
TYPE Original Research

PUBLISHED 30 September 2022

DOI 10.3389/fcomp.2022.924954

OPEN ACCESS

EDITED BY

Katia Vega,

University of California, Davis,

United States

REVIEWED BY

Sten Hanke,

FH Joanneum, Austria

Fuhong Min,

Nanjing Normal University, China

*CORRESPONDENCE

Marius Bock

marius.bock@uni-siegen.de

SPECIALTY SECTION

This article was submitted to

Mobile and Ubiquitous Computing,

a section of the journal

Frontiers in Computer Science

RECEIVED 20 April 2022

ACCEPTED 01 September 2022

PUBLISHED 30 September 2022

CITATION

Bock M, Hoelzemann A, Moeller M and

Van Laerhoven K (2022) Investigating

(re)current state-of-the-art in human

activity recognition datasets.

Front. Comput. Sci. 4:924954.

doi: 10.3389/fcomp.2022.924954

COPYRIGHT

© 2022 Bock, Hoelzemann, Moeller

and Van Laerhoven. This is an

open-access article distributed under

the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other

forums is permitted, provided the

original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Investigating (re)current
state-of-the-art in human
activity recognition datasets

Marius Bock1,2*, Alexander Hoelzemann2, Michael Moeller1

and Kristof Van Laerhoven2

1Computer Vision, Department of Electrical Engineering and Computer Science, University of

Siegen, Siegen, Germany, 2Ubiquitous Computing, Department of Electrical Engineering and

Computer Science, University of Siegen, Siegen, Germany

Many human activities consist of physical gestures that tend to be performed

in certain sequences. Wearable inertial sensor data have as a consequence

been employed to automatically detect human activities, lately predominantly

with deep learning methods. This article focuses on the necessity of recurrent

layers—more specifically Long Short-TermMemory (LSTM) layers—in common

Deep Learning architectures for Human Activity Recognition (HAR). Our

experimental pipeline investigates the e�ects of employing none, one, or

two LSTM layers, as well as di�erent layers’ sizes, within the popular

DeepConvLSTM architecture. We evaluate the architecture’s performance

on five well-known activity recognition datasets and provide an in-depth

analysis of the per-class results, showing trends which type of activities or

datasets profit the most from the removal of LSTM layers. For 4 out of

5 datasets, an altered architecture with one LSTM layer produces the best

prediction results. In our previous work we already investigated the impact

of a 2-layered LSTM when dealing with sequential activity data. Extending

upon this, we now propose a metric, rGP, which aims to measure the

e�ectiveness of learned temporal patterns for a dataset and can be used

as a decision metric whether to include recurrent layers into a network at

all. Even for datasets including activities without explicit temporal processes,

the rGP can be high, suggesting that temporal patterns were learned, and

consequently convolutional networks are being outperformed by networks

including recurrent layers. We conclude this article by putting forward the

question to what degree popular HAR datasets contain unwanted temporal

dependencies, which if not taken care of, can benefit networks in achieving

high benchmark scores and give a false sense of overall generability to a

real-world setting.

KEYWORDS

human activity recognition, CNN-RNNs, deep learning, network architectures,

datasets

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2022.924954
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2022.924954&domain=pdf&date_stamp=2022-09-30
mailto:marius.bock@uni-siegen.de
https://doi.org/10.3389/fcomp.2022.924954
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2022.924954/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Bock et al. 10.3389/fcomp.2022.924954

1. Introduction

Research in activity recognition has early on recognized

the importance of capturing temporal dependencies in sensor-

based data with early approaches using classical generative

Machine Learning algorithms in order to do so (e.g., Lester

et al., 2005). With the advancement of Deep Learning—

becoming the de facto standard in sensor-based Human Activity

Recognition (HAR)—approaches shifted to using Recurrent

Neural Networks (RNNs) (e.g., Hammerla et al., 2016), Long-

Short-Term Memory networks (LSTMs) (e.g., Edel and Köppe,

2016) and Transformers (e.g., Dirgová Luptáková et al., 2022).

Based on findings presented in Jaakkola and Haussler (1998),

early works already demonstrated the effectiveness of combining

both discriminative and generative models (Lester et al.,

2005). Within the area of Deep Learning, the combination of

convolutional (discrimnative) and recurrent (generative) layers

saw particular success, with the DeepConvLSTM (Ordóñez and

Roggen, 2016) being the first architecture to take advantage of

the capabilities of both types of layers. The architecture achieved

state-of-the-art results on both the Opportunity challenge

(Roggen et al., 2010) and Skoda Mini Checkpoint dataset (Zappi

et al., 2008).

After Ordóñez and Roggen (2016) introduced us to

the DeepConvLSTM, Hammerla et al. (2016) analyzed the

effectiveness of the RNNs as well as their combination with

convolutional layers and came to the conclusion that whether

RNNs are beneficial and increase prediction performance

is dependent on the nature of activities and dataset itself.

The original DeepConvLSTM (Ordóñez and Roggen, 2016)

architecture features a 2-layered LSTM with 128 hidden units.

In Bock et al. (2021) we demonstrated that altering the

DeepConvLSTM to employ a 1-layered instead of a 2-layered

LSTM not only heavily decreases training time, but also

significantly increases prediction performance across 5 popular

HAR datasets (Roggen et al., 2010; Scholl et al., 2015; Stisen

et al., 2015; Reyes-Ortiz et al., 2016; Sztyler and Stuckenschmidt,

2016). Our findings stood in contrast to the belief that one

needs at least a 2-layered LSTM when dealing with sequential

data (Karpathy et al., 2015). In this article we want to extend

upon the work conducted by Hammerla et al. (2016) by putting

it into context with what we found out in Bock et al. (2021).

Unlike Hammerla et al. (2016) we use a larger variety of datasets

with different types of activities and fix all parts of the training

process across experiments to ensure that changes in predictive

performance can be accredited to changes to the recurrent

parts of the network. Furthermore, we want to go one step

further by questioning the necessity of recurrent layers in sensor-

based HAR altogether and introduce a second variation of

the DeepConvLSTM (Ordóñez and Roggen, 2016) which has

all LSTM layers removed. We include said variation into the

experimental workflow we illustrated in Bock et al. (2021).

Our article’s contributions are threefold:

1. We provide an in-depth analysis of the performance of the

DeepConvLSTM (Ordóñez and Roggen, 2016), as well as two

variations of it, on 5 popular HAR datasets (Roggen et al.,

2010; Scholl et al., 2015; Stisen et al., 2015; Reyes-Ortiz et al.,

2016; Sztyler and Stuckenschmidt, 2016), showing trends in

which types of activities or datasets benefit the most from the

removal of LSTM layers.

2. We propose a correlation factor rGP which can measure the

effectiveness of learned temporal patterns and which can be

used as guidance to whether inclusion of recurrent layers into

a Deep Learning architecture for a given HAR dataset can be

predicted to be helpful.

3. Based on our findings, we extend upon our claims in Bock

et al. (2021) and argue that larger LSTMs are more likely to

overfit on temporal patterns of a dataset, which, depending

on the use case, might end up hurting generability of trained

models to a real-world setting.

2. Related work

The predictive performance of classical Machine Learning

approaches highly relies on sophisticated, handcrafted features

(Pouyanfar et al., 2018). In the last decade, Deep Learning has

shown to outperform classical Machine Learning algorithms

in many areas, e.g., image recognition (Farabet et al., 2013;

Tompson et al., 2014; Szegedy et al., 2015), speech recognition

(Mikolov et al., 2011; Hinton et al., 2012; Krizhevsky et al., 2012;

Sainath et al., 2013) and Natural Language Processing (Collobert

et al., 2011; Bordes et al., 2014; Jean et al., 2014; Sutskever et al.,

2014). Much of this success can be accredited to the fact that

Deep Learning does not require manual feature engineering,

but is able to automatically extract discriminative features from

raw data input (Najafabadi et al., 2015). The advantage of being

able to apply algorithms on raw data and not being dependent

on handcrafted features has led to studies investigating the

effectiveness of Deep Learning in HAR, which e.g., suggested

different architectures (Ordóñez and Roggen, 2016), evaluated

the generality of architectures (Hammerla et al., 2016) and

assessed the applicability in real-world scenarios (Guan and

Plötz, 2017).

Research in activity recognition has early on recognized the

importance of capturing temporal regularities and dependencies

in sensor-based data (Lester et al., 2005). Early approaches

involved using classical generativeMachine Learning algorithms

such as Hidden Markov Models (Lester et al., 2005, 2006;

Patterson et al., 2005; van Kasteren et al., 2008; Reddy et al.,

2010), Conditional Random Fields (Liao et al., 2005; van

Kasteren et al., 2008) or Bayesian networks (Patterson et al.,

2005). With the advancement of Deep Learning methods like

Recurrent Neural Networks (RNNs) (Hammerla et al., 2016;

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2022.924954
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Bock et al. 10.3389/fcomp.2022.924954

Inoue et al., 2018), Long-Short-TermMemory (LSTM) networks

(Edel and Köppe, 2016; Ordóñez and Roggen, 2016), Gated

Recurrent Units (GRUs) (Xu et al., 2019; Abedin et al., 2021;

Dua et al., 2021) and Transformers (Haresamudram et al., 2020;

Dirgová Luptáková et al., 2022) became the de facto standard

when trying to model temporal dependencies.

Based on the work of Jaakkola and Haussler (1998) and

Lester et al. (2005) suggested to combine both generative and

discriminative models in order to overcome weaknesses of

the generative models in the context of HAR. More recently

(Ordóñez and Roggen, 2016) introduced the DeepConvLSTM,

a deep learning architecture which is a hybrid model combining

both convolutional and recurrent layers. Similar to Lester et al.

(2005) andOrdóñez and Roggen (2016) claim that by combining

both types of layers the network is able to automatically extract

discriminative features and model temporal dependencies.

Extending up on the work of Ordóñez and Roggen (2016),

researchers proposed variations of the DeepConvLSTM e.g.,

by appending attention layers to the original architecture

(Murahari and Plötz, 2018) or adding dilated convolution layers

in addition to normal convolution layers (Xi et al., 2018). Other

publications followed up on the idea of combining convolutional

and recurrent layers proposing their own architectures, e.g.,

combining Inception modules and GRUs (Xu et al., 2019), self-

attention mechanisms and GRUs (Abedin et al., 2021) or having

two ConvLSTM networks handling different time lengths to

analyze more complex temporal hierarchies (Yuki et al., 2018).

Upon the experiments conducted by Karpathy et al. (2015)

and Chen et al. (2021) claim within their recent survey paper

on Deep Learning for HAR that “the depth of an effective LSTM-

based RNN needs to be at least two when processing sequential

data.” Within our recent publication we investigated the effect

of employing a 1-layered instead of a 2-layered LSTMwithin the

DeepConvLSTM architecture (Bock et al., 2021). As Karpathy

et al. (2015) obtained their results using character-level language

models, i.e., text data, our paper aimed at challenging the belief

that their claim is applicable to sensor-based HAR. With this

publication we want to go one step further in analyzing the

necessity of recurrent layers in HAR altogether by completely

removing the LSTM, and thus all recurrent layers, from the

DeepConvLSTM (Ordóñez and Roggen, 2016). Our analysis is

most similar to the one conducted by Hammerla et al. (2016)

which compared Deep Neural Networks (DNNs) against CNNs,

RNNs and, as a combination of both, the DeepConvLSTM

(Ordóñez and Roggen, 2016). Hammerla et al. (2016) based

their analysis on three datasets namely the Physical Activity

Montioring (PAMAP2) (Reiss and Stricker, 2012), the Daphnet

Freezing of Gait (Bachlin et al., 2009) and the Opportunity

challenge (Roggen et al., 2010) dataset. Hammerla et al. (2016)

concluded that RNNs are beneficial and increase prediction

performance for activities that are short in duration and have

a natural ordering, while for movement data which focuses on

short-term changes in patterns CNNs are a better option. Unlike

Hammerla et al. (2016) we additionally analyze datasets which

include complex (Scholl et al., 2015) and transitional activities

(Reyes-Ortiz et al., 2016) as well as datasets which were recorded

in a naturalistic environment (Scholl et al., 2015; Stisen et al.,

2015; Sztyler and Stuckenschmidt, 2016). Furthermore, wemade

sure to use the same hyperparameters across all experiments to

give every variation the same starting point. This way we want

to ensure that differences in performance can be singled down

to changes in the recurrent layers.

3. Methodology

Contrary to the belief that one needs at least a two-

layered LSTM when dealing with sequential data Karpathy

et al. (2015) and Bock et al. (2021) we proposed to change

the DeepConvLSTM to employ a one-layered LSTM. Extending

upon these experiments we now want to investigate the overall

necessity of recurrent layers in HAR and therefore additionally

evaluate the performance of an altered DeepConvLSTM

architecture which has the LSTM completly removed. Figure 2

illustrates the evaluated architecture changes.

3.1. Datasets

We evaluated our architecture changes using five popular

HAR datasets, namely the Wetlab (Scholl et al., 2015), the

RealWorld HAR (RWHAR) (Sztyler and Stuckenschmidt, 2016),

the Smartphone-Based Recognition of Human Activities and

Postural Transitions (SBHAR) (Reyes-Ortiz et al., 2016), the

Heterogeneity Activity Recognition (HHAR) (Stisen et al., 2015)

and the Opportunity (Roggen et al., 2010) dataset. To ensure

that our assessment on the necessity of recurrent layers in

HAR is not biased toward specific traits of a dataset, we made

sure to use a variety of different datasets which differ in the

type of activities being performed and circumstances under

which the data was recorded. Activity-wise we differentiate

between sporadic, simple/ periodical, transitional and complex

activities. Sporadic activities, e.g., opening a door, are short

in time and do not contain any reoccurring patterns within

their execution. Contrarily, simple/ periodical activities, e.g.,

walking, are (usually) longer in time of execution and tend to

contain subject-independent, periodical patterns in the sensor

data. Transitional activities as seen for example in the SBHAR

dataset (Reyes-Ortiz et al., 2016) mark the period in-between

two activities, e.g., the period from lying down to standing up.

