devices.

Notably, sip-and-puff interfaces (which operate using both the

intake and exhalation of air) have been used to control powered

wheelchairs for many years (for example, to assist those with

a cervical injury, Fehr et al., 2000). Additionally, sip-and-puff

interfaces have been developed for the control of mouse pointers

(Kitto and Bellingham, 1993) and music players (Jones et al.,

2008) with accessibility applications in mind.

Research has also explored the use of blowing as an

additional input channel for general computer use. Patel

and Abowd (2007) demonstrated the use of commodity

microphones to create “BLUIs” (Blowable User Interfaces).

Breathing has been explored more frequently for entertainment

applications as a means of improving engagement (e.g.,

Schnädelbach et al., 2010; Tennent et al., 2011; Sra et al., 2018).

Heart rate and HRV have been explored less frequently to

control interactive systems. Unlike with breathing, we have very

6 spire.io

little direct volitional control over our heart rate7. Nacke et al.

(2011) generalize this difference and draw a distinction between

direct (e.g., breathing) and indirect (e.g., heart rate or HRV)

sources of physiological input, stating that, in games, direct

physiological sensors can be mapped to actions in a virtual

world, while indirect sensors are better suited to alter features in

the game world rather than as a control (e.g., influencing music

or lighting). In agreement, Kuikkaniemi et al. (2010) found

that direct physiological controls (e.g., breathing or muscle

input) benefited player experience, while indirect (i.e., heart rate)

did not. Furthermore, while we largely have some degree of

control over breathing, Marshall et al. (2011) point out that it

can also be involuntary in certain situations, and this can be

leveraged for thrilling experiences (e.g., they mapped the control

of a mechanical bull’s movements to breathing). In a different

application of indirect physiological input, Stach et al. (2009)

found that scaling game difficulty according to heart rate in

exergames was an effective means for balancing competition

between players of different physical abilities.

To support mindfulness

HCI research has also explored the relationship between

breathing and heart rate in activities for mindfulness. Inspired

by yogic practice, Patibanda et al. (2017) and Zhu et al. (2017)

explored tools designed to develop breathing awareness inspired

by mindfulness activities. Similarly, Roo et al. (2017) provide

indirect biofeedback of “cardiac coherence” in a playful activity

meant to support mindfulness through directed focus on the

breath. See Terzimehić et al. (2019) for a full review of HCI

research into mindfulness.

Although these projects illustrate the common connection

made between practices of mindfulness and the breath, guided

breathing can also be considered and practiced independently

from meditation or mindfulness practices. In meditation, the

breath is both a convenient and complimentary object to direct

attention toward during meditation (i.e., since our breath is

readily available to us at all times, and is tightly coupled with

our heart rate and autonomic state) – we can volitionally

alter our breathing without meditating, and we can practice

meditation by directing attention toward objects other than our

breath (e.g., toward various body parts during a “body-scan”

meditation, Terzimehić et al., 2019). Furthermore, in this study,

we focus strictly on the physiological effects of guided breathing,

and therefore do not explore the many important psychological

factors at play in both meditation and mindfulness practices.

7 Recent research suggests that with specific focus and training it may

actually be possible to volitionally influence our heart rate (Abukonna

et al., 2013), however, outside of these special circumstances our heart

rate is typically considered to be a non-volitional/autonomicallymediated

process.
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As a therapeutic exercise

HCI researchers have also focused on the potential

physiological and therapeutic benefits of breathing exercises.

In many cases, this research has focused on improving user

engagement by incorporating game-like elements into existing

forms of breathing exercise. For example, Sonne and Jensen

(2016) found that their breathing game for children with

ADHD had consistent effects on HRV compared to traditional

breathing focused exercises and was much preferred as an

activity. Rovers et al. (2009) have synthesized the design

lessons that have been uncovered through such games and

provide a model to assist in the design of biofeedback games

more generally.

HCI has also focused on designing technology that facilitates

the integration of therapeutic breathing exercise into everyday

life, and several recent projects have looked at various ways

to provide paced guidance for breathing using visual cues

and sounds (Moraveji et al., 2011; Moraveji and Soesanto,

2012). The results of this work suggest that while people could

successfully follow paced breathing cues during information

work, they quickly returned to normal breathing when the

cues were removed (Moraveji et al., 2011). This research also

found evidence that subjective calm was reported as being

lower in a visually-paced breathing condition than a sound-

paced condition (Moraveji and Soesanto, 2012), suggesting

that additional cognitive demands of splitting visual attention

between the two tasks “... may counter the calming effects of

slow breathing” (Moraveji and Soesanto, 2012). This line of work

did not, however, explicitly investigate physiological effects such

as HRV.

To summarize, while work on the use of breathing for

therapeutic benefit has been motivated by reliable findings and

benefits, much of the work described above does not consider

whether the adapted breathing activity still led to physiological

markers of benefit (with the notable exception of Sonne and

Jensen, 2016). In our study, we quantify these physiological

markers of benefits to directly compare the effects of two

commonly employed protocols for breathing exercise.

