AUTHOR=Bock Marius , Hoelzemann Alexander , Moeller Michael , Van Laerhoven Kristof TITLE=Investigating (re)current state-of-the-art in human activity recognition datasets JOURNAL=Frontiers in Computer Science VOLUME=4 YEAR=2022 URL=https://www.frontiersin.org/journals/computer-science/articles/10.3389/fcomp.2022.924954 DOI=10.3389/fcomp.2022.924954 ISSN=2624-9898 ABSTRACT=
Many human activities consist of physical gestures that tend to be performed in certain sequences. Wearable inertial sensor data have as a consequence been employed to automatically detect human activities, lately predominantly with deep learning methods. This article focuses on the necessity of recurrent layers—more specifically Long Short-Term Memory (LSTM) layers—in common Deep Learning architectures for Human Activity Recognition (HAR). Our experimental pipeline investigates the effects of employing none, one, or two LSTM layers, as well as different layers' sizes, within the popular DeepConvLSTM architecture. We evaluate the architecture's performance on five well-known activity recognition datasets and provide an in-depth analysis of the per-class results, showing trends which type of activities or datasets profit the most from the removal of LSTM layers. For 4 out of 5 datasets, an altered architecture with one LSTM layer produces the best prediction results. In our previous work we already investigated the impact of a 2-layered LSTM when dealing with sequential activity data. Extending upon this, we now propose a metric,