AUTHOR=Zemliak Viktoria , MacInnes W. Joseph TITLE=The Spatial Leaky Competing Accumulator Model JOURNAL=Frontiers in Computer Science VOLUME=4 YEAR=2022 URL=https://www.frontiersin.org/journals/computer-science/articles/10.3389/fcomp.2022.866029 DOI=10.3389/fcomp.2022.866029 ISSN=2624-9898 ABSTRACT=
The Leaky Competing Accumulator model (LCA) of Usher and McClelland is able to simulate the time course of perceptual decision making between an arbitrary number of stimuli. Reaction times, such as saccadic latencies, produce a typical distribution that is skewed toward longer latencies and accumulator models have shown excellent fit to these distributions. We propose a new implementation called the Spatial Leaky Competing Accumulator (SLCA), which can be used to predict the timing of subsequent fixation durations during a visual task. SLCA uses a pre-existing saliency map as input and represents accumulation neurons as a two-dimensional grid to generate predictions in visual space. The SLCA builds on several biologically motivated parameters: leakage, recurrent self-excitation, randomness and non-linearity, and we also test two implementations of lateral inhibition. A