A direct comparison of the acute
physiological e�ects of HRV-b and
simple-paced breathing

Although HRV-b has been proposed as a gold standard in

clinical contexts (Brown and Gerbarg, 2005; Logtenberg et al.,

2007; Lehrer and Gevirtz, 2014; Critchley et al., 2015; Ma et al.,

2017; Russell et al., 2017; Steffen et al., 2017), it is currently

unclear if the added complexities of HRV-b translate to increased

benefit over simple paced breathing during non-clinical use.

To better understand any potential differences in immediate

effects between these two exercises, we conducted a between-

subject study. We hypothesized that both treatments would

create physiological effects [as has been shown many times in

previous research (Prinsloo et al., 2011; Critchley et al., 2015;

Russell et al., 2017; Steffen et al., 2017)] and, importantly, that the

magnitude of those effects would not be significantly different.

Specifically, we proposed three main hypotheses.

First, previous research has established that both SPB (e.g.,

Song and Lehrer, 2003) and HRV-b (e.g., Eddie et al., 2015)

increase HRV scores. We expect our experimental protocol to

replicate these outcomes. Thus, we hypothesize that:

• H1: Both breathing exercises will lead to reductions in

breathing rate and increases in HRV scores compared to

baseline measures.

Second, the key difference between HRV-b and SPB is

that the adaptive, real-time feedback provided during HRV-b

allows users to further refine their breathing patterns and reach

an optimal “resonant frequency breathing rate” (Lehrer, 2013)

that maximizes physiological effects. This rate varies according

to physical traits such as height, weight, and physical fitness.

However, we believe that the influence of these individual

differences will be minimal during non-clinical exercise use and,

in turn, the physiological effects of our SPB protocol (which only

approximates each participant’s resonant frequency rate) will be

similar to those provided by HRV-b. Thus, we hypothesize that:

• H2: The magnitude of the HRV effects will not be

significantly different between HRV-b and SPB (i.e., HRV-b

will not lead to significantly larger effects than SPB).

Third, previous research has suggested that the magnitude

of HRV effects created is related to baseline state, with larger

magnitude effects anticipated in individuals who are “farther out

of breathing alignment” to begin with (Kennedy and Parker,

2018). Therefore, in our analysis we also test for correlations

between baseline breathing rate and the magnitude of effects

created. We hypothesize that:

• H3: Effects will be most pronounced in participants with

higher baseline breathing rates (i.e., the magnitude of HRV

effects will positively correlate with baseline breathing rate).

Apparatus

Two guided breathing applications were developed in

Processing 3.0. Each tool was developed based on examples from

published literature on paced breathing (Moraveji et al., 2011;

Wongsuphasawat et al., 2012) and HRV-b (Lehrer et al., 2000;

Lehrer and Gevirtz, 2014; Eddie et al., 2015). Both tools are

publicly available at https://github.com/hcilab/BreathingGuides.
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FIGURE 2

The breath pacing stimulus that guided participants at a

constant six breaths per minute breathing rate. Participants were

instructed to inhale as the circle grew and became darker (left),

and exhale as it got smaller and lighter in color (right).

Paced breathing guide

The paced breathing stimulus consisted of a circle

with rhythmically oscillating diameter and opacity (Figure 2).

Participants were instructed to inhale as the circle increased

in size and became darker (Figure 2-left) and exhale as it got

smaller and lighter (Figure 2-right). Participants were told that

the circle represented the expansion and contraction of their

stomach during each cycle of breath, which was calibrated to

guide breathing a constant rate of six breaths per minute (i.e.,

10-s cycles).

Heart rate variability biofeedback

The heart rate variability biofeedback (HRV-b) tool

consisted of a scrolling real-time line graph depicting the

participant’s heart rate wave. Heart rate was displayed

numerically on the vertical-axis of the graph, and the graph

presented a 45-s history of the signal. Participants were

instructed to align their breathing with the heart rate wave

(i.e., the biofeedback) by timing their inhales with the rise of

the wave and their exhales with the fall of the wave – with the

goal of achieving a heart rate wave with maximal amplitude

and smoothness. A detailed description of the coaching cues

and instructions are provided in Procedure. Figure 3 depicts

the HRV-b tool and illustrates a heart rate wave during normal

breathing (left) and during HRV-b (right).

Data collected

Breathing and heart rate variability signals were logged

during the experiment. Outcomemeasures were computed from

the two 10-min data logs collected during the baseline and

breathing exercise portions of the session (see below).

