
ORIGINAL RESEARCH
published: 26 May 2022

doi: 10.3389/fcomp.2022.813889

Frontiers in Computer Science | www.frontiersin.org 1 May 2022 | Volume 4 | Article 813889

Edited by:

Karin Slegers,

Zuyd University of Applied Sciences,

Netherlands

Reviewed by:

Jan de Wit,

Tilburg University, Netherlands

Christos Troussas,

University of West Attica, Greece

*Correspondence:

Kazjon Grace

kazjon.grace@sydney.edu.au

Specialty section:

This article was submitted to

Digital Education,

a section of the journal

Frontiers in Computer Science

Received: 12 November 2021

Accepted: 12 April 2022

Published: 26 May 2022

Citation:

Grace K, Klaassens B, Bray L and

Elton-Pym A (2022) An Open-Ended

Blended Approach to Teaching

Interaction Designers to Code.

Front. Comput. Sci. 4:813889.

doi: 10.3389/fcomp.2022.813889

An Open-Ended Blended Approach
to Teaching Interaction Designers to
Code
Kazjon Grace*, Brittany Klaassens, Liam Bray and Alex Elton-Pym

Design Lab, School of Architecture, Design and Planning, The University of Sydney, Sydney, NSW, Australia

This article reports on a three and a half year design-led project investigating the use

of open-ended learning to teach programming to students of interaction design. Our

hypothesis is that a more open-ended approach to teaching programming, characterized

by both creativity and self-reflection, would improve learning outcomes among our

cohort of aspiring HCI practitioners. The objective of our design-led action research

was to determine how to effectively embed open-endedness, student-led teaching,

and self-reflection into an online programming class. Each of these notions has been

studied separately before, but there is a dearth of published work into their actual

design and implementation in practice. In service of that objective we present our

contribution in two parts: a qualitatively-derived understanding of student attitudes

toward open-ended blended learning, as well as a matching set of design principles

for future open-ended HCI education. The project was motivated by a search for better

educational outcomes, both in terms of student coding self-efficacy and quantitative

metrics of cohort performance (e.g., failure rates). The first year programming course

within our interaction design-focussed Bachelors program has had the highest failure rate

of any core unit for over a decade. Unfortunately, the COVID-19 pandemic confounded

any year-to-year quantitative comparison of the learning efficacy of our successive

prototypes. There is simply no way to fairly compare the experiences of pre-pandemic

and pandemic-affected student cohorts. However, the experience of teaching this

material in face-to-face, fully online, and hybrid modalities throughout the pandemic

has aided our qualitative exploration of why open-ended learning helps some students

but seems to harm others. Through three sets of student interviews, platform data,

and insights gained from both the instructional and platform design process, we show

that open-ended learning can empower students, but can also exacerbate fears and

anxieties around inadequacy and failure. Through seven semesters of iterating on our

designs, interviewing students and reflecting on our interventions, we’ve developed a

set of classroom-validated design principles for teaching programming to HCI students

without strong computational backgrounds.

Keywords: open-ended learning, student-led teaching, blended learning, interaction design, programming

education, creative coding

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2022.813889
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2022.813889&domain=pdf&date_stamp=2022-05-26
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:kazjon.grace@sydney.edu.au
https://doi.org/10.3389/fcomp.2022.813889
https://www.frontiersin.org/articles/10.3389/fcomp.2022.813889/full

Grace et al. Teaching Interaction Designers to Code

1. INTRODUCTION

Programming skills are a critical part of any modern interaction
designer’s education. Computational thinking and digital
prototyping skills, both of which require some level of
programming proficiency, are increasingly important for
designing all manner of products and services. In an era of
cross-functional teams operating in demo-or-die environments,
the notion of an exclusively human-focussed HCI practitioner
seems ever more obsolete.

Despite this, a substantial fraction of the interaction design
students in our undergraduate program, the longest-running
HCI-focussed design course in Australia, consider programming
to be one of their biggest struggles. This low coding self-efficacy
(Ramalingam et al., 2004) is associated with students perceiving
themselves as “not a coder”, or “just not able to think that
way”. This paper synthesizes what we have learned from a 3-year
project to redesign the introductory programming subject within
our design degree.