Similar to sporadic activities they are (usually) short in time and

do not contain any reoccurring patterns within their execution.

Complex activities, e.g., making a coffee, are activities which are

composed of more than one sub-activities, which itself can be

either sporadic, simple/ periodical or transitional. In order to

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2022.924954
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Bock et al. 10.3389/fcomp.2022.924954

FIGURE 1

Plotted 3D-acceleration data of the HHAR dataset (Stisen et al., 2015) along with color-coded bitmaps indicating which part of the sensor

stream belongs to which activity and which subject. This type of plot can be recreated for every dataset using a script we provide in our

repository (https://github.com/mariusbock/recurrent_state_of_the_art) and was used as basis for our analysis of each dataset.

further investigate the overall shape of a dataset we created color-

coded plots along with the sensor data indicating which parts of

a dataset are accredited to which activity and subject (see e.g.,

Figure 1 for an illustration of the HHAR dataset Stisen et al.,

2015). This allows us to better analyze and judge the degree

of repetition, rapid changes and distribution of data among

subjects within each dataset. We did not include all plots within

this article, but advise readers to recreate the plots themselves

using a script we provide in our repository1 as it allows to better

zoom in and out without loss of readability.

For the Wetlab (Scholl et al., 2015), RWHAR (Sztyler

and Stuckenschmidt, 2016), SBHAR (Reyes-Ortiz et al.,

2016), and HHAR dataset (Stisen et al., 2015) we limited

ourselves to only use 3D-acceleration data of a sensor—

if possible—located on the right wrist of the subject. For

the Opportunity dataset (Roggen et al., 2010) many sensors

exhibited packet loss. We therefore chose to use the same

sensors as Ordóñez and Roggen (2016) to reduce the

effect of missing values. In the following, each dataset,

its type of activities and limitations will be explained in

more detail.

1 https://github.com/mariusbock/recurrent_state_of_the_art

3.1.1. Wetlab

The Wetlab dataset (Scholl et al., 2015) consists of

22 subjects performing two DNA extraction experiments

within a wetlab environment and provides two types of

annotations namely tasks and actions. While the former are

specific steps within the experimental protocol, the latter

represents underlying activities. As the experiments followed an

experimental protocol, recording sessions of different subjects

contain almost identical sequences of consecutive activities.

Nevertheless, it should also be noted that some activities

were not performed for some subjects as not all steps in the

protocol were not mandatory and were therefore sometimes

skipped by subjects. Within our experiments we predicted

the annotated actions which left us with 8 different classes,

namely cutting, inverting, peeling, pestling, pipetting, pouring,

stirring and transfer as well as a null class. In total the dataset

consists of 18 h of collected data. As each subject performed

the experiment in their own time, execution times per subject

differ and average execution times per activity vary greatly,

lasting between half a second up to three and a half minutes.

Furthermore, the class distribution is imbalanced with the null

class having almost ten-times as many instances as the longest

recorded activity (pestling). While performing the activities 3D-

accelerometer data of the dominant wrist of each subject was

recorded at 50Hz. Activities contained in the Wetlab dataset can

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2022.924954
https://github.com/mariusbock/recurrent_state_of_the_art
https://github.com/mariusbock/recurrent_state_of_the_art
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Bock et al. 10.3389/fcomp.2022.924954

be classified as both simple/ periodical (e.g., stirring) and complex

activities (e.g., cutting).

3.1.2. RWHAR

The RWHAR dataset consists of 15 subjects performing

a set of 8 different simple/ periodical activities (Sztyler

and Stuckenschmidt, 2016). The activities are climbing_down,

climbing_up, jumping, lying, standing, sitting, running and

walking. The dataset was collected in a real-world scenario, i.e.,

with participants not performing the activities in a controlled

lab environment, but at different locations like their own home

or in public places. In total the dataset consists of roughly 18

h of data (1 h per subject), with activities not always being

recorded in the same order for each subject. Due to the fact that

each activity was recorded in sessions, i.e., having participants

perform a single activity for a certain amount of time, the average

activity lengths (except for the activity jumping, climbing_down

and climbing_up) are around 10 min without any recurrences

and rapid changes of activities. Though the dataset offers many

different sensors, we chose to use 3D-acceleration data captured

by a sensor attached to the right wrist, which was set to sample

at 50 Hz.

3.1.3. SBHAR

The SBHAR dataset consists of 30 subjects performing

6 activities of daily living (standing, sitting, lying, walking,

walking downstairs walking upstairs) (Reyes-Ortiz et al., 2016).

In addition to the 6 simple/ periodical activities, 6 transitional

activities (stand-to-sit, sit-to-stand, sit-to-lie, lie-to-sit, stand-to-

lie and lie-to-stand) along with a null class are also annotated

in the data. The dataset contains roughly 6 h of recorded data

(between 10 and 15 min per subject) and was collected in a

controlled lab environment. During experiments subjects had

to follow an experimental protocol which defined the order

and length in which activities were to be performed. Labels

are therefore fairly evenly distributed among the 6 simple/

periodical and 6 transitional activities, but are dominated by the

(Sztyler and Stuckenschmidt, 2016), the SBHAR dataset (Reyes-

Ortiz et al., 2016) has participants more rapidly change activities

with the average execution time of the periodical/ simple

activities being around 10–20 s and the transitional activities

being around 2–5 s. Additionally, activities were executed

multiple times and thus reooccur within each subject’s data.

Note that the smartphone, which was used for data collection

sampling at 50Hz, was attached to the waist of the subjects.

3.1.4. HHAR

The HHAR dataset consists of 9 subjects performing 6

activities of daily living (biking, sitting, standing, walking,

walking upstairs and walking downstairs) (Stisen et al., 2015).

During experiments subjects were asked to perform each

simple/ periodical activity for 5 min following a specific activity

sequence, which also makes the class distribution fairly balanced

amongst all classes. In total the dataset contains 5 h and 30

min of recorded data with the data being evenly distributed

among the first 6 subjects (between 45 and 60 min). For subjects

7, 8, and 9 significantly less data is recorded (17, 20 and 8

min). Similar to the SBHAR dataset (Reyes-Ortiz et al., 2016),

activities within the HHAR dataset (Stisen et al., 2015) were

not recorded as a whole, but included breaks, i.e., periods

of null class, and changes. Nevertheless, on average activities

were executed for longer periods being around 20–30 s for

the activites walking upstairs and walking downstairs and the

null class and around 90–120 s for all other activites. The

dataset was recorded in a controlled, real-world scenario with

each activity being executed in two environments and routes.

For our experiments we use 3D-acceleration data recorded by

smartwatches worn by each subject. Unfortunately, the dataset

does not state whether sensors were worn on the same wrist

for all subjects. Furthermore, due to the fact that two types

of smartwatches were used throughout experiments, sampling

rates differed across experiments (100 or 200Hz). We therefore

downsampled the data of the higher sampling smartwatches

to be 100Hz as well. Additionally, we omitted faulty recording

sessions which had only one sample.

3.1.5. Opportunity

The Opportunity dataset (Roggen et al., 2010) consists of

4 subjects performing activities of daily living. Similar to the

Wetlab dataset (Roggen et al., 2010), the Opportunity dataset

(Scholl et al., 2015) provides two types of annotations namely

modes of locomotion and gestures. We used the latter during our

experiments which left us with 18 classes which needed to be

predicted. The activities were opening and closing door 1 and 2,

fridge, dishwasher and drawers 1, 2 and 3, cleaning table, drinking

from cup and toggling switch as well as a null class. Each subject

performed 6 different recording sessions. 5 of these recording

sessions were non-scripted (ADL runs), while one required

subjects to repeat a sequence of the relevant 17 activities 20

times (Drill runs). The Opportunity dataset was recorded in an

controlled, experimental environment. Roggen et al. (2010) state

that during the ADL sessions, subjects were asked to follow a

higher level protocol, but were allowed to interleave their actions

along the way. In total the dataset contains 8 h of recorded

activity time with roughly 2 h per subject. For each activity there

is around 1–3min of data per subject. Only the null class (1:30 h)

and the activity drinking from cup (between 5 and 10 min) were

recorded longer per subject. Average execution times are short,

given that the dataset contains almost solely sporadic activities,

being around 2–6 s per activity. Similar to the SBHAR and

HHAR dataset, both session types had participants frequently

switch between activities, therefore causing activities to reoccur

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2022.924954
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Bock et al. 10.3389/fcomp.2022.924954

within each recording session. As the body-worn sensor streams

contain missing values due to packet loss, we decided to use

the same set of sensor channels as Ordóñez and Roggen (2016)

which left us with a dataframe consisting of in total 113 feature

channels, each representing an individual sensor axis sampled

at 30Hz. Unlike Ordóñez and Roggen (2016) we do not apply

the train-test split as defined by the Opportunity challenge,

but split the data subject-wise in order to perform Leave-One-

Subject-Out (LOSO) cross-validation. Gestures contained in the

Opportunity dataset can all be classified as sporadic activities,

except for the activity cleaning table which can also be seen as

a simple/ periodical activity.

3.2. Training

We chose to use the popular DeepConvLSTM architecture

as introduced by Ordóñez and Roggen (2016) to base our

assessment on. By combining both convolutional and recurrent

layers, Ordóñez and Roggen (2016) claim that the network is

able to automatically extract discriminative features and model

temporal dependencies. We argue that the latter might not be

necessary depending on the nature of the activities one tries to

predict. We therefore compare predictive performance of the

original DeepConvLSTM architecture against two variations of

it. The first variation only features a 1-layered LSTM instead of

a 2-layered LSTM. We already demonstrated that said change

increases the overall predictive performance of the network

(Bock et al., 2021). In addition to the 1-layered variant of the

network, we now go one step further by completely removing the

LSTM from the network, consequently cutting out all recurrent

layers in the network. For the two architectures which include

LSTM layers, we additionally evaluate settings where we vary the

amount of hidden units employed in each layer, i.e., 128, 256,

512 and 1,024, which leaves us with 9 different architectures to

be evaluated. Figure 2 illustrates the original DeepConvLSTM as

well the two altered versions of the architecture.

In general, we only modify the LSTM within the

DeepConvLSTM architecture and other architecture

specifications, i.e., dropout rate (0.5), number of convolution

layers (4) and kernels per layer (64), are left unchanged to the

original architecture (Ordóñez and Roggen, 2016). To minimize

the effect of statistical variance, we train each architecture

variation 5 times on each dataset, each time employing a

different random seed drawn from a predefined set of 5

random seeds. We calculate the predictive performance of each

architecture variation as the average performance results of said

5 runs. We chose to use the same hyperparameters as illustrated

in Bock et al. (2021) which were obtained by evaluating multiple

settings on the Wetlab dataset. As with our previous analysis

(Bock et al., 2021) we again did not perform any hypertuning

specific to the other datasets as we argue that our analysis is

solely focused on the architectural changes and their influence

on the predictive performance. We employed a sliding window

approach with a window size of 1 s and an overlap of 60%.

Furthermore we used the Adam optimizer with a weight decay

of 1e−6 and a constant learning rate of 1e−4 and initialized

weights using the Glorot initialization (Glorot and Bengio,

2010). To enable the network to better learn imbalanced class

distributions, e.g., as seen in the Wetlab dataset (Scholl et al.,

2015), we employed a weighted cross-entropy loss with the

weights being set relative to the support of the class. Since the

datasets were recorded using different sampling rates we made

sure to keep the relation between convolutional filter size and

sliding window size consistent across datasets. We therefore

set the filter size to be 11 for the Wetlab (Scholl et al., 2015),

RWHAR (Sztyler and Stuckenschmidt, 2016), and SBHAR

(Reyes-Ortiz et al., 2016), 7 for the Opportunity (Roggen et al.,

2010) and 21 for the HHAR dataset (Stisen et al., 2015). That

way for each dataset windows and filters are always capturing

and analyzing the same amount of temporal information. Lastly,

each training session was set to run 30 epochs long.

4. Results

For all datasets results were obtained using a LOSO cross-

validation. Within this validation method each subject’s data

becomes the validation set exactly once while all the other

subjects’ data are used for training. For example, in case of

the Opportunity dataset (Roggen et al., 2010) each architectural

variation would be trained 4 times as the dataset contains sensor

data of 4 subjects. The final prediction performance is then the

average across all subjects. Using LOSO cross-validation ensures

that results are not a product of overfitting on subject-specific

traits as the validation data is always from an unseen subject,

whose specific ways of performing the set of activities has not

been seen during training. Unlike Bock et al. (2021), we used

the epoch which resulted in the highest average F1-score for

calculation of the global average. Furthermore, in addition to

reporting results on the full Opportunity dataset (Roggen et al.,

2010), we also report prediction results obtained solely on the

ADL as well as the Drill sessions of the dataset.

Looking at the results of the convolutional architectural

variant vs. the 1- or 2-layered LSTM variants, one can see

that there are major differences in the performance depending

which dataset was used as input. On average, the architecture

variant which employs a 1-layered LSTM with 1,024 hidden

units delivers the best prediction results. Figure 3 summarizes

the average performance difference in F1-score between the

1-layered and 2-layered variants, the 1-layered variants and

no LSTM variant and the 2-layered variants and no LSTM

variant. For the Wetlab (Scholl et al., 2015), RWHAR (Sztyler

and Stuckenschmidt, 2016), SBHAR (Reyes-Ortiz et al., 2016),

and HHAR dataset (Stisen et al., 2015) the 1-layered variants

on average outperform all other architectural variants. Only

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2022.924954
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Bock et al. 10.3389/fcomp.2022.924954

FIGURE 2

Illustration of the 3 evaluated architectures, namely (A) the original DeepConvLSTM architecture (Ordóñez and Roggen, 2016), (B) an altered

version with a 1-layered LSTM (Layer 7 removed) (Bock et al., 2021) and (C) one with all LSTM layers (Layer 6 and 7) being removed. For (A,B) we

vary the amount of hidden units within the LSTM layers to be either 128, 256, 512, or 1,024.

for the Opportunity dataset (Roggen et al., 2010), as well as

its two sessions types individually, the 2-layered variants on

average achieve a higher F1-score than all other variants. Table 1

outlines the average accuracy, precision, recall and F1-score per

architecture variant for each dataset.