Breathing rate

Respiration was monitored continuously using a nasal

thermistor and the BioRadio wireless physiology monitoring

kit8. Sensor readings were recorded at 1,000Hz, smoothed

using a sixth-order Butterworth low-pass filter (0.75Hz,

corresponding to 45b pm), and down sampled to 10Hz for

further analysis. Breathing rate was computed by counting

zero-crossing occurrences in the respiration signal in each 15-s

contiguous data-window of the recording.

Heart rate variability

RR-intervals were recorded using the Polar H10 chest strap9.

As presented above, the goal of guided breathing exercise is to

create high-amplitude, low-frequency heart rate waves. In this

experiment, we use two standardized outcomemeasures (Shaffer

and Ginsberg, 2017) to characterize these signal qualities from

the captured rr-interval log: HRV amplitude – a measure of the

height of each wave in beats per minute; and low-frequency HRV

power (LF) – ameasure of the degree to which the heart rate wave

is oscillating in the desired frequency band. HRV amplitude was

computed using the opensource heartpy analysis toolkit (van

Gent et al., 2019), while LF was computed using the Kubios

HRVAnalysis Software v3.5 (Tarvainen et al., 2014). Note that, in

order to satisfy the statistical requirements of our analysis, a log

transformation was applied to measured LF scores (see below).

Procedure

The experiment was conducted according to the following

procedure. A summary of experimental activities is presented in

Figure 4.

Consent, initial setup, and baseline measures

Each session was 2 h in duration. All participants read

and signed an informed consent form before beginning the

experiment (UNB REB 2018-112) and withheld from caffeine,

tobacco, alcohol, vigorous exercise, and large amounts of food

intake in the 3-h preceding the experiment, any of which

are known to influence HRV (Shaffer and Ginsberg, 2017).

Each participant was assigned to one of two exercise protocol

conditions (Paced Breathing or HRV-b) to balance groups by

age and gender (since these traits are known to systematically

influence HRV, Shaffer and Ginsberg, 2017). The experiment

proceeded identically for both groups except for the breathing

exercise condition that was completed, as described below.

The session began with physiological sensor placement. The

Polar H10 was positioned in the center of the chest according

8 glneurotech.com/bioradio

9 polar.com/ca-en/products/accessories/h10_heart_rate_sensor
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FIGURE 3

The Heart Rate Variability Biofeedback (HRV-b) tool used during the experiment. The scrolling line graph depicts the most recent 45-s of the

user’s heart rate wave, with the vertical-axis representing their heart rate derived from each RR interval. (Left) A typical heart rate wave during

spontaneous/unguided breathing. (Right) A high-amplitude, low-frequency heart rate wave created by aligning the breath with the feedback

during the HRV-b exercise.

FIGURE 4

A block diagram summarizing the experiment procedure. White blocks were completed by all participants. Gray blocks were completed by

participants assigned to the HRV-b exercise protocol condition, whereas black blocks were completed by those in the Paced Breathing

condition.

to manufacturer guidelines10, while the nasal thermistor was

positioned securely at the base of the nostrils. Once positioned,

the experimental data collection began. This began with 10-min

of controlled relaxation, during which the participant sat quietly

and relaxed with no explicit queues about breathing provided.

This allowed breathing and HRV to stabilize and was the 10-min

data log used to compute each participant’s baseline breathing

rate and HRV scores.

Introduction to abdominal breathing and
breathing exercise

Participants received a short introduction to abdominal

breathing, which was modeled on published coaching

instructions (Lehrer et al., 2000; Calais-Germain, 2006). In

this introduction, participants first practiced distinguishing

between chest and abdominal breathing by resting their hands

on their chest and stomach and feeling each hand rise and fall

as they inhaled and exhaled. Once comfortable with abdominal

10 support.polar.com/e_manuals/H10_HR_sensor/Polar_H10_user_

manual_English/manual.pdf

breathing, all participants then practiced slowing their inhales

and exhales to a count that approximated six breaths per minute.

Following the introduction, participants were introduced

to the specific breathing exercise they had been assigned

to, either:

• HRV-b Instructions: Our delivery of HRV-b was based

on published best practices for the clinical form of the

exercise (Lehrer et al., 2000). Participants in the HRV-

b group were given a short introduction to heart rate

variability. Specifically, they were told that the timing

between each consecutive heartbeat varies, and that this

variation is natural, normal, and healthy as it reflects our

ability to constantly adapt to the many bodily processes

that influence our heart rate at any point in time. To

illustrate this, the experimenter opened the HRV-b tool and

explained how the scrolling line graph (Figure 5) depicts

this variability. Finally, participants were told that the goal

of this exercise was to align their breathing with the waves

visible in their heart rate wave by breathing in a way that

was similar to the practice they had just completed, but

slightly adjusting the timing of their breathing to make the

waves as big and smooth as possible.
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FIGURE 5

Grand mean outcome measures scores broken down by experiment phase. (Left) Breathing rate; (Middle) HRV amplitude; (Right) ln(LF). Error

bars depict standard error of mean (SEM).