As previously mentioned, each dataset contains different

types of activities. Analyzing results therefore on a per-

class level (see Tables 2–8) reveals which type of network

might be a more suited for predicting which type of

activity. In their works, Ordóñez and Roggen (2016) and

Hammerla et al. (2016) claim that convolutional layers

are better at modeling local patterns on a sensor level,

while recurrent layers are better at modeling (global)

temporal patterns, e.g., of previously occurring activities.

One could therefore conclude that in our experiments

the convolutional network would have performed best at

predicting simple/ periodical activities. Nevertheless, we could

only partly exhibit this trend as the convolutional network

performed best only for some simple/ periodical activities.

We accredit the increased performance of the LSTM-based

implementations on the simple/ periodical activities to

two factors:

1. Convolutional networks are less efficient in predicting

datasets with short activity execution times or rapid changes

between activities.

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2022.924954
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Bock et al. 10.3389/fcomp.2022.924954

FIGURE 3

Average F1-score performance di�erences between 1-layered and 2-layered variants (1 vs. 2), 1-layered and no LSTM variants (1 vs. 0) and

2-layered and no LSTM variants (0 vs. 2) of the DeepConvLSTM architecture (Ordóñez and Roggen, 2016). A positive performance di�erence

equates to the former outperforming the latter type of architecture. A negative performance di�erence equates to the latter outperforming the

former type of architecture. For example a positive performance di�erence between 1 vs. 2 means that on average 1-layered outperformed

2-layered architectures. Contrarily a negative performance di�erence between 1 vs. 2 means that on average 2-layered outperformed 1-layered

architectures. Reported results are averaged across 5 runs using a set of 5 varying seeds and either the Wetlab (Scholl et al., 2015), RWHAR

(Sztyler and Stuckenschmidt, 2016), SBHAR (Reyes-Ortiz et al., 2016), HHAR (Stisen et al., 2015) or Opportunity dataset (Roggen et al., 2010) as

input. For the Opportunity dataset results are also reported on the ADL and Drill sessions individually.

2. All datasets were recorded following some experimental

protocol which consequently introduced some form of

temporal schedule amongst activities.

The first factor can particularly be seen comparing results

obtained on the RWHAR (Sztyler and Stuckenschmidt, 2016),

SBHAR (Reyes-Ortiz et al., 2016), and HHAR dataset (Stisen

et al., 2015). Even though said datasets have an overlap in

activities, i.e., sitting, standing, walking, walking_downstairs and

walking_upstairs, prediction performance on these activities is

significantly worse for the SBHAR dataset (Reyes-Ortiz et al.,

2016). Looking at the average execution time of each activity,

one can see that they are shorter within the SBHAR dataset

(Reyes-Ortiz et al., 2016) compared to the other two datasets,

which also causes more rapid changes between activities. At the

time of writing this article, we cannot clearly identify a reason to

explain this behavior. In fact, as we are using a sliding window,

the duration of the activity does not influence what type of data

a network sees. Nevertheless, we hypothesize that rapid changes

between activities can causemore windows to consist of multiple

activity labels. Given that the label of a window is determined by

the label of the last sample within said window, as proposed by

Ordóñez and Roggen (2016), a shorter average activity execution

time can cause windows to be more likely to contain labels of

multiple activites. In turn, a convolutional kernel could falsely

attribute reoccurring patterns of other activities to the target

activity. On the contrary, this exhibited trend could also be

something specific to the SBHAR dataset (Reyes-Ortiz et al.,

2016) and thus requires further investigation on a larger scale.

The second factor is a phenomenon which comes naturally

at the cost of recording datasets in a non-natural environment

or pre-scripted recording session. All datasets which were part of

our analysis were recorded under experimental conditions. This

involved either a predefined length of execution time, repetitions

of activities or a set of steps in a predefined workflow. As already

mentioned, this consequently introduces some form of temporal

schedule amongst activities which can be modeled by a LSTM.

Networks which include recurrent layers were thus not only

able to use information on preceding activities, but also learn

the overall sequence in which the activities were recorded. This

type of information could especially help networks differentiate

between activities which are very similar in the patterns they

consist of. For example walking, walking down or walking

up stairs were more reliably differentiated by networks which

contained recurrent layers (see results obtained on the SBHAR,

HHAR and RWHAR dataset).

Whether to employ a 1-layered or a 2-layered LSTM seems

to come down to how much emphasis one wants to put

on these temporal information compared to local patterns

identified by the convolutional layers. This can be especially

seen in the results obtained on the Drill compared to the

ADL sessions of the Opportunity dataset. Former had subjects

follow a strict experimental protocol with many repetitions

of the same activity making temporal relations among them

more strong while also introducing an overall sequence in

which activities were performed. Latter had subjects not adhere

to a strict experimental protocol and had them act naturally

which caused temporal relationships amongst activities to be less

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2022.924954
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Bock et al. 10.3389/fcomp.2022.924954

TABLE 1 Average cross-participant results employing a removed, 1-layered, 2-layered LSTM within the DeepConvLSTM architecture (Ordóñez and

Roggen, 2016) with varying hidden units (i.e., 128, 256, 512 or 1,024) across 5 runs with a set of 5 varying seeds for theWetlab, RWHAR, SBHAR HHAR

and Opportunity dataset (Roggen et al., 2010; Scholl et al., 2015; Stisen et al., 2015; Reyes-Ortiz et al., 2016; Sztyler and Stuckenschmidt, 2016).

Layers Units Metric Wetlab RWHAR SBHAR HHAR Opportunity Opp. (ADL) Opp. (Drill)

0 Accuracy 19.12% 57.34% 40.77% 39.12% 24.05% 17.21% 29.26%

Precision 35.20% 70.57% 55.28% 53.21% 41.29% 29.07% 47.76%

Recall 28.18% 70.61% 55.94% 52.21% 36.85% 30.87% 42.80%

F1 26.00% 68.77% 52.34% 50.25% 35.68% 26.48% 40.56%

1 128 Accuracy 33.23% 65.92% 59.49% 40.00% 17.76% 7.18% 33.23%

Precision 45.66% 79.31% 71.68% 53.99% 38.04% 15.94% 45.66%

Recall 52.48% 77.74% 75.68% 53.30% 25.70% 10.70% 41.74%

F1 44.53% 75.97% 70.89% 50.86% 25.79% 9.73% 44.53%

256 Accuracy 34.66% 67.84% 61.21% 40.29% 21.98% 11.48% 36.86%

Precision 46.97% 80.60% 73.30% 55.31% 41.44% 25.37% 54.33%

Recall 53.52% 79.36% 76.83% 54.07% 31.81% 18.81% 52.74%

F1 46.62% 77.72% 72.40% 51.31% 31.73% 16.81% 49.04%

512 Accuracy 35.25% 67.97% 62.09% 39.34% 24.33% 14.99% 39.51%

Precision 47.68% 80.75% 74.10% 53.61% 42.86% 29.85% 57.55%

Recall 53.11% 79.34% 77.78% 53.52% 36.03% 25.03% 54.76%

F1 47.26% 78.29% 73.31% 50.47% 35.01% 22.36% 51.84%

1,024 Accuracy 35.12% 70.31% 63.22% 40.71% 26.18% 16.64% 41.15%

Precision 48.04% 82.11% 74.79% 55.37% 45.27% 30.98% 59.40%

Recall 51.98% 81.10% 78.64% 54.28% 38.11% 29.49% 56.64%

F1 48.25% 79.79% 74.30% 51.80% 37.49% 24.87% 53.68%

2 128 Accuracy 29.98% 60.85% 54.76% 25.35% 22.70% 12.45% 36.61%

Precision 41.74% 74.62% 68.14% 39.19% 35.48% 20.60% 49.12%

Recall 48.53% 73.01% 72.04% 38.96% 42.11% 29.06% 58.37%

F1 41.06% 71.25% 66.97% 35.39% 34.63% 19.53% 50.42%

256 Accuracy 31.70% 60.42% 58.59% 25.67% 26.23% 15.33% 40.52%

Precision 43.67% 74.18% 71.52% 40.56% 39.60% 24.99% 53.74%

Recall 49.55% 72.81% 75.02% 39.34% 46.68% 36.42% 60.55%

F1 43.25% 70.87% 70.37% 36.15% 38.85% 24.17% 54.29%

512 Accuracy 32.86% 67.11% 61.80% 29.16% 30.85% 19.69% 43.74%

Precision 45.17% 79.71% 73.94% 43.41% 43.88% 29.66% 58.05%

Recall 50.74% 78.82% 77.76% 42.71% 52.65% 43.19% 62.89%

F1 44.53% 77.13% 73.24% 39.50% 44.55% 30.49% 57.53%

1,024 Accuracy 33.74% 68.07% 64.31% 35.02% 33.56% 21.52% 48.72%

Precision 46.48% 80.26% 75.54% 49.64% 46.62% 30.89% 62.50%

Recall 51.53% 79.56% 79.60% 49.19% 56.35% 46.33% 67.87%

F1 45.57% 77.85% 75.37% 45.95% 47.91% 32.97% 62.72%

For the Opportunity dataset (Roggen et al., 2010) results are also reported on the ADL and Drill sessions individually. Written in bold font are the best results per dataset and evaluation

metric.

prominent. Therefore, networks employing a 2-layered LSTM

did not perform notably better than convolutional networks

on the ADL sessions, while for the Drill sessions performance

differences were as much as 22% in F1-score in favor of the

2-layered variants.

On the contrary, in order to correctly identify sporadic and

transitional activities as seen for example in the Opportunity

(Roggen et al., 2010) or SBHAR dataset (Reyes-Ortiz et al., 2016)

recurrent layers seem to be necessary.We accredit this to the fact

that these activities are short in time and do not show periodical,

local patterns which could be identified by a convolution kernel.

Moreover, similar to what Hammerla et al. (2016) concluded,

transitional as well as sporadic activities like opening and

closing a door, have temporal relationships with other preceding

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2022.924954
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Bock et al. 10.3389/fcomp.2022.924954

TABLE 2 Per class results for all 9 architectural variations of the DeepConvLSTM architecture (Ordóñez and Roggen, 2016) using the Wetlab dataset

(Scholl et al., 2015) as input.

Layers Units Metric null cutting inverting peeling pestling pipetting pouring stirring transfer

0 Accuracy 73.79% 13.89% 15.89% 0.00% 26.03% 0.93% 3.30% 22.36% 0.00%

Precision 82.24% 62.34% 38.81% 0.00% 34.32% 15.59% 13.13% 34.09% 0.00%

Recall 87.89% 15.35% 26.24% 0.00% 60.73% 1.04% 6.01% 45.21% 0.00%

F1 84.85% 23.46% 25.56% 0.00% 40.18% 1.80% 6.12% 34.64% 0.00%

1 128 Accuracy 72.50% 40.93% 33.66% 11.83% 39.19% 23.95% 10.53% 29.02% 5.82%

Precision 89.62% 55.45% 46.52% 26.01% 50.21% 35.46% 16.35% 43.70% 13.32%

Recall 79.40% 62.00% 57.56% 18.38% 71.03% 47.14% 31.83% 52.97% 11.94%

F1 83.87% 55.43% 44.94% 18.05% 54.57% 37.30% 17.56% 42.70% 9.50%

256 Accuracy 72.55% 44.61% 36.44% 15.24% 40.73% 22.90% 10.17% 28.09% 7.29%

Precision 89.09% 58.51% 49.07% 28.77% 54.11% 33.71% 15.50% 41.93% 14.09%

Recall 79.88% 65.62% 59.62% 26.72% 70.27% 45.15% 27.42% 52.24% 14.89%

F1 83.98% 59.42% 48.71% 24.03% 56.53% 35.98% 17.68% 42.27% 12.01%

512 Accuracy 73.20% 46.19% 35.72% 17.50% 41.31% 23.02% 9.77% 27.64% 8.31%

Precision 88.75% 59.45% 47.39% 33.03% 54.98% 34.74% 15.44% 41.59% 15.16%

Recall 80.91% 66.38% 55.87% 28.84% 69.12% 43.76% 26.90% 53.04% 17.53%

F1 84.44% 60.98% 47.94% 27.06% 57.00% 36.23% 17.21% 41.60% 13.59%

1,024 Accuracy 73.39% 46.99% 32.81% 16.47% 42.24% 23.66% 10.29% 27.11% 7.84%

Precision 88.56% 58.85% 46.18% 34.33% 55.17% 35.62% 17.58% 41.23% 13.59%

Recall 82.76% 66.66% 52.11% 28.20% 67.72% 42.41% 24.01% 48.98% 16.32%

F1 83.99% 62.66% 46.78% 25.34% 60.90% 38.60% 19.48% 42.70% 13.59%

2 128 Accuracy 69.59% 38.16% 30.03% 9.64% 35.04% 19.71% 7.70% 22.19% 4.73%

Precision 88.48% 55.11% 41.49% 20.91% 45.88% 28.86% 11.42% 38.11% 11.88%

Recall 76.80% 56.26% 54.80% 14.92% 66.57% 43.56% 26.81% 40.66% 9.84%

F1 81.92% 52.63% 41.41% 14.99% 50.49% 32.03% 13.96% 34.86% 8.16%

256 Accuracy 70.63% 40.03% 29.19% 16.28% 37.00% 20.20% 8.55% 23.19% 5.71%

Precision 87.87% 54.90% 41.06% 29.56% 49.17% 29.71% 13.43% 38.84% 10.22%

Recall 78.52% 58.99% 51.37% 25.80% 64.93% 42.56% 24.67% 43.50% 12.92%

F1 82.70% 54.18% 40.49% 25.18% 52.46% 32.50% 15.26% 36.35% 9.58%

512 Accuracy 71.17% 42.75% 32.23% 15.88% 38.48% 20.70% 8.82% 25.02% 5.41%

Precision 88.23% 55.62% 44.34% 30.89% 53.10% 29.45% 14.54% 39.21% 10.70%

Recall 78.93% 63.50% 56.19% 24.71% 64.63% 43.85% 23.38% 47.55% 11.54%

F1 83.03% 57.23% 43.97% 24.66% 54.11% 33.06% 15.65% 38.34% 8.85%

1,024 Accuracy 72.26% 44.48% 31.24% 17.38% 40.17% 21.24% 9.39% 26.22% 6.88%

Precision 88.07% 57.63% 43.25% 32.87% 56.00% 31.35% 16.16% 41.07% 13.02%

Recall 80.38% 66.52% 53.42% 28.25% 60.06% 42.48% 23.59% 47.58% 13.77%

F1 83.75% 59.45% 42.78% 26.92% 55.90% 33.72% 16.48% 39.54% 11.28%

Results are averaged across 5 runs using a set of 5 different seeds and LOSO cross-validation. Written in bold font are the best results per activity and evaluation metric.

activities and can therefore be identified using the overall

temporal context. We also identify this as the reason why the

convolutional network is not outperforming the architectural

variant with a 2-layered LSTM for the ADL sessions of the

Opportunity dataset, as the dataset almost exclusively sporadic

activities. Additionally, as for the simple/ periodical activities,

rapid changes in activities might cause mixed sliding windows,

which contain records of multiple activities. A convolutional

network could thus struggle in identifying local patterns

belonging to the target activity as it would more frequently see

patterns belonging to other activities “incorrectly” labeled as

the target activity. Nevertheless, as previously mentioned this

hypothesis requires further investigation.

As previously mentioned complex activities are composed of

multiple sub-activities which itself can be sporadic, transitional,

or short-term periodical. In our experiments only the Wetlab

dataset (Scholl et al., 2015) contains complex activities

(e.g., peeling). Given that participants in the Wetlab dataset

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2022.924954
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Bock et al. 10.3389/fcomp.2022.924954

TABLE 3 Per class results for all 9 architectural variations of the DeepConvLSTM architecture (Ordóñez and Roggen, 2016) using the RWHAR

dataset (Sztyler and Stuckenschmidt, 2016) as input.

Layers Units Metric climbing_down climbing_up jumping lying running sitting standing walking

0 Accuracy 43.96% 21.85% 79.28% 63.86% 82.41% 58.02% 60.51% 48.81%

Precision 59.65% 47.60% 85.78% 71.69% 97.11% 68.47% 72.45% 61.78%

Recall 62.21% 28.98% 91.81% 73.89% 84.84% 75.80% 78.70% 69.68%

F1 59.61% 34.17% 87.91% 71.19% 89.18% 70.07% 73.30% 64.69%

1 128 Accuracy 67.45% 39.22% 81.29% 69.78% 82.74% 60.15% 64.34% 62.35%

Precision 80.74% 59.54% 92.04% 80.60% 95.43% 72.87% 74.30% 78.96%

Recall 78.61% 54.32% 86.24% 79.53% 87.02% 76.75% 82.52% 76.91%

F1 78.39% 52.63% 86.62% 77.83% 89.55% 71.29% 76.08% 75.33%

256 Accuracy 72.09% 46.41% 80.05% 67.68% 81.55% 64.21% 65.24% 65.49%

Precision 81.73% 65.90% 91.25% 78.86% 93.82% 75.18% 74.24% 83.84%

Recall 83.29% 61.38% 86.56% 75.36% 86.93% 80.79% 83.23% 77.38%

F1 81.77% 59.98% 86.40% 75.17% 88.66% 75.31% 76.52% 77.91%

512 Accuracy 69.84% 45.77% 80.50% 70.17% 83.12% 61.97% 64.94% 67.42%

Precision 82.22% 66.74% 88.67% 81.75% 95.16% 72.60% 75.56% 83.29%

Recall 81.22% 58.82% 87.24% 80.08% 87.39% 78.28% 81.87% 79.82%

F1 80.13% 61.35% 87.13% 79.19% 90.92% 72.85% 75.45% 79.34%

1,024 Accuracy 74.19% 51.56% 82.93% 68.61% 81.61% 65.15% 67.21% 71.24%

Precision 84.09% 70.70% 91.53% 80.69% 93.18% 74.12% 77.60% 84.99%

Recall 85.00% 63.69% 88.82% 77.83% 87.34% 80.98% 83.02% 82.11%

F1 83.82% 64.73% 88.70% 76.65% 88.57% 75.17% 78.39% 82.28%

2 128 Accuracy 53.65% 31.01% 71.20% 68.96% 81.20% 60.61% 65.59% 54.57%

Precision 74.19% 47.74% 82.00% 78.27% 93.80% 75.47% 75.98% 69.54%

Recall 62.75% 45.86% 77.71% 81.51% 86.73% 75.77% 81.47% 72.25%

F1 65.18% 43.30% 77.89% 77.88% 88.54% 72.30% 76.51% 68.41%

256 Accuracy 54.26% 33.09% 71.18% 67.50% 81.19% 58.50% 64.72% 52.95%

Precision 72.88% 49.41% 81.71% 77.85% 93.38% 72.03% 74.60% 71.61%

Recall 65.51% 50.18% 76.75% 79.37% 86.91% 73.68% 81.48% 68.61%

F1 66.01% 45.68% 77.88% 76.54% 88.46% 69.51% 75.90% 66.97%

512 Accuracy 69.58% 43.57% 77.96% 72.05% 80.26% 63.71% 64.32% 65.43%

Precision 80.23% 62.97% 87.84% 82.25% 91.67% 75.96% 75.27% 81.53%

Recall 81.04% 57.77% 85.17% 81.71% 87.13% 78.00% 81.14% 78.60%

F1 79.65% 56.86% 84.39% 80.63% 87.69% 74.08% 75.86% 77.86%

1,024 Accuracy 72.03% 48.10% 79.31% 68.29% 82.06% 62.30% 65.44% 67.06%

Precision 83.16% 64.64% 88.02% 80.13% 94.36% 73.35% 74.97% 83.44%

Recall 82.15% 64.49% 86.11% 77.51% 86.85% 78.50% 82.68% 78.18%

F1 81.94% 61.29% 85.89% 76.60% 88.89% 72.81% 76.70% 78.64%

Results are averaged across 5 runs using a set of 5 different seeds and LOSO cross-validation. Written in bold font are the best results per activity and evaluation metric.

(Scholl et al., 2015) were asked to perform an experiment

which required them to (mostly) follow a step-by-step guide,

architectures employing recurrent layers are able to model

said sequence and overall achieve better prediction results.

Nevertheless, as the complex activities also inherit periodical,

local patterns (e.g., stirring), employing a 1-layered LSTM

seemed to combine information provided by both the recurrent

and convolutional layers in the most efficient way and resulted

in the highest prediction results. Nevertheless, we deem complex

activities to be a case-by-case decision. Whether they are better

to be predicted using a convolutional or recurrent network

depends on the use case and the type of sub-activities they

consist of.

With a few exceptions, performance steadily increases with

an increased amount of hidden units for both the 1- and the

2-layered architectural variants. Looking at the generalization

gaps within each experiment, i.e., the differences between

training and validation performance, we see that generalization

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2022.924954
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


B
o
c
k
e
t
a
l.

1
0
.3
3
8
9
/fc

o
m
p
.2
0
2
2
.9
2
4
9
5
4

TABLE 4 Per class results for all 9 architectural variations of the DeepConvLSTM architecture (Ordóñez and Roggen, 2016) using the SBHAR dataset (Reyes-Ortiz et al., 2016) as input.

Layers Units Metric null walking upstairs downstairs sitting standing lying stand-to-sit sit-to-stand sit-to-lie lie-to-sit stand-to-lie lie-to-stand

0 Accuracy 40.31% 50.29% 65.12% 74.05% 58.81% 53.32% 85.52% 12.14% 18.48% 27.36% 12.76% 8.93% 22.85%

Precision 75.24% 57.87% 73.92% 86.10% 86.07% 60.61% 93.38% 22.02% 36.02% 34.92% 32.01% 29.51% 30.98%

Recall 47.09% 78.65% 87.01% 85.81% 65.06% 80.82% 91.15% 26.14% 30.62% 56.32% 17.91% 11.93% 48.67%

F1 57.17% 65.31% 77.77% 84.23% 70.13% 68.26% 91.25% 20.88% 30.23% 41.79% 21.04% 15.86% 36.56%

1 128 Accuracy 68.53% 66.05% 80.33% 85.10% 70.56% 72.74% 87.43% 35.05% 45.37% 52.67% 27.22% 49.91% 32.44%

Precision 87.71% 74.98% 83.92% 90.82% 91.54% 82.54% 95.57% 41.80% 58.26% 63.72% 56.62% 64.84% 39.51%

Recall 76.17% 82.65% 95.34% 93.39% 75.18% 85.25% 91.10% 70.36% 67.93% 71.55% 36.24% 69.75% 68.87%

F1 81.06% 77.32% 88.28% 91.65% 80.99% 83.16% 92.69% 50.13% 58.72% 65.46% 39.56% 64.94% 47.62%

256 Accuracy 70.56% 68.07% 82.19% 85.71% 71.53% 73.38% 88.64% 39.21% 47.12% 52.73% 28.46% 53.85% 34.32%

Precision 88.28% 77.14% 85.48% 91.65% 90.79% 83.85% 95.59% 47.31% 61.09% 63.00% 58.14% 68.32% 42.22%

Recall 78.19% 83.70% 95.90% 93.18% 76.68% 84.89% 92.40% 72.57% 68.05% 72.54% 37.27% 72.20% 71.20%

F1 82.49% 78.92% 89.41% 92.00% 81.63% 83.69% 93.47% 54.52% 60.70% 65.81% 40.57% 67.98% 50.05%

512 Accuracy 71.11% 68.28% 82.20% 86.38% 71.30% 73.99% 89.34% 41.09% 45.52% 53.88% 32.00% 55.91% 36.17%

Precision 87.39% 79.08% 86.01% 91.55% 91.60% 84.44% 95.91% 48.86% 58.14% 63.88% 61.94% 70.28% 44.25%

Recall 79.62% 82.72% 95.34% 93.98% 76.17% 85.39% 92.79% 74.38% 69.54% 74.94% 41.74% 73.84% 70.74%

F1 82.86% 79.14% 89.54% 92.42% 81.59% 84.20% 93.97% 56.14% 59.45% 67.25% 44.94% 70.04% 51.55%

1,024 Accuracy 71.59% 69.11% 81.63% 87.36% 72.29% 74.00% 89.25% 42.01% 49.36% 57.01% 33.91% 56.86% 37.53%

Precision 86.85% 81.86% 85.25% 92.34% 91.70% 84.11% 96.05% 49.78% 61.29% 66.83% 60.19% 70.35% 45.61%

Recall 80.64% 81.59% 95.55% 94.32% 77.06% 85.52% 92.61% 74.29% 71.35% 77.66% 44.85% 74.85% 71.99%

F1 83.18% 80.27% 89.21% 93.02% 82.27% 84.09% 93.92% 56.86% 62.98% 70.05% 46.47% 70.73% 52.88%

2 128 Accuracy 64.56% 60.94% 73.30% 79.20% 66.62% 68.60% 81.90% 33.09% 38.20% 45.46% 23.70% 46.20% 30.05%

Precision 83.70% 75.45% 76.70% 87.37% 90.02% 81.96% 94.23% 41.84% 51.23% 58.67% 48.59% 58.68% 37.39%

Recall 74.27% 75.85% 95.05% 89.98% 71.70% 79.23% 86.03% 64.43% 62.25% 66.39% 35.23% 69.23% 66.93%

F1 78.13% 73.73% 83.70% 87.64% 78.02% 79.79% 89.37% 47.73% 52.00% 59.75% 35.12% 61.24% 44.38%

256 Accuracy 67.51% 64.14% 76.54% 82.97% 67.92% 70.39% 84.34% 38.83% 42.73% 49.77% 28.53% 52.11% 35.91%

Precision 84.75% 77.72% 79.81% 89.22% 90.83% 82.94% 95.31% 46.32% 55.33% 60.35% 56.95% 66.76% 43.45%

Recall 77.29% 78.38% 95.53% 92.41% 72.61% 81.63% 87.86% 71.77% 66.41% 72.50% 37.70% 70.60% 70.56%

F1 80.28% 76.22% 85.91% 90.27% 79.05% 81.41% 90.69% 53.90% 56.22% 63.56% 40.39% 66.20% 50.69%

512 Accuracy 70.20% 70.30% 81.12% 85.85% 71.84% 73.16% 87.56% 40.73% 47.94% 52.93% 32.50% 53.63% 35.67%

Precision 85.89% 81.54% 84.81% 91.25% 91.60% 84.77% 96.01% 48.00% 59.44% 63.12% 60.37% 69.58% 44.83%

Recall 79.80% 84.20% 95.28% 93.29% 76.38% 84.03% 90.90% 74.91% 71.65% 74.97% 44.57% 70.75% 70.18%

F1 82.20% 81.28% 88.97% 91.90% 81.89% 83.52% 92.80% 56.10% 62.01% 66.53% 45.71% 67.86% 51.33%

1,024 Accuracy 71.68% 73.39% 84.30% 87.59% 72.75% 75.20% 88.70% 42.99% 50.63% 57.95% 35.66% 56.20% 38.97%

Precision 86.63% 83.03% 88.75% 92.61% 90.97% 84.94% 96.15% 49.90% 62.31% 66.76% 61.57% 71.08% 47.27%

Recall 81.10% 86.33% 94.71% 94.28% 78.16% 86.42% 91.91% 75.62% 71.33% 80.40% 47.57% 72.32% 74.71%

F1 83.22% 83.76% 91.14% 93.18% 82.72% 85.05% 93.50% 58.18% 64.15% 71.38% 48.92% 70.02% 54.59%

Results are averaged across 5 runs using a set of 5 different seeds and LOSO cross-validation. Written in bold font are the best results per activity and evaluation metric.