• Paced Breathing Instructions: Participants in the paced

breathing group were introduced to the breath pacing

guide (Figure 4) and instructed to align their breathing

appropriately (as explained in Paced Breathing Guide).

Both groups were given several minutes to practice their

respective breathing exercises and reminded to breathe in a

rhythmic and regular manner through their nose and into

their abdomen. Instructions and coaching cues were repeated

as necessary.

Distractor task

Before proceeding to the 10-min monitored breathing

exercise, participants completed a distractor task to washout any

effects from the practice. In this task, participants used a search

engine to populate information in a spreadsheet of countries

(e.g., population, capital city), which was selected as it is simple,

straightforward, easy to explain, and requires active engagement

to complete the search queries, which directed attention away

from the breath.

10-min breathing exercise

Following the distractor task, participants in each group then

performed a timed 10-min session of their respective breathing

exercises. Outcome measures were computed from the 10-min

data log collected during this phase of the experiment. Before

beginning, participants were reminded of the exercise protocol,

reminded to breathe rhythmically and regularly through their

nose and into their abdomen.

Participants

A total of 30 participants were recruited for the study.

However, two participants were excluded from analysis due to

sensor error (i.e., breath sensor receded from nostrils – one

participant from each experimental group). This resulted in an

analysis composed of 28 participants, 14 per group.

According to established best practice (e.g., Voss et al., 2015),

participants were systematically assigned to treatment groups to

balance age and sex as sessions occurred. These demographic

factors are known to substantially influence baseline HRV. As

a result, both groups were composed of six self-reported males

and eight self-reported females, with mean age of 40.6 years (SD

= 18.9) for the paced breathing group and 38.7 years (SD= 16.3)

for the HRV-b group.

Data analysis

Statistical analysis

All analyses were conducted in JASP 0.10.2. For hypotheses

H1 and H2, outcome measures were analyzed using a 2

× 2 repeated measures ANOVA with within-subjects factor

experiment phase (baseline, breathing exercise), and between-

subjects factor exercise protocol (HRV-b, paced breathing). To

satisfy the normality requirements of this analysis, a natural-

log transformation was applied to measured LF scores – this

outcome measure is presented as ln(LF) throughout the results

section below. For hypothesis H3, mean-difference transformed

HRV scores were compared with baseline breathing rates using

a Pearson correlation analysis. All effects were considered
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significant for p-values ≤0.05, and no significant interaction

effects were detected unless explicitly stated.

Group balancing

T-tests confirm that baseline outcome measures (i.e.,

breathing rate, ln(LF), and hrv amplitude) were not significantly

different between treatment groups (p > 0.25).

Data windowing

Signal profiles are presented in the results section, below.

These profiles were generated by iteratively recomputing

outcome measures in each contiguous 30-s window of the data

log.

Results

We organize results around our experimental hypotheses

presented in Section A direct comparison of the acute

physiological effects of HRV-b and simple-paced breathing.

Breathing exercises lead to reduced
breathing rate and increased HRV – H1

In agreement with H1, significant reductions in breathing

rate and increases in HRV (both ln(LF) and hrv amplitude) were

observed during the breathing exercise phase of the experiment

compared to baseline measures. Figure 5 presents a summary of

these findings.

Breathing rate

ANOVA results indicate a main effect of experiment phase

(F1,26 = 41.9, p < 0.01). Grand mean breathing rates were

significantly lower when completing the breathing exercises

(5.7b pm, SD= 0.99) compared to baseline measures (11.8b pm,

SD = 5.1). Figure 5-left presents grand mean breathing rates by

experiment phase.

HRV amplitude

ANOVA results indicate a main effect of experiment phase

(F1,26 = 56.9, p < 0.01). Grand mean HRV amplitude was

significantly higher during breathing exercise (amplitude = 7.5,

SD = 2.9) compared to baseline measures (amplitude = 4.6,

SD = 1.9). Figure 5-middle presents grand mean hrv amplitude

scores by experiment phase.

ln(LF)

ANOVA results indicate a main effect of experiment phase

(F1,26 = 81.7, p < 0.01). Grand mean ln(LF) scores were

significantly higher during breathing exercise (ln(LF) = 8.3,

SD = 1.4) compared to baseline measures (ln(LF) = 6.7, SD

= 1.5). Figure 5-right presents grand mean ln(LF) scores by

experiment phase.

No significant di�erences between
HRV-b and paced breathing protocols –
H2

Observations also support H2 – no significant differences

in the magnitude of effects were observed between treatment

groups. Figures 6, 7 present a summary of these findings.

Breathing rate

Participants who completed HRV-b achieved reductions

in mean breathing rate from 11.0 bpm (SD = 4.3) during

baseline down to 5.2 bpm (SD = 1.3) during treatment.

Meanwhile, participants who completed paced breathing

achieved reductions from a baseline rate of 12.5 bpm (SD= 5.8)

down to 6.1 bpm (SD= 0.03) during treatment. ANOVA results

were not significant for this comparison (F1,26 = 1.32, p= 0.26).

Figure 6-left presents breathing rates by experiment phase and

exercise protocol. We interpret these observations as evidence

that a comparable reduction in breathing rate was achieved with

both breathing exercise protocols.

Although a significant difference in mean breathing rates

was not detected between exercise protocols, a markedly higher

variance was observed in the HRV-b group compared

to Paced Breathing (Figure 6-right). This difference is

likely reflective of the key distinction between the two

exercise protocols – the paced breathing protocol provided

guidance at a predetermined rate of 6.0bpm, whereas the

HRV-b feedback did not impose a specific breathing rate

during exercise.

HRV amplitude

Participants who completed HRV-b achieved an increase in

hrv amplitude from 5.0 (SD = 2.0) during baseline to 7.0 (SD

= 2.1) during the breathing exercise. Meanwhile, participants

who completed paced breathing achieved a comparable increase

from 4.2 (SD = 1.7) during baseline to 8.0 (SD = 3.4) during

the breathing exercise. ANOVA results were not significant for

this comparison (F1,26 < 1.0, p = 0.90). Figure 7-left presents

hrv amplitude scores by experiment phase and exercise protocol.

We interpret these observations as evidence that a comparable

increase in hrv amplitude was achieved with both breathing

exercise protocols. However, a significant experiment phase ∗

breathing protocol interaction was also detected (F1,26 = 5.5, p

= 0.03).

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2022.926649
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Tabor et al. 10.3389/fcomp.2022.926649

FIGURE 6

Observed breathing rates during the experiment. (Left) Average breathing rates broken down by experiment phase and exercise protocol. Error

bars indicate standard error of mean (SEM). (Right) Per-participant mean breathing rates while completing breathing exercises, broken down by

exercise protocol. The box-and-whisker plots denote per-quartile median (i.e., “box” → 25th, 50th, and 75th quartile, “whiskers” → minimum and

maximum values). The “X” markers indicate per-protocol mean. A markedly larger variance in breathing rate was observed in the HRV-b group

compared to Paced Breathing.

FIGURE 7

HRV Scores broken down by Experiment Phase and Exercise Protocol (HRV-b – gray dashed lines; Paced Breathing – black dotted lines). (Left)

HRV Amplitude; (Right) ln(LF). No significant di�erences were detected between the two protocols. However, a significant experiment phase x

exercise protocol interaction was detected with HRV amplitude. Error bars depict standard error of mean (SEM).

ln(LF)

Participants who completed HRV-b achieved an increase

in ln(LF) from 7.0 (SD = 1.5) during baseline to 8.5 (SD

= 1.1) during the breathing exercise. Meanwhile, participants

who completed paced breathing achieved a comparable increase

from 6.4 (SD = 1.4) during baseline to 8.0 (SD = 1.6) during
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the breathing exercise. ANOVA results were not significant

for this comparison (F1,26 = 1.18, p = 0.29). Figure 7-

right presents ln(LF) scores by experiment phase and exercise

protocol. We interpret these observations as evidence that a

comparable increase in ln(LF) was achieved with both breathing

exercise protocols.

E�ects may be more pronounced in
people with higher baseline breathing
rates – H3

Evidence supports the previously claimed relationship

between baseline breathing rate and the magnitude of exercise

effects (e.g., Kennedy and Parker, 2018). Our findings suggest

that, although all participants were able to align their

breathing to the desired frequency, increases in HRV amplitude

was more pronounced in individuals with higher baseline

breathing rates. A summary of these findings is presented in

Figure 8.

HRV amplitude

A significant, positive correlation was found between

baseline breathing rate and HRV amplitude (r2 = 0.26,

p < 0.01) – participants with higher baseline breathing

rates attained larger increases in HRV amplitude during

breathing exercise. Figure 8-left presents hrv amplitude scores

attained during the exercise phase of the experiment against

baseline breathing rate.

ln(LF)

Similarly, a significant, positive correlation was also found

between baseline breathing rate and ln(LF) (r2 = 0.63, p <

0.01) – participants with high baseline breathing rates attained

larger increases in ln(LF) during breathing exercise. Figure 8-

right presents ln(LF) scores attained during the exercise phase

of the experiment against baseline breathing rate.

E�ects materialize consistently,
regardless of treatment or baseline HRV

To consider whether one approach may allow people to

reach lower breathing rates or HRV increases more quickly,

we visually inspected data over the 10-min exercise. Figure 9

presents profiles of outcome measures over the course of the

10-min breathing exercise. This analysis reveals that the onset

of exercise effects was largely consistent between HRV-b and

paced breathing.

Discussion

Summary and interpretation of results

In this section, we summarize the findings just presented,

highlighting how they relate to our initial hypotheses and how

they might be generalized and applied to the design of guided

breathing technology more broadly.