F
ro
n
tie

rs
in

C
o
m
p
u
te
r
S
c
ie
n
c
e

1
2

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fcomp.2022.924954
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Bock et al. 10.3389/fcomp.2022.924954

TABLE 5 Per class results for all 9 architectural variations of the DeepConvLSTM architecture (Ordóñez and Roggen, 2016) using the HHAR dataset

(Stisen et al., 2015) as input.

Layers Units Metric null biking sitting standing walking stair up stair down

0 Accuracy 15.48% 78.83% 56.23% 47.87% 26.44% 20.45% 28.56%

Precision 32.87% 85.09% 67.89% 62.75% 51.20% 37.07% 35.58%

Recall 24.08% 90.82% 66.49% 55.60% 33.56% 30.88% 64.07%

F1 26.49% 87.44% 65.57% 57.48% 38.33% 32.43% 44.01%

1 128 Accuracy 22.82% 75.00% 47.87% 47.62% 38.32% 17.01% 31.33%

Precision 40.91% 82.34% 58.89% 58.14% 61.46% 35.62% 40.55%

Recall 35.19% 84.59% 58.36% 58.99% 46.57% 27.53% 61.87%

F1 36.30% 82.50% 56.38% 56.50% 50.40% 27.57% 46.35%

256 Accuracy 24.13% 73.50% 46.04% 45.55% 36.28% 22.48% 34.05%

Precision 41.11% 79.38% 59.16% 56.62% 68.61% 37.45% 44.83%

Recall 37.62% 86.28% 56.53% 57.97% 43.36% 35.46% 61.26%

F1 37.87% 81.33% 54.52% 54.46% 47.95% 33.52% 49.53%

512 Accuracy 22.73% 72.61% 42.11% 46.68% 36.21% 20.14% 34.90%

Precision 38.50% 82.66% 54.42% 57.77% 60.47% 37.30% 44.14%

Recall 37.31% 83.83% 52.52% 59.98% 44.02% 32.39% 64.57%

F1 35.31% 81.01% 50.51% 56.17% 47.61% 31.33% 50.35%

1,024 Accuracy 22.33% 73.10% 50.11% 45.21% 39.00% 18.32% 36.93%

Precision 37.73% 82.56% 61.11% 56.77% 69.35% 35.10% 44.95%

Recall 36.53% 84.09% 60.50% 55.35% 45.23% 29.05% 69.19%

F1 35.81% 81.46% 58.81% 54.11% 50.75% 28.83% 52.82%

2 128 Accuracy 24.92% 53.13% 41.74% 5.25% 20.03% 14.91% 17.47%

Precision 38.17% 65.58% 57.25% 22.45% 31.54% 26.63% 32.72%

Recall 43.44% 74.43% 53.34% 5.83% 34.20% 29.34% 32.17%

F1 39.00% 65.69% 52.14% 7.55% 31.03% 24.16% 28.15%

256 Accuracy 24.62% 54.30% 38.58% 10.73% 17.63% 12.56% 21.29%

Precision 38.29% 65.98% 56.27% 32.33% 32.43% 24.19% 34.46%

Recall 41.57% 74.64% 50.92% 12.70% 30.20% 21.41% 43.94%

F1 38.29% 67.16% 49.46% 15.94% 28.36% 20.56% 33.26%

512 Accuracy 22.00% 62.45% 38.07% 24.31% 20.51% 10.91% 25.87%

Precision 37.98% 73.47% 52.92% 41.91% 40.27% 23.49% 33.79%

Recall 35.26% 78.87% 49.42% 31.11% 29.01% 19.01% 56.27%

F1 35.14% 73.37% 47.46% 32.04% 30.72% 18.15% 39.64%

1,024 Accuracy 22.14% 65.61% 42.77% 39.43% 29.43% 14.78% 31.04%

Precision 37.55% 76.22% 57.53% 53.05% 52.72% 30.51% 39.87%

Recall 36.85% 80.26% 53.98% 50.17% 37.14% 23.70% 62.21%

F1 35.40% 75.80% 51.73% 48.88% 40.67% 23.25% 45.90%

Results are averaged across 5 runs using a set of 5 different seeds and LOSO cross-validation. Written in bold font are the best results per activity and evaluation metric.

gaps of networks employing recurrent layers strongly correlate

with the amount of increased performance one gets from

recurrent layers. More specifically, this means that the larger

the performance increase one gets from an LSTM, the larger

the network’s generalization gap will be (and vice versa). We

hypothesize that this is accredited to larger LSTMs being more

prone to overfit on temporal sequences in which activities

were performed in the training data. Consequently, datasets

who feature a strict sequence of activities, e.g., the Wetlab

dataset, overfitting on such temporal patterns generally achieves

better validation results than relying on local patterns in the

sensor data.

In order to quantify this trend, we propose the correlation

coefficient rGP . The coefficient is defined as the vectorized

Pearson correlation coefficient between the generalization gap

(G) and the difference in performance to the convolutional

network (P) of each 1- and 2-layered architectural variant across

all evaluation metrics. We report rGP for all datasets in Figure 4.

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2022.924954
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


B
o
c
k
e
t
a
l.

1
0
.3
3
8
9
/fc

o
m
p
.2
0
2
2
.9
2
4
9
5
4

TABLE 6 Per class results for all 9 architectural variations of the DeepConvLSTM architecture (Ordóñez and Roggen, 2016) using the Opportunity dataset (Roggen et al., 2010) as input.

L
ay
er
s

U
n
it
s

M
et
ri
c

n
u
ll

o
p
en

_
d
_
1

o
p
en

_
d
_
2

cl
o
se
_
d
_
1

cl
o
se
_
d
_
2

o
p
en

_
f

cl
o
se
_
f

o
p
en

_
d
w

cl
o
se
_
d
w

o
p
en

_
d
r_
1

cl
o
se
_
d
r_
1

o
p
en

_
d
r_
2

cl
o
se
_
d
r_
2

o
p
en

_
d
r_
3

cl
o
se
_
d
r_
3

cl
ea
n
_
t

d
ri
n
k
_
c

to
g
g
le
_
sw

0 Accuracy 75.52% 26.41% 26.62% 29.00% 33.34% 17.31% 17.74% 13.91% 14.99% 8.04% 10.33% 8.94% 5.76% 15.88% 20.84% 54.09% 33.32% 20.76%

Precision 86.05% 49.19% 53.03% 53.15% 57.56% 27.00% 31.81% 24.51% 27.33% 20.51% 26.77% 22.22% 17.31% 31.15% 35.52% 72.57% 73.39% 34.24%

Recall 86.41% 37.96% 35.12% 42.35% 47.77% 43.38% 40.10% 27.50% 28.92% 12.43% 15.78% 15.03% 10.82% 27.45% 36.66% 74.41% 40.31% 40.90%

F1 86.00% 41.29% 40.95% 44.57% 49.20% 29.38% 30.01% 24.02% 25.80% 14.35% 18.17% 15.42% 10.33% 26.74% 34.26% 69.52% 48.44% 33.86%

1 128 Accuracy 76.06% 18.89% 20.97% 20.76% 30.92% 8.69% 10.16% 5.13% 6.61% 0.60% 0.48% 1.77% 2.44% 9.83% 14.58% 46.72% 32.56% 12.49%

Precision 82.91% 57.29% 51.36% 51.86% 60.35% 14.84% 20.51% 15.77% 24.63% 4.33% 12.97% 15.64% 14.44% 25.83% 25.11% 78.20% 86.58% 42.09%

Recall 90.84% 22.49% 27.10% 29.46% 45.61% 25.07% 28.43% 9.35% 14.00% 0.71% 0.58% 2.45% 3.51% 17.01% 32.25% 61.18% 34.48% 18.01%

F1 86.38% 30.11% 32.36% 32.83% 46.07% 15.86% 18.13% 9.53% 12.10% 1.14% 0.92% 3.13% 4.38% 17.21% 24.99% 60.71% 47.55% 20.75%

256 Accuracy 76.61% 24.61% 29.97% 29.55% 32.02% 12.37% 11.42% 8.08% 8.81% 2.88% 3.28% 4.75% 4.62% 13.91% 17.60% 55.36% 41.27% 18.52%

Precision 84.97% 66.71% 57.00% 50.65% 60.12% 21.90% 22.98% 21.16% 17.70% 11.54% 20.07% 25.80% 21.28% 27.41% 30.58% 77.98% 87.95% 40.15%

Recall 89.32% 29.43% 40.72% 44.07% 47.26% 28.24% 32.13% 14.71% 18.99% 4.48% 3.72% 5.44% 5.73% 27.46% 32.42% 70.65% 44.71% 33.01%

F1 86.71% 38.12% 43.90% 43.77% 46.37% 21.85% 20.24% 14.65% 15.87% 5.14% 5.94% 8.44% 8.45% 23.88% 29.56% 70.47% 57.77% 30.08%

512 Accuracy 76.91% 28.22% 31.66% 34.72% 34.09% 14.35% 13.26% 10.74% 11.20% 4.43% 3.77% 7.31% 8.13% 14.04% 18.23% 56.57% 45.57% 24.71%

Precision 86.60% 70.08% 58.35% 56.42% 63.24% 23.92% 24.38% 26.28% 22.94% 15.86% 15.93% 23.71% 20.66% 28.31% 27.66% 78.50% 86.99% 41.68%

Recall 88.01% 33.98% 42.09% 50.51% 50.79% 36.37% 33.55% 20.30% 24.40% 5.72% 6.49% 9.01% 13.52% 25.15% 40.59% 72.99% 49.84% 45.27%

F1 86.87% 43.15% 46.64% 49.95% 49.18% 25.03% 23.07% 19.02% 19.79% 7.89% 6.76% 12.42% 13.87% 23.96% 30.47% 71.06% 62.02% 39.00%

1,024 Accuracy 76.93% 31.66% 35.29% 37.67% 38.71% 15.48% 13.49% 11.24% 12.70% 6.08% 4.11% 10.28% 9.66% 15.81% 19.42% 60.32% 45.93% 26.39%

Precision 87.12% 69.88% 62.94% 56.77% 63.32% 24.92% 26.54% 32.47% 23.94% 14.41% 16.32% 35.17% 26.74% 31.62% 31.26% 81.26% 85.68% 44.51%

Recall 87.44% 37.53% 45.50% 56.58% 55.48% 37.90% 38.12% 16.75% 27.26% 9.80% 5.28% 14.34% 15.44% 29.37% 40.39% 74.54% 50.80% 43.51%

F1 86.86% 47.59% 50.97% 54.04% 55.07% 26.68% 23.46% 19.92% 22.25% 10.45% 7.52% 17.35% 16.82% 26.68% 32.07% 73.88% 62.27% 40.94%

2 128 Accuracy 66.53% 25.06% 25.21% 26.73% 28.11% 18.29% 14.40% 13.93% 15.83% 11.14% 13.94% 11.19% 14.31% 13.51% 20.79% 34.68% 38.46% 16.46%

Precision 88.82% 42.09% 40.86% 41.66% 45.58% 23.16% 20.94% 25.33% 21.66% 18.35% 22.39% 27.09% 24.76% 29.20% 35.04% 46.23% 64.56% 20.94%

Recall 72.67% 42.96% 41.77% 49.91% 43.62% 48.22% 46.30% 27.17% 44.51% 25.13% 33.96% 17.10% 30.90% 21.84% 45.74% 63.82% 52.72% 49.61%

F1 79.66% 39.29% 39.39% 41.45% 42.00% 30.70% 24.96% 23.71% 26.89% 19.15% 23.56% 19.17% 24.11% 22.84% 33.06% 50.39% 55.11% 27.82%

256 Accuracy 68.29% 32.78% 31.27% 32.17% 34.15% 18.88% 14.94% 20.18% 18.03% 16.95% 15.81% 10.21% 15.81% 19.03% 22.70% 42.59% 39.31% 19.05%

Precision 88.66% 44.79% 49.57% 45.53% 50.85% 22.89% 20.46% 35.03% 26.21% 25.58% 21.89% 26.93% 22.10% 34.63% 39.53% 57.79% 74.55% 25.90%

Recall 74.68% 54.31% 49.96% 56.25% 50.27% 51.50% 47.85% 36.46% 46.61% 33.88% 43.01% 14.88% 40.21% 31.43% 44.26% 69.83% 47.74% 47.18%

F1 80.82% 47.47% 45.57% 47.67% 48.03% 31.36% 25.74% 32.39% 29.97% 27.72% 26.23% 17.47% 26.53% 30.72% 35.82% 59.45% 55.17% 31.15%

512 Accuracy 70.47% 40.85% 40.12% 40.12% 38.89% 21.32% 17.27% 23.21% 19.60% 19.39% 19.81% 14.34% 20.95% 27.98% 25.22% 46.49% 45.55% 23.70%

Precision 90.79% 55.61% 56.07% 53.29% 55.83% 25.06% 23.16% 36.69% 25.95% 27.67% 28.11% 31.44% 30.79% 46.39% 40.08% 57.43% 73.81% 31.68%

Recall 75.91% 61.85% 57.89% 61.14% 56.95% 60.14% 55.64% 40.13% 51.07% 41.19% 44.08% 20.74% 42.52% 43.59% 49.86% 76.34% 56.90% 51.68%

F1 82.39% 57.12% 55.90% 55.92% 53.33% 34.99% 29.14% 36.42% 32.13% 31.44% 32.05% 23.55% 33.88% 42.69% 38.73% 62.84% 62.09% 37.22%

1,024 Accuracy 71.72% 42.41% 44.11% 39.67% 42.57% 24.18% 19.03% 25.52% 22.87% 22.60% 22.13% 21.35% 26.32% 31.26% 27.92% 47.54% 48.35% 24.49%

Precision 91.82% 55.83% 61.10% 58.54% 56.61% 28.90% 26.49% 37.91% 30.90% 32.33% 31.51% 38.26% 35.10% 48.24% 39.91% 60.18% 73.26% 32.33%

Recall 76.68% 66.92% 61.69% 57.87% 61.88% 61.29% 60.69% 46.14% 53.49% 45.72% 45.82% 31.76% 54.30% 47.75% 54.07% 76.00% 61.39% 50.92%

F1 83.30% 58.79% 60.13% 55.71% 57.03% 38.63% 31.60% 39.82% 36.18% 35.74% 35.39% 33.76% 41.07% 46.46% 42.39% 63.49% 64.72% 38.10%

Results are averaged across 5 runs using a set of 5 different seeds. Written in bold font are the best results per activity and evaluation metric. To enhance readibility of the table activities are abbreviated: d, door; dw, dishwasher; f, fridge; dr, drawer; t,

table; c, cup; sw, switch.

F
ro
n
tie

rs
in

C
o
m
p
u
te
r
S
c
ie
n
c
e

1
4

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fcomp.2022.924954
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


B
o
c
k
e
t
a
l.

1
0
.3
3
8
9
/fc

o
m
p
.2
0
2
2
.9
2
4
9
5
4

TABLE 7 Per class results for all 9 architectural variations of the DeepConvLSTM architecture (Ordóñez and Roggen, 2016) using the ADL sessions of the Opportunity dataset (Roggen et al., 2010) as

input.

L
ay
er
s

U
n
it
s

M
et
ri
c

n
u
ll

o
p
en

_
d
_
1

o
p
en

_
d
_
2

cl
o
se
_
d
_
1

cl
o
se
_
d
_
2

o
p
en

_
f

cl
o
se
_
f

o
p
en

_
d
w

cl
o
se
_
d
w

o
p
en

_
d
r_
1

cl
o
se
_
d
r_
1

o
p
en

_
d
r_
2

cl
o
se
_
d
r_
2

o
p
en

_
d
r_
3

cl
o
se
_
d
r_
3

cl
ea
n
_
t

d
ri
n
k
_
c

to
g
g
le
_
sw

0 Accuracy 79.69% 16.42% 15.70% 19.63% 24.79% 15.66% 18.59% 9.21% 12.12% 4.26% 7.10% 3.24% 3.87% 15.71% 15.11% 25.23% 14.59% 8.82%

Precision 90.52% 36.76% 35.07% 30.23% 41.45% 24.62% 26.04% 16.21% 18.62% 9.65% 16.78% 9.73% 12.87% 23.22% 20.65% 49.50% 46.05% 15.26%

Recall 87.05% 25.12% 22.56% 38.63% 41.33% 40.45% 43.58% 25.05% 30.86% 7.87% 13.30% 5.27% 5.81% 38.44% 39.49% 48.52% 22.51% 19.85%

F1 88.68% 27.61% 26.69% 32.37% 39.13% 26.77% 31.22% 16.68% 21.35% 8.04% 12.91% 6.13% 7.23% 26.90% 26.11% 38.69% 24.13% 16.06%

1 128 Accuracy 81.41% 0.61% 2.51% 6.66% 3.47% 8.45% 10.42% 1.50% 3.39% 0.00% 0.00% 0.00% 0.00% 1.21% 3.08% 0.14% 4.68% 1.66%

Precision 85.91% 16.68% 13.72% 24.22% 29.11% 14.32% 25.33% 2.76% 8.42% 0.00% 0.00% 0.00% 0.00% 11.68% 8.66% 1.43% 34.44% 10.30%

Recall 94.17% 0.67% 3.90% 9.53% 3.74% 27.99% 23.51% 6.31% 7.69% 0.00% 0.00% 0.00% 0.00% 1.44% 5.63% 0.15% 5.80% 1.98%

F1 89.73% 1.14% 4.48% 11.34% 6.00% 15.38% 18.52% 2.85% 6.33% 0.00% 0.00% 0.00% 0.00% 2.27% 5.44% 0.27% 8.35% 3.04%

256 Accuracy 80.96% 4.76% 13.68% 15.20% 14.20% 10.63% 13.80% 3.41% 5.55% 0.00% 0.00% 0.08% 0.00% 4.24% 8.52% 10.03% 13.35% 8.29%

Precision 88.37% 31.18% 30.29% 29.87% 57.40% 18.11% 23.76% 11.99% 18.70% 0.00% 0.00% 0.42% 0.00% 20.29% 15.22% 29.83% 52.95% 28.31%

Recall 91.06% 5.38% 20.79% 31.47% 20.99% 30.54% 40.50% 15.09% 13.17% 0.00% 0.00% 0.09% 0.00% 6.87% 18.49% 16.33% 15.83% 11.94%

F1 89.45% 8.41% 21.44% 25.36% 23.44% 19.05% 24.02% 6.48% 10.35% 0.00% 0.00% 0.15% 0.00% 7.80% 14.98% 15.29% 22.18% 14.14%

512 Accuracy 81.00% 12.20% 19.52% 23.55% 25.27% 13.65% 15.89% 3.55% 9.26% 0.23% 0.08% 0.00% 0.13% 7.26% 11.15% 15.60% 14.83% 16.62%

Precision 89.51% 57.79% 45.66% 36.87% 47.65% 19.56% 22.37% 6.03% 22.74% 4.17% 0.71% 0.00% 5.00% 18.54% 16.82% 51.13% 56.64% 36.11%

Recall 89.81% 13.83% 28.07% 47.13% 36.82% 41.32% 44.31% 12.53% 22.21% 0.24% 0.08% 0.00% 0.13% 13.27% 29.52% 28.13% 18.33% 24.86%

F1 89.47% 21.25% 31.30% 37.50% 38.93% 23.91% 27.16% 6.63% 16.79% 0.46% 0.15% 0.00% 0.26% 13.05% 19.52% 23.78% 24.58% 27.79%

1,024 Accuracy 80.32% 14.35% 19.77% 23.44% 36.94% 14.58% 15.18% 6.11% 9.89% 1.07% 0.24% 0.27% 2.10% 8.90% 14.55% 16.14% 17.68% 18.00%

Precision 90.52% 55.70% 51.36% 31.49% 53.20% 20.60% 22.38% 11.38% 19.90% 7.81% 1.43% 7.00% 10.92% 19.87% 19.89% 45.18% 55.90% 33.09%

Recall 88.08% 17.56% 26.50% 54.76% 59.98% 44.44% 43.58% 18.57% 27.39% 1.33% 0.33% 0.28% 2.82% 19.36% 36.39% 33.92% 22.77% 32.75%

F1 89.03% 24.54% 31.12% 37.20% 53.08% 25.39% 26.05% 11.25% 17.80% 1.98% 0.46% 0.53% 3.86% 15.95% 25.01% 25.74% 28.69% 29.93%

2 128 Accuracy 70.93% 11.67% 11.40% 12.94% 6.76% 11.45% 15.29% 4.91% 14.31% 1.36% 7.17% 0.17% 4.80% 7.43% 17.07% 8.63% 12.40% 5.42%

Precision 91.24% 21.96% 23.05% 19.48% 10.78% 15.44% 21.64% 10.32% 18.11% 8.02% 9.60% 0.89% 11.48% 18.15% 23.19% 15.72% 45.51% 6.31%

Recall 76.48% 23.73% 19.98% 35.05% 18.35% 35.17% 57.20% 14.78% 56.42% 2.44% 24.54% 0.24% 9.91% 12.13% 51.27% 31.12% 17.79% 36.45%

F1 82.74% 20.06% 19.90% 22.61% 11.75% 20.47% 26.29% 9.17% 24.73% 2.58% 12.83% 0.34% 8.90% 13.55% 28.83% 15.46% 21.17% 10.23%

256 Accuracy 69.49% 18.52% 15.56% 16.67% 15.89% 13.77% 17.08% 6.10% 15.13% 1.82% 9.37% 2.12% 5.88% 12.06% 19.92% 13.52% 15.75% 7.36%

Precision 92.86% 29.13% 26.87% 23.53% 24.88% 17.44% 24.27% 9.00% 19.61% 5.76% 11.41% 14.23% 13.71% 27.17% 26.98% 36.02% 38.50% 8.52%

Recall 73.64% 37.11% 32.41% 43.37% 35.93% 43.33% 62.86% 23.75% 54.17% 3.14% 42.16% 3.04% 18.97% 18.75% 54.39% 40.26% 25.71% 42.65%

F1 81.75% 30.34% 26.07% 28.07% 26.58% 24.06% 28.82% 11.19% 26.10% 3.53% 16.81% 4.04% 10.91% 21.09% 32.90% 23.19% 25.98% 13.61%

512 Accuracy 72.28% 25.44% 23.59% 24.01% 26.29% 16.07% 19.15% 9.93% 17.82% 7.14% 12.46% 4.16% 10.49% 17.66% 21.48% 19.26% 17.22% 9.90%

Precision 93.12% 40.48% 38.51% 35.32% 37.34% 19.71% 25.64% 13.97% 22.78% 12.81% 14.99% 9.93% 16.10% 32.49% 26.54% 37.69% 43.04% 13.49%

Recall 76.52% 45.30% 43.34% 53.86% 51.34% 50.77% 66.68% 30.62% 54.83% 15.62% 50.51% 7.81% 29.87% 28.65% 62.29% 49.90% 26.99% 32.57%

F1 83.59% 39.75% 37.00% 38.51% 40.56% 27.59% 31.66% 17.79% 29.85% 12.95% 22.01% 7.60% 18.72% 29.28% 35.03% 30.86% 28.19% 17.87%

1,024 Accuracy 72.53% 31.25% 30.81% 26.82% 28.00% 18.07% 19.95% 11.14% 16.71% 7.76% 11.59% 6.41% 10.53% 20.48% 23.32% 20.45% 20.23% 11.34%

Precision 93.68% 45.52% 48.41% 36.60% 39.26% 21.89% 26.52% 15.34% 20.47% 11.11% 15.49% 13.92% 14.59% 30.44% 29.25% 38.20% 40.25% 15.08%

Recall 76.44% 55.53% 49.42% 57.62% 50.74% 54.95% 65.65% 37.17% 56.58% 22.49% 40.98% 12.34% 32.13% 38.73% 65.14% 46.13% 33.24% 38.70%

F1 83.87% 47.25% 46.09% 41.99% 42.32% 30.44% 32.69% 19.71% 28.24% 14.21% 20.47% 11.68% 18.68% 33.01% 37.22% 32.99% 32.23% 20.32%

Results are averaged across 5 runs using a set of 5 different seeds. Written in bold font are the best results per activity and evaluation metric. To enhance readibility of the table activities are abbreviated: d, door; dw, dishwasher; f, fridge; dr, drawer; t,

table; c, cup; sw, switch.

F
ro
n
tie

rs
in

C
o
m
p
u
te
r
S
c
ie
n
c
e

1
5

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fcomp.2022.924954
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


B
o
c
k
e
t
a
l.

1
0
.3
3
8
9
/fc

o
m
p
.2
0
2
2
.9
2
4
9
5
4

TABLE 8 Per class results for all 9 architectural variations of the DeepConvLSTM architecture (Ordóñez and Roggen, 2016) using the Drill sessions of the Opportunity dataset (Roggen et al., 2010) as

input.

L
ay
er
s

U
n
it
s

M
et
ri
c

n
u
ll

o
p
en

_
d
_
1

o
p
en

_
d
_
2

cl
o
se
_
d
_
1

cl
o
se
_
d
_
2

o
p
en

_
f

cl
o
se
_
f

o
p
en

_
d
w

cl
o
se
_
d
w

o
p
en

_
d
r_
1

cl
o
se
_
d
r_
1

o
p
en

_
d
r_
2

cl
o
se
_
d
r_
2

o
p
en

_
d
r_
3

cl
o
se
_
d
r_
3

cl
ea
n
_
t

d
ri
n
k
_
c

to
g
g
le
_
sw

0 Accuracy 55.62% 36.31% 35.62% 41.43% 35.54% 6.75% 4.98% 17.79% 15.02% 12.59% 9.92% 24.24% 13.23% 22.23% 24.43% 66.96% 72.90% 31.14%

Precision 73.73% 60.38% 56.34% 68.89% 53.61% 16.86% 19.78% 31.28% 37.40% 20.47% 38.70% 43.41% 32.86% 46.59% 45.50% 84.03% 85.60% 44.30%

Recall 71.77% 53.32% 55.53% 60.22% 51.41% 17.49% 12.46% 34.35% 25.57% 24.78% 14.20% 33.67% 17.72% 32.57% 39.66% 80.71% 84.05% 60.85%

F1 71.30% 52.58% 51.32% 56.34% 49.63% 12.19% 9.00% 29.40% 25.39% 20.58% 16.46% 35.77% 21.02% 33.87% 36.29% 79.70% 84.22% 44.96%

1 128 Accuracy 58.27% 46.84% 44.79% 52.84% 42.26% 11.78% 6.91% 19.17% 19.07% 14.37% 12.78% 19.74% 17.02% 23.44% 23.93% 67.84% 77.12% 36.88%

Precision 83.65% 68.84% 60.67% 72.53% 60.02% 19.80% 22.58% 38.28% 35.88% 32.43% 33.83% 39.65% 34.50% 41.97% 41.12% 72.41% 85.29% 44.30%

Recall 68.21% 64.08% 68.58% 68.58% 64.04% 36.77% 12.09% 30.26% 35.01% 23.21% 16.65% 27.41% 23.90% 36.89% 36.76% 94.20% 89.00% 78.57%

F1 73.49% 63.12% 61.24% 67.49% 57.41% 20.25% 11.91% 31.22% 31.16% 23.73% 20.44% 30.20% 26.54% 35.11% 35.55% 79.09% 86.98% 53.01%

256 Accuracy 60.85% 51.58% 49.33% 57.57% 49.33% 11.96% 8.15% 20.61% 25.21% 18.01% 19.28% 27.81% 20.59% 28.67% 28.65% 71.04% 77.94% 36.96%