Guided breathing exercise creates acute
physiological e�ects linked to health benefits –
H1

In our experiment, we observed the physiological

markers of health benefits across both guided breathing

treatment groups. Both groups successfully reduced their

breathing rates, which translated to higher-amplitude, lower-

frequency heart rate waves – the maker of effective guided

breathing exercise.

We did not include a control group in our study

design because the effectiveness of both HRV-b and paced

breathing compared to control is well-established in the

literature (e.g., Sherlin et al., 2009; Prinsloo et al., 2014;

Critchley et al., 2015; Steffen et al., 2017). However, since

our findings align with well-established previous results,

we have full confidence that the exercises completed

in our study were what led to observed increases in

HRV amplitude and low-frequency power. Our results

support H1.

No significant di�erences between the e�ects
of HRV-b and paced breathing – H2

In addition to observing physiological markers of benefit

across participants in both guided breathing treatment groups,

we found that the effects of paced breathing did not differ

significantly from those of the more sophisticated HRV-

b exercise. Participants in both treatment groups achieved

comparable reductions in breathing rate and increases in HRV

scores. Further, the way these effects materialized over the course

of the 10-min exercise (i.e., the onset of the effects) was also

consistent between exercises.

This is an important finding for design because HRV-

b is a more sophisticated, involved, and costly protocol to

integrate into tools that support guided breathing. Since similar

immediate effects can be achieved from either breathing

exercise, our findings suggest that paced breathing can be used in

place of HRV-b when designing guided breathing technologies

for non-clinical use. Our results support H2.
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FIGURE 8

Correlation plots between baseline breathing rates and mean-di�erence transformed HRV scores. (Left) Mean-di�erence transformed HRV

amplitude by baseline breathing rate. (Right) Mean di�erence transformed ln(LF) scores by baseline breathing rate. Consistently across both

measures of HRV, a significant Pearson correlation was found. This suggests that larger magnitude increases in HRV scores were created by

individuals with higher baseline breathing rates.

Guided breathing creates larger e�ects in
individuals with high baseline breathing rates –
H3

Previous research (e.g., Kennedy and Parker, 2018) has

suggested that themagnitude of the effects created during guided

breathing depend on baseline state – larger magnitude effects

are anticipated to occur in individuals who are “further out of

breathing alignment” to begin with. Our findings corroborate

this conjecture – all participants in our study were able to reduce

their breathing to the desired rates during exercise and larger

increases in HRV amplitude and low-frequency power were

observed in those with higher baseline breathing rates.

Again, this finding is important for the design of guided

breathing tools because it suggests that designers may be able to

rely on a simple and uniform exercise irrespective of the targeted

user group (i.e., additional design consideration is not needed to

help individuals who are “out of breathing alignment” complete

the exercise effectively). Despite the widely varying demographic

backgrounds of the participants that completed our studies (e.g.,

with ages ranging from those in their 20’s through those into

their 80’s; individuals with widely varying levels of physical

fitness), the guided breathing exercises completed led to the

anticipated physiological effects.

An inbodied interaction lens to informing
guided breathing technology design

Although many system designs have previously been

proposed for guided breathing based upon both HRV-b

approaches (Yu and Song, 2015; Liang et al., 2018) and simple-

paced breathing (Moraveji et al., 2011; Ghandeharioun and

Picard, 2017), we argue that there is a fundamental knowledge

gap that inbodied interaction helps to expose. That is whether

there are fundamental differences between the outcomes of

these practices. Inbodied interaction argues that HCI systems

that aim to support and optimize human performance need

to rely upon a sound understanding of physiology to best

inform design (schraefel, 2019; Andres et al., 2020). With this

in mind, our paper provides both a valuable primer that should

be accessible to HCI researchers and critical information about

the physiological effects of two leading exercises that improve

health and well-being. Although our work is preliminary from

a physiological point of view, it provides a valuable first step

toward building a deeper understanding of a critical issue for

designing guided breathing technologies. Further, we articulate

and evidence the need for further research into both HRV-b and

paced breathing exercises.
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FIGURE 9

Profiles of breathing rate (top), hrv amplitude (middle), and ln(LF) (bottom) during the 10-min guided breathing exercise. Plotted values indicate

the end of each 30-s computation window. Data is broken down by exercise protocol (Paced Breathing, black dotted lines; HRV-b, gray dashed

lines). Visual inspection suggests that reductions in breathing rate and increases in HRV scores occurred in a similar fashion with both exercise

protocols.
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What about the longer-term e�ects of
guided breathing technology?