Precision 84.60% 72.67% 70.92% 71.30% 67.25% 22.91% 20.70% 41.59% 46.76% 34.16% 51.76% 45.00% 48.50% 44.41% 48.17% 75.82% 86.43% 45.03%

Recall 70.08% 64.87% 68.70% 77.68% 72.17% 36.79% 14.40% 41.23% 44.04% 27.56% 23.90% 38.69% 27.80% 41.61% 40.02% 94.41% 88.99% 76.31%

F1 75.58% 67.30% 65.04% 72.48% 64.77% 20.47% 13.51% 33.22% 38.73% 27.36% 29.60% 39.94% 31.18% 39.88% 41.09% 82.00% 87.50% 53.02%

512 Accuracy 61.65% 53.40% 50.68% 59.73% 48.29% 12.35% 8.26% 23.99% 22.62% 25.75% 21.71% 35.61% 25.96% 34.22% 34.01% 75.06% 78.71% 39.08%

Precision 83.83% 75.08% 72.34% 74.94% 66.04% 25.73% 32.18% 35.93% 52.68% 43.10% 53.91% 52.91% 49.28% 52.90% 49.63% 80.28% 86.33% 48.76%

Recall 71.78% 66.95% 69.44% 78.25% 71.32% 26.36% 20.13% 49.50% 36.10% 36.27% 27.84% 45.38% 35.77% 44.98% 47.00% 93.79% 90.10% 74.68%

F1 76.16% 68.89% 65.92% 74.00% 62.77% 20.73% 13.76% 38.13% 35.52% 37.82% 32.87% 48.03% 37.54% 46.18% 46.63% 85.19% 87.98% 55.01%

1,024 Accuracy 62.45% 55.30% 55.08% 60.87% 48.55% 15.36% 9.78% 27.05% 27.22% 25.09% 19.49% 36.58% 25.91% 37.61% 35.06% 74.93% 78.48% 45.92%

Precision 83.14% 74.04% 74.20% 74.74% 69.61% 31.55% 33.71% 43.04% 55.69% 41.72% 54.16% 54.88% 50.64% 56.26% 51.07% 80.11% 85.68% 54.91%

Recall 72.74% 69.37% 73.55% 78.84% 71.06% 33.46% 18.51% 48.90% 41.20% 36.42% 24.12% 49.23% 35.09% 51.43% 51.59% 93.88% 90.37% 79.72%

F1 76.76% 70.10% 69.95% 74.64% 62.50% 25.15% 15.68% 41.71% 41.10% 37.28% 29.86% 49.42% 37.97% 50.84% 48.14% 85.24% 87.78% 62.16%

2 128 Accuracy 36.76% 38.91% 39.61% 43.64% 42.69% 35.56% 22.02% 27.73% 42.62% 36.50% 28.35% 21.63% 23.42% 35.50% 36.86% 53.08% 65.51% 28.56%

Precision 79.03% 49.09% 49.20% 51.00% 53.70% 48.69% 37.98% 42.26% 58.22% 45.66% 35.30% 32.07% 32.77% 55.46% 45.57% 60.20% 75.89% 32.10%

Recall 40.96% 61.54% 67.99% 69.35% 67.67% 54.00% 34.42% 47.34% 65.00% 57.21% 46.10% 34.40% 41.08% 48.84% 66.24% 86.37% 83.13% 79.02%

F1 53.63% 53.45% 54.51% 57.66% 56.62% 49.20% 33.77% 41.76% 58.35% 49.58% 39.17% 32.04% 34.42% 50.14% 52.26% 68.53% 78.87% 43.66%

256 Accuracy 46.88% 40.29% 42.31% 45.38% 46.13% 38.68% 27.98% 35.88% 43.61% 38.26% 30.62% 28.81% 25.73% 35.89% 37.32% 56.53% 69.51% 39.57%

Precision 82.63% 51.49% 56.01% 53.64% 56.45% 50.47% 51.49% 46.92% 57.96% 51.59% 39.32% 38.04% 38.84% 52.16% 51.86% 67.29% 76.55% 44.65%

Recall 52.39% 63.50% 58.93% 71.95% 68.68% 58.77% 38.04% 61.87% 71.46% 56.19% 46.36% 44.10% 42.76% 51.33% 55.90% 82.67% 88.57% 76.51%

F1 63.41% 54.54% 55.58% 58.72% 59.16% 52.39% 40.53% 51.03% 59.49% 51.39% 42.07% 40.19% 37.59% 50.28% 51.83% 71.73% 81.73% 55.51%

512 Accuracy 52.09% 40.99% 40.89% 47.15% 48.84% 38.78% 26.40% 37.91% 45.05% 43.93% 34.76% 34.15% 33.60% 43.50% 41.37% 60.63% 70.21% 46.97%

Precision 82.23% 55.06% 54.06% 54.86% 59.69% 52.53% 52.66% 51.55% 58.94% 54.86% 45.28% 46.01% 50.82% 64.57% 58.60% 71.97% 76.88% 54.26%

Recall 59.18% 61.63% 56.57% 70.70% 70.36% 56.72% 38.50% 59.65% 71.81% 63.65% 49.38% 52.99% 54.04% 56.99% 60.66% 83.81% 89.54% 75.85%

F1 68.25% 54.15% 52.00% 59.84% 61.32% 52.31% 39.36% 53.49% 61.03% 56.68% 46.52% 47.38% 48.19% 59.12% 56.46% 75.06% 82.29% 62.12%

1,024 Accuracy 56.19% 51.92% 53.07% 52.96% 57.37% 41.60% 32.99% 45.28% 50.12% 46.99% 38.55% 38.16% 36.98% 45.33% 41.08% 64.04% 72.48% 51.82%

Precision 86.30% 66.13% 69.28% 59.84% 67.03% 53.33% 55.02% 58.18% 62.34% 54.40% 50.69% 48.69% 52.12% 68.42% 62.53% 75.34% 75.63% 59.70%

Recall 62.13% 71.02% 68.59% 77.31% 77.47% 61.91% 49.90% 68.77% 77.34% 71.20% 55.33% 55.26% 54.70% 59.10% 52.12% 85.54% 94.87% 79.11%

F1 71.71% 66.43% 65.96% 66.38% 70.34% 55.87% 48.17% 60.68% 64.78% 60.67% 51.98% 51.36% 51.27% 60.72% 54.33% 77.38% 83.93% 67.04%

Results are averaged across 5 runs using a set of 5 different seeds. Written in bold font are the best results per activity and evaluation metric. To enhance readibility of the table activities are abbreviated: d, door; dw, dishwasher; f, fridge; dr, drawer; t,

table; c, cup; sw, switch.

F
ro
n
tie

rs
in

C
o
m
p
u
te
r
S
c
ie
n
c
e

1
6

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fcomp.2022.924954
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Bock et al. 10.3389/fcomp.2022.924954

FIGURE 4

Calculated correlation coe�cient, rGP , for each dataset. The coe�cient is calculated as the vectorized Pearson correlation between the

generalization gap scores (G), i.e., di�erence between train and validation performance, and the performance di�erences between the variants

including recurrent layers and the convolutional network. The closer rGP is to 1, the more the network profits from including recurrent layers for

the given dataset. According to rGP the RWHAR dataset (Sztyler and Stuckenschmidt, 2016) profited the most and the HHAR dataset (Stisen et al.,

2015) the least from recurrent layers.

Putting rGP further into context with our previous analysis, a low

rGP value indicates that the learned temporal patterns are not

applicable to the validation dataset. On the contrary, a high rGP

value indicates the opposite, i.e., that general temporal patterns

are learned. This relationship is nicely visible when dividing

the Opportunity dataset into the two session types. On the one

hand, when only predicting the Drill sessions rGP increases

compared to its original value on the complete dataset as each

subject was acting according to the same experimental protocol.

On the other hand, when applied on the ADL sessions, rGP

significantly decreases as the dataset does not offer prominent

temporal patterns which could be learned. Our metric can thus

be used as an additional indicator on the importance learned

temporal patterns during the prediction process and thus how

beneficial recurrent layers are to the network.

In general, our analysis suggests that larger LSTMs are

more prone to overfit and rely on temporal patterns during

the prediction process. Nevertheless, this can only be beneficial

for datasets which contain temporal patterns and relationships

among activities, and can, as seen with the HHAR dataset (Stisen

et al., 2015), also lead to worse validation results.

5. Conclusion and future directions

In this article we investigated the overall necessity of

recurrent layers in HAR based on results we obtained on

five popular HAR datasets (Roggen et al., 2010; Scholl et al.,

2015; Stisen et al., 2015; Reyes-Ortiz et al., 2016; Sztyler and

Stuckenschmidt, 2016). We chose to use the DeepConvLSTM

(Ordóñez and Roggen, 2016) as our architecture of choice and

modified it so that it either employs 0, 1, or 2 LSTM layers. We

further varied the size of the LSTM layers by employing different

amounts of hidden units, i.e., 128, 256, 512, or 1,024. During

analysis we tried to map characteristics of the datasets to the

performance of the individual architectures, trying to identify

a "rule-of-thumb" for which types of dataset and activities

a convolutional network can compete with a network also

including recurrent layers.

Overall, in line with what we proposed in Bock et al.

(2021), employing a 1-layered LSTM delivers the best prediction

results for 4 out of 5 datasets. Nevertheless, we saw large

discrepancies amongst different types of activities, depending

on the amount of recurrent layers. Sporadic and transitional

activities, which are short in time and do not show characteristic

local patterns, were most reliably predicted when using

two recurrent layers. Especially the latter type of activities

inherit dependencies with preceding activities and are thus

more reliably predicted using the overall temporal context.

Contrarily, simple/ periodical activities, which show local,

reoccurring patterns, were most consistently predicted when

removing the second recurrent layer. Contradicting to our

expectations, architectures employing a 1-layered LSTM were

more performant on simple, periodical activities than solely

convolutional networks. Furthermore, we witnessed an overall

trend that the performance difference between LSTM-based

networks and convolutional networks grows larger for datasets

which feature rapid changes and overall shorter execution times

of activities.

Our results showed that bigger LSTMs are more likely to

overfit and rely on learned time sequences We further noticed

that the correlation between the generalization gap of a recurrent

Frontiers inComputer Science 17 frontiersin.org

https://doi.org/10.3389/fcomp.2022.924954
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Bock et al. 10.3389/fcomp.2022.924954

architecture and the difference in performance between the

recurrent and convolutional architecture can be used to measure

the effectiveness of the learned temporal patterns and thus the

recurrent layers in general. Said correlation, which we defined

as rGP, is high, i.e.„ close to 1, if the temporal sequences learned

by the LSTM help in predicting the validation data. In contrast,

said correlation is low, i.e.„ close to 0, if recurrent layers are not

beneficial for the given dataset and should be omitted from the

architecture. We therefore also argue that claims presented by

Karpathy et al. (2015) are not applicable to sensor-based HAR,

as 1-layered LSTMs were also able to learn temporal patterns.

We rather argue that the depth of an effective LSTM-based RNN

comes down to how much relative importance one wants to put

on temporal structures compared to local structures.

To give an answer on the necessity of recurrent layers in

HAR, one has to consider the type of activities and overall use

case. If one mostly tries to predict sporadic and transitional

activities, convolutional kernels will struggle to identify local

patterns in the data. For said activities temporal context and

thus recurrent layers seem to be the only effective way to

reliably identify them. In general, if the goal is to train a

network which predicts activities within a predefined workflow,

e.g., an experiment or production process, recurrent layers are

beneficial and should be included in the final architecture.

More specifically our experiments showed that a 1-layered

LSTM deemed to be most effective in predicting activities

within a predefined workflow, suggesting that it most efficiently

combines both temporal and local information and is less prone

to overfitting solely on the former. On the contrary, our results

also suggest that in order to train a general systemwhich predicts

simple/ periodical activities, one should not include recurrent

layers as they increase the risk of relying too much on temporal

patterns which will not be present in the real-world application

scenario. Unlike complex activities, simple/ periodical activities

do not consist of in-activity sequences. Therefore, having

the 1-layered variants outperform architectures employing no

LSTM layer, suggests that said performance increase might be

due to temporal dependencies amongst activities which were

introduced during recording of the datasets. Given that a

network is more likely to overfit on temporal patterns when

employing two LSTM layers and that datasets like the RWHAR

dataset (Sztyler and Stuckenschmidt, 2016) do not intend to

model a certain activity workflow, having a 1-layered LSTM still

produce the best prediction results along with a rGP coefficient

close to 1, makes us assume that models indeed learned

(unwanted) temporal patterns. We also saw that for datasets

which featured rapid changes between activities, convolutional

networks were not as performant as recurrent networks in

predicting simple/ periodical activities, causes us to think that

latter networks took advantage of temporal patterns within

said datasets.

Generally speaking, even though results we obtained during

our experiments on paper suggest that LSTMs should be

included at all times, we argue that, depending on the underlying

use case, high benchmark scores on currently available HAR

datasets can give a false sense of security and do not

automatically ensure overall generability of trained models. We

notice that for datasets which do not try to model a temporal

process, e.g., the RWHAR dataset (Sztyler and Stuckenschmidt,

2016), including recurrent layers made networks learn the

overall order in which activities were recorded, which, though

increasing the benchmark score, would not benefit a model in a

real-world setting and could even end up hurting the predictive

performance as the model would rely on unnatural temporal

patterns. Furthermore, we witnessed a significant decrease in

performance for convolutional networks once simple/ periodical

activities are changing more rapidly along with the fact that

sporadic activities were not at all reliably detected using

convolutional kernels. As in said cases temporal context deemed

necessary, one has to question whether they would be able to be

detected if naturally said context does not exist, but either only

exists because of existing “partner”-relations among activities

(e.g.„ opening and closing a cupboard), preceding activities (e.g.,

a person was sitting, thus sit-to-stand is very likely) or an

experimental protocol. To conclude, the metric we introduced

in this article, rGP, be used to measure the effectiveness and

applicability of learned temporal patterns and thus also be used

as a decision metric whether to employ recurrent layers within

the network.