In clinical use, HRV-b is typically practiced continually

over the course of several months to achieve lasting/permanent

physiological (e.g., reduced BP, Schein et al., 2001) and

psychological benefits [e.g., decreased effects of chronic stress

(Kennedy and Parker, 2018) and reduced rates of relapse

in depression (Caldwell and Steffen, 2018)]. While we have

demonstrated consistent effects across the two breathing

exercises in a single 10-min session, we cannot speak to

the effects of sustained or continued practice. However, it is

important to note that even though it is currently unclear

whether a single 10-min session of guided breathing can create

meaningful, real-world performance benefits, research suggests

that these early and acute physiological effects are indicative

of the benefits that will be achieved with continued practice

of guided breathing (Gevirtz, 2013; Lehrer and Gevirtz, 2014).

Therefore, it seems likely that paced breathing would provide

long term benefits similar to those demonstrated with HRV-b.

Given the potential benefits of guided breathing technology,

we hope our findings and other explorations of paced breathing

guides (e.g., Tabor et al., 2021) provides important next steps

for further study. In particular, an improved understanding of

real-world, long-term use will be beneficial from both a user

experience and physiological outcomes point of view.

How long is long enough?

A critical question that still exists for the use and design

of future breathing guidance technology in how long sessions

should (or need to) be. Previous research has suggested that

sessions of at least 10-min in duration are needed to fully achieve

the benefits of guided breathing (Lehrer et al., 2000; Lehrer and

Gevirtz, 2014). This is based on maximizing the neuro-plastic

effects created by the breathing exercises (Lehrer et al., 2003) and

has been the protocol used in many studies to date (e.g., Prinsloo

et al., 2013; Critchley et al., 2015; Steffen et al., 2017; Kennedy

and Parker, 2018). However, in our study, we observed that the

changes in HRV occurred largely within the first 2min of both

breathing exercises – well before completing the full 10min of

practice. This early shift could suggest that some of the benefits

of the exercises might be attainable with a shorter duration of

treatment, which could make guided breathing more appealing

and attainable when designing tools for certain contexts [e.g.,

in an information workplace setting (Moraveji et al., 2011),

where interruptions are known to occur frequently (Czerwinski

et al., 2004)]. Our recent study found some indication that

guide designs may influence peoples’ preferences after being

interrupted (but not in physiologically measurable way; Tabor

et al., 2021). Although we cannot confirm whether shorter,

more frequent bouts of guided breathing would lead to the

benefits of a more traditional practice, clearly understanding

the tradeoffs between duration, frequency, and physiological

benefits will be an important direction for future research in

guided breathing technologies.

Providing performance feedback and
measures of progress

In many current non-clincal guided breathing technologies,

progress and performance metrics have been derived from the

user’s HRV during guided breathing exercise. For example, the

Heart Math EmWave (see text footnote5). uses an ear-clip to

monitor HRV and provides users with a metric called coherence

(see McCraty et al., 2009 for details). Similarly, BreatheSync

(see text footnote3), an iPhone breathing app, monitors HRV

by having users rest their finger over their phones camera

during the breathing exercise and reports a metric derived from

this data known as wellness quotient (WQ). While the specific

details of these measures may differ between products, their

purpose is to provide a quantifiable sense of performance during

the breathing exercise and for tracking progress over time.

However, if designers follow our results and design according

to the simpler paced breathing protocol, it raises the question

of how performance and progress can be tracked, assessed, and

quantified. We discuss several ideas below.

First, with continuing improvements in both camera

technology and computer vision, it is becoming feasible to

monitor physiological signals using a standard RGB video

feed. For example, research has demonstrated that heart rate,

breathing rate, and RR intervals can be monitored in this way

(Fei et al., 2005; Pavlidis et al., 2007; Poh et al., 2010; AL-

Khalidi et al., 2011; Dcosta et al., 2016), albeit with individuals

seated at their desk under ideal lighting and environmental

conditions. Further exploring the feasibility and robustness

of such an approach under non-ideal lighting, with moving

participants, or in a mobile setting could allow performance

to be monitored during guided breathing without the need for

specialized sensing equipment.

Furthermore, it may be possible to assess performance

and progress through markers other than those traditionally

associated with guided breathing exercises, such as HRV. For

example, perceived levels of stress/anxiety (Prinsloo et al., 2013;

Goessl et al., 2017; Ma et al., 2017) and cognitive acuity

(Sherlin et al., 2009; Prinsloo et al., 2011; Purwandini Sutarto

et al., 2012; Sutarto et al., 2013; Dessy et al., 2018) are also

both measurable characteristics that have been shown to be

influenced by guided breathing exercise that do not require

real-time heart rate sensing. Should designers choose to assess

performance and demonstrate progress through measures like

perceived stress and cognitive state, it may also have the added
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benefit of helping to motivate continued use as these measures

more directly demonstrates the tangible benefits that manifest

from guided breathing. Designing performance assessment tools

that demonstrate the improvements achieved during guided

breathing that are quick to complete, responsive to change, and

robust over time is an interesting direction for future research in

this area.

Finally, depending on the context of the design, it may not

be important or even necessary to demonstrate performance

or progress over time. For example, research exploring the

design of peripheral breathing guides (Moraveji et al., 2011;

Ghandeharioun and Picard, 2017; Tabor et al., 2021) suggests

that users may be able to adhere to a paced breathing

stimulus without constant attention to their breath, partially

mitigating the need to motivate the practice through measures

of performance and progress.

Limitations and future work

In this section, we discuss the limits and scope of our

findings, and explain how the results of our study can inform

further research in the future.

Ensuring the proper administration of
HRV-b in non-clinical settings

We have argued that HRV-b is a more sophisticated and

involved protocol compared to paced breathing, especially in

non-clinical use cases. This raises an interesting question: did

we administer HRV-b correctly/to its fullest potential? Although

our results demonstrate effects that are not significantly different

between paced breathing and HRV-b, we also acknowledge

that HRV-b can be challenging – especially for beginners. Is it

possible that, had we administered HRV-b in a “better” way,

we would have observed greater improvement? In preparing

for the study, we took great care to match our testing protocol

with those reported in previous literature. We made heavy use

of the guide provided by Lehrer et al. (2000) that provides

a detailed protocol for HRV-b. Additionally, our exercise and

coaching instructions were informed based on the materials

of an HRV-b course taught by Dr. Richard Gevirtz11 as well

as interviews with an HRV-b clinician in our local area.

We, therefore, have no reason to believe that our protocol

differed in any meaningful way from those in previous work

and, in short, we are confident that the HRV-b protocol was

administered correctly. Therefore, the physiological benefits

achieved in our HRV-b protocol are representative of those

anticipated in unsupervised, real-world practice, as would

11 shop.stensacademy.com/products/e-course-heart-rate-variability

be the case with at-home use of commercially available

HRV-b tools.

Exploring the longer-term e�ects of
practice

Previous research has demonstrated that many of the

benefits associated with guided breathing are achieved with

continued practice over a period of weeks or months (Wheat

and Larkin, 2010; Gevirtz, 2013; Michael et al., 2017; Kennedy

and Parker, 2018; De Witte et al., 2019). For example, the

lowered levels of blood pressure (Schein et al., 2001), decreased

symptoms of depression (Caldwell and Steffen, 2018), and

reduced rates of relapse in substance dependence (Eddie et al.,

2015) presented in previous research were all observed following

sustained practice of guided breathing over an 8 week period

or longer. While we have demonstrated that the early, acute

physiological markers of these benefits occur consistently in

paced breathing and HRV-b, we will investigate whether this

similarity remains with sustained practice of the exercises in

future research.

Exploring the e�ects of properties other
than breathing rate

Although we did not delineate between chest and abdominal

breathing in our experiment, nor did we measure the depth of

each breath (i.e., the tidal volume, or quantity of air that was

displaced with each inhale and exhale), we did coach participants

to breathe into and out of their “bellies” during both exercises

and informally ensured adherence to this method of breathing.

However, both of these properties (i.e., location and depth) can

play a role in the effectiveness of breathing exercise (Calais-

Germain, 2006). It is possible to measure and quantify these

aspects of breathing using an instrument known as a respiratory

induced plethysmography belt (or RIP belt, for short) (Chadha

et al., 1982), albeit with an additional calibration step (Sackner

et al., 1989). Future work could further explore how other such

properties of breathing can influence the effectiveness and ease

of use of guided breathing exercises like paced breathing and

HRV-b, and how other new breathing technologies can provide

guidance for them.

Exploring the cognitive e�ects of guided
breathing exercise

Early research is beginning to suggest that a single 10-min

session of guided slow breathing can have measurable effects

of aspects of cognitive function such as response time and
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decision making abilities (e.g., Prinsloo et al., 2011). Although

we did not collect data pertaining to cognitive function in

our work, exploring these other potential differences between

guided breathing technologies could be an interesting area for

future research, especially when considering wider application of

breathing exercises (e.g., how breathing exercise could support

performance in information or creative work).

Conclusion

In this paper, we have demonstrated that paced breathing

can create early physiological markers of benefit that are

not significantly different from those using Heart Rate

Variability Biofeedback (HRV-b), a more sophisticated

breathing exercise that requires real-time sensing and

feedback. This finding is important for the design of guided

breathing technologies because it suggests that these tools

can confidently be designed to employ the simpler paced

breathing protocol. Our findings can allow designed of paced

breathing technology to avoid the complications associated with

HRV-b without sacrificing the potential benefits that their users

can achieve.

With clear connections to health, wellbeing, and bodily

performance, guided breathing is an important topic of research.

In this paper, we contribute foundational knowledge to the

growing body of HCI research inspired by an inbodied

interaction approach to the design of technology for improving

health well-being and performance. Our work provides a better

understanding of human physiology and illustrate how this can

make the benefits of guided breathing exercises more accessible

and effective through the design of new technology.
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