To further examine the applicability of the introduced

metric rGP, our next steps within this research are four-fold.

First, in order to prove that networks featuring recurrent

layers are prone to overfitting on unwanted temporal patterns,

we will explore regularization techniques which omit said

temporal patterns and only keep those which can be expected

to be witnessed in a real-world setting. Especially the RWHAR

dataset offers a basis for such an analysis as it intends to

model “independent” activities. We expect that putting such

regularization techniques in place will end up hurting the

performance of the networks which include recurrent layers,

while leaving convolutional networksmostly unaffected. Second,

we will further investigate the reason for why convolutional

networks are less performant, especially for simple/ periodical

activities, for datasets which contain rapid changes and

thus short average execution times of activities. We already

hypothesized that due to the nature how we define sliding

windows, i.e., by the label of the last sample, a dataset which

features rapid changes thus also contains more likely “mixed”

windows, i.e., ones which contain multiple labels. In order to

explore whether this is true, we plan to modify datasets to omit

said “mixed” windows and see whether a convolutional network

is more performant when only being trained on windows

which only contain local patterns of the window label. Thirdly,

we plan to expand our choice of datasets included in our

analysis. We like to include datasets which (1) have subjects

perform simple/ periodical activities without any restrictions or

Frontiers inComputer Science 18 frontiersin.org

https://doi.org/10.3389/fcomp.2022.924954
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Bock et al. 10.3389/fcomp.2022.924954

underlying protocol, (2) consist of data obtained from a larger

number of participants than our current choice of datasets and

(3) include complex activities. Lastly, we plan to apply similar

architectural changes to recurrent parts of other popular HAR

networks, for example Abedin et al. (2021) or Dirgová Luptáková

et al. (2022).

Data availability statement

Solely publicly available datasets were analyzed in this study.

The code used for conducting experiments, links to the datasets

as well as log files of all experiments can be found at: https://

github.com/mariusbock/recurrent_state_of_the_art.

Author contributions

MB conducted the experiments and wrote the manuscript.

AH performed the analysis of each dataset along with the color-

coded visualization of the sensor data. AH, KV, and MM also

contributed to the writing. All authors contributed equally in the

analysis of the results.

Funding

This work received support from the House of Young

Talents at the University of Siegen.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those

of their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

References

Abedin, A., Ehsanpour, M., Shi, Q., Rezatofighi, H., and Ranasinghe, D. C.
(2021). “Attend and discriminate: beyond the state-of-the-art for human activity
recognition using wearable sensors,” in Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, Vol. 5 (New York, NY).

Bachlin, M., Roggen, D., Troster, G., Plotnik, M., Inbar, N., Meidan, I., et al.
(2009). “Potentials of enhanced context awareness in wearable assistants for
Parkinson’s disease patients with the freezing of gait syndrome,” in International
Symposium on Wearable Computers (Linz), 123–130.

Bock, M., Hölzemann, A., Moeller, M., and Van Laerhoven, K. (2021).
“Improving deep learning for HAR with shallow LSTMs,” in International
Symposium on Wearable Computers (New York, NY), 7–12.

Bordes, A., Chopra, S., and Weston, J. (2014). “Question answering with
subgraph embeddings,” in Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (Doha), 615–620.

Chen, K., Zhang, D., Yao, L., Guo, B., Yu, Z., and Liu, Y. (2021). Deep learning for
sensor-based human activity recognition: overview, challenges, and opportunities.
ACM Comput. Surveys 54, 1–40. doi: 10.1145/3447744

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P.
(2011). Natural language processing (Almost) from scratch. J. Mach. Learn. Res. 12,
2493–2537. Available online at: http://jmlr.org/papers/v12/collobert11a.html

Dirgová Luptákov,á, I., Kubovčík, M., and Pospíchal, J. (2022). Wearable
Sensor-Based Human Activity Recognition With Transformer Model. Sensors 22.
doi: 10.3390/s22051911

Dua, N., Singh, S. N., and Semwal, V. B. (2021). Multi-input CNN-GRU based
human activity recognition using wearable sensors. Computing 103, 1461–1478.
doi: 10.1007/s00607-021-00928-8

Edel, M., and Köppe, E. (2016). “Binarized-BLSTM-RNN based human
activity recognition,” in International Conference on Indoor Positioning and Indoor
Navigation (Alcala de Henares), 1–7.

Farabet, C., Couprie, C., Najman, L., and LeCun, Y. (2013). Learning hierarchical
features for scene labeling. IEEE Trans. Pattern. Anal. Mach. Intell. 35, 1915–1929.
doi: 10.1109/TPAMI.2012.231

Glorot, X., and Bengio, Y. (2010). “Understanding the difficulty of training deep
feedforward neural networks,” in Proceedings of the 13th International Conference
on Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine Learning
Research, eds Y. W. The and M. Titterington (Sardinia), 249–256.

Guan, Y., and Plötz, T. (2017). “Ensembles of deep LSTM learners for activity
recognition using wearables,” in Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, Vol. 1 (New York, NY).

Hammerla, N. Y., Halloran, S., and Ploetz, T. (2016). “Deep, convolutional, and
recurrent models for human activity recognition using wearables,” in Proceedings
of the 25th International Joint Conference on Artificial Intelligence (New York, NY),
1533–1540.

Haresamudram, H., Beedu, A., Agrawal, V., Grady, P. L., Essa, I., Hoffman,
J., et al. (2020). “Masked reconstruction based self-supervision for human
activity recognition,” in Proceedings of the International Symposium on Wearable
Computers (New York, NY), 45–49.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-,r., Jaitly, N., et al.
(2012). Deep neural networks for acoustic modeling in speech recognition: the
shared views of four research groups. IEEE Signal Process. Mag. 29, 82–97.
doi: 10.1109/MSP.2012.2205597

Inoue, M., Inoue, S., and Nishida, T. (2018). Deep recurrent
neural network for mobile human activity recognition with high
throughput. Artif. Life Rob. 23, 173–185. doi: 10.1007/s10015-017-0
422-x

Jaakkola, T., and Haussler, D. (1998). “Exploiting generative models in
discriminative classifiers,” in Advances in Neural Information Processing Systems,
Vol. 11 (Denver, CO).

Jean, S., Cho, K., Memisevic, R., and Bengio, Y. (2014). “On using very large
target vocabulary for neural machine translation,” in Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers) (Beijing),
1–10.

Karpathy, A., Johnson, J., and Li, F.-F. (2015). Visualizing and understanding
recurrent networks. CoRR, abs/1506.02078.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “ImageNet classification
with deep convolutional neural networks,” in Proceedings of the 25th International
Conference on Neural Information Processing Systems, Vol. 1 (Lake Tahoe, NV),
1097–1105.

Lester, J., Choudhury, T., and Borriello, G. (2006). “A practical approach
to recognizing physical activities,” in International Conference on Pervasive
Computing (Dublin), 1–16.

Frontiers inComputer Science 19 frontiersin.org

https://doi.org/10.3389/fcomp.2022.924954
https://github.com/mariusbock/recurrent_state_of_the_art
https://github.com/mariusbock/recurrent_state_of_the_art
https://doi.org/10.1145/3447744
http://jmlr.org/papers/v12/collobert11a.html
https://doi.org/10.3390/s22051911
https://doi.org/10.1007/s00607-021-00928-8
https://doi.org/10.1109/TPAMI.2012.231
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1007/s10015-017-0422-x
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Bock et al. 10.3389/fcomp.2022.924954

Lester, J., Choudhury, T., Kern, N., Borriello, G., and Hannaford, B. (2005). “A
hybrid discriminative/generative approach for modeling human activities,” in 19th
International Joint Conference on Artificial Intelligence (Edinburgh), 766–772.

Liao, L., Fox, D., and Kautz, H. (2005). “Location-based activity recognition
using relational markov networks,” in 19th International Joint Conference on
Artificial Intelligence, Vol. 5 (Edinburgh), 773–778.

Mikolov, T., Deoras, A., Povey, D., Burget, L., and Černocký, J. (2011).
“Strategies for training large scale neural network language models,” in IEEE
Workshop on Automatic Speech Recognition Understanding (Waikoloa, HI: IEEE),
196–201.

Murahari, V. S., and Plötz, T. (2018). “On attention models for human
activity recognition,” in Proceedings of the 2018 ACM International Symposium on
Wearable Computers, ISWC ’18 (Singapore), 100–103.

Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R.,
andMuharemagic, E. (2015). Deep learning applications and challenges in big data
analytics. J. Big Data 2, 1. doi: 10.1186/s40537-014-0007-7

Ordóñez, F. J., and Roggen, D. (2016). Deep convolutional and LSTM recurrent
neural networks for multimodal wearable activity recognition. Sensors 16, 115.
doi: 10.3390/s16010115

Patterson, D. J., Fox, D., Kautz, H., and Philipose, M. (2005). “Fine-grained
activity recognition by aggregating abstract object usage,” in 9th International
Symposium on Wearable Computers (Osaka), 44–51.

Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M. P., et al. (2018). A
survey on deep learning: algorithms, techniques, and applications. ACM Comput.
Surveys 51, 1–36. doi: 10.1145/3234150

Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M., and Srivastava, M. (2010).
Using mobile phones to determine transportation modes. Trans. Sensor Networks
6, 1–27. doi: 10.1145/1689239.1689243

Reiss, A., and Stricker, D. (2012). “Introducing a new benchmarked dataset
for activity monitoring,” in 2012 16th International Symposium on Wearable
Computers (Newcastle: IEEE).

Reyes-Ortiz, J.-L., Oneto, L., Sam,à, A., Parra, X., and Anguita, D.
(2016). Transition-aware human activity recognition using smartphoneson-body
localization of wearable devices: an investigation of position-aware activity
recognition. Neurocomputing 171, 754–767. doi: 10.1016/j.neucom.2015.07.085

Roggen, D., Calatroni, A., Rossi, M., Holleczek, T., Förster, K., Tröster, G.,
et al. (2010). “Collecting complex activity datasets in highly rich networked sensor
environments,” in 7th International Conference on Networked Sensing Systems
(Kassel: IEEE), 233–240.

Sainath, T. N., Mohamed, A.-R., Kingsbury, B., and Ramabhadran, B.
(2013). “Deep convolutional neural networks for LVCSR,” in IEEE International

Conference on Acoustics, Speech and Signal Processing (Vancouver, BC),
8614–8618.

Scholl, P. M., Wille, M., and Van Laerhoven, K. (2015). “Wearables in the
wet lab: a laboratory system for capturing and guiding experiments,” in UbiComp
’15: Proceedings of the 2015 ACM International Joint Conference on Pervasive and
Ubiquitous Computing (Osaka), 589–599.

Stisen, A., Blunck, H., Bhattacharya, S., Prentow, T. S., Kjærgaard, M. B., Dey,
A., et al. (2015). “Smart devices are different: assessing and mitigatingmobile
sensing heterogeneities for activity recognition,” in 13th Conference on Embedded
Networked Sensor Systems (Seoul: ACM), 127–140.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). “Sequence to sequence
learning with neural networks,” in Proceedings of the 27th International
Conference on Neural Information Processing Systems, Vol. 2 (Montreal, QC),
3104–3112.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., Anguelov, D., et al.
(2015). “Going deeper with convolutions,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, CVPR (Boston, MA: IEEE).

Sztyler, T., and Stuckenschmidt, H. (2016). “On-Body localization of wearable
devices: an investigation of position-aware activity recognition,” in International
Conference on Pervasive Computing and Communications (Sydney, NSW: IEEE),
1–9.

Tompson, J., Jain, A., LeCun, Y., and Bregler, C. (2014). “Joint training of
a convolutional network and a graphical model for human pose estimation,” in
Proceedings of the 27th International Conference on Neural Information Processing
Systems (Montreal, QC), 1799–1807.

van Kasteren, T., Noulas, A., Englebienne, G., and Kröse, B. (2008). “Accurate
activity recognition in a home setting,” in 10th International Conference on
Ubiquitous Computing (Seoul), 1–9.

Xi, R., Hou, M., Fu, M., Qu, H., and Liu, D. (2018). “Deep dilated convolution
onmultimodality time series for human activity recognition,” in International Joint
Conference on Neural Networks (Rio de Janeiro), 1–8.

Xu, C., Chai, D., He, J., Zhang, X., and Duan, S. (2019). InnoHAR: a deep
neural network for complex human activity recognition. IEEE Access 7, 9893–9902.
doi: 10.1109/ACCESS.2018.2890675

Yuki, Y., Nozaki, J., Hiroi, K., Kaji, K., and Kawaguchi, N. (2018). “Activity
recognition using dual-ConvLSTM extracting local and global features for
SHL recognition challenge,” in International Joint Conference and International
Symposium on Pervasive and Ubiquitous Computing and Wearable Computers
(Singapore), 1643–1651.

Zappi, P., Lombriser, C., Stiefmeier, T., Farella, E., Roggen, D., Benini, L., et al.
(2008). “Activity recognition from on-body sensors: accuracy-power trade-off by
dynamic sensor selection,” inWireless Sensor Networks, ed R. Verdone, 17–33.

Frontiers inComputer Science 20 frontiersin.org

https://doi.org/10.3389/fcomp.2022.924954
https://doi.org/10.1186/s40537-014-0007-7
https://doi.org/10.3390/s16010115
https://doi.org/10.1145/3234150
https://doi.org/10.1145/1689239.1689243
https://doi.org/10.1016/j.neucom.2015.07.085
https://doi.org/10.1109/ACCESS.2018.2890675
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Investigating (re)current state-of-the-art in human activity recognition datasets
	1. Introduction
	2. Related work
	3. Methodology
	3.1. Datasets
	3.1.1. Wetlab
	3.1.2. RWHAR
	3.1.3. SBHAR
	3.1.4. HHAR
	3.1.5. Opportunity

	3.2. Training

	4. Results
	5. Conclusion and future directions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