Educating emerging practitioners of human-centered design
to also be competent programmers is not straightforward: design
and software development require very different metacognitive
strategies, particularly in how they handle ambiguity and
abstraction. Computational thinking teaches how to resolve
ambiguity using hierarchies of abstraction (Wing, 2008). By
contrast, design thinking teaches acceptance of ambiguity and
how to instead value and work with multiple competing
perspectives (Tversky, 2015). It’s not a stretch to see how
the students each discipline tends to attract would favor one
approach but struggle with the other. The human-centered
design aspects of an HCI education have classically been
confronting to traditional STEM cohorts (Cooper, 1999), and the
opposite is also true: the system-centered nature of programming
is confronting to students of design.

To effectively educate modern HCI practitioners, therefore,
means to produce graduates equally adept at both the human

and the technical. To do so will require—perhaps fittingly—both
technology-led and design-led innovations, but also a greater
understanding of the student experience of such a program than

we have today. To that aim, this paper reports on a 3 year

design-led project to explore how to more effectively introduce

interaction design, HCI and user experience design students to
programming.

Our approach combined creative coding (i.e., programming
as a creative medium) (Reas and Fry, 2006) with open-ended
learning (i.e., giving students greater agency in shaping their
learning trajectories) (Hannafin, 1995) and student-centered
learning (i.e., letting students play an active role in teaching)
(De Volder et al., 1985). Specifically, we wanted to frame
programming skills around small open-ended “making” activities
and then invite students to create these activities for their peers.
Our hypothesis was that this would create an environment
where the flexibility and expressive capacity of programming was
emphasized, appealing to students of design. Furthermore, we
needed this approach to scale to classes of up to 500 students and
be teachable by staff with a wide range of expertise, so we adopted

a blended learning approach—a far more niche choice in 2018
than it is today!

Our design-led methodology was necessitated by the well-
known challenge of scaling educational innovations from
the laboratory to the curriculum (Cohen and Ball, 2007).
Evidence-based practices, particularly those of a technological
nature, are notoriously difficult to implement (Klingner et al.,
2013), facing obstacles from students, educators, administrators
and policy-makers alike. As an alternative to tarring any
of those stakeholders as particularly ornery, “design-based
implementation” approaches (Penuel et al., 2011) have been
adopted as a way to bring stakeholders into the process of
deciding how, when and where educational innovations should
be applied. Familiar to any practitioner of HCI, this approach
amounts to applying human-centered design to the process
of implementing educational innovations. This paper presents
research in this tradition of design-led implementation of
educational innovations, combining interface design, service
design, and learning design into a multi-year collaboration
between researchers and educators. Critically, that means this
research thus does not propose or evaluate any original
technological innovations, but instead contributes classroom-
tested understanding and principles to guide future similar
implementation challenges.

Driven by this approach we engaged in iterative prototyping,
evaluation and refinement, deploying our first prototype in 2018,
running our first full course using in 2019, and teaching 400+
students each year 2019–2021. Each year we took the best
parts of what worked and refined them into a new version of
our open-ended blended learning platform. In 2021 students
submitted over 5,800 responses to our online “challenges,” which
are open-ended making-focused learning activities. The course
has increased student satisfaction and been enthusiastically well-
received by the 20+ teaching team.

The project also, by virtue of featuring a blended learning
platform that was already deployed at scale in 2020, collected
insights on how our students navigated the educational
disruption of the COVID pandemic. At the university where
this study was conducted this disruption was severe: one
semester transitioned to remote learning in its fourth week, one
semester was conducted entirely online, and a third semester
was run “hybrid,” with small (¡20 person) face-to-face classes
for the (approximately half) students who were able to get to
campus. In one sense this disruption has made it impossible to
report on the year-on-year quantitative improvements in student
satisfaction over the life of the project. However, it also offered an
opportunity for us to expand our exploration of student attitudes
to cover a broad range of contexts. Given this opportunity, our
research contributions can be expressed as follows:

a) an understanding of how open-ended blended learning
impacted the experience of designers learning programming,
including their attitudes toward self-directed and student-led
learning, derived from a rigorous qualitative meta-analysis, and

b) a set of classroom-validated design principles for effective
open-ended programming education, particularly for cohorts
without a strong computational background.

Frontiers in Computer Science | www.frontiersin.org 2 May 2022 | Volume 4 | Article 813889

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Grace et al. Teaching Interaction Designers to Code

We reflect on each major revision of our “Creative Coding
Challenges” platform (CCCs), its focus and goals, the way we
evaluated its success, and the insights gained from it. We then
provide a thematic meta-analysis of the 63 student interviews
conducted over the life of the project. We then derive a set of
recommendations for how to teach programming to designers
in future.

2. BACKGROUND

Open-ended and student-led pedagogies are particularly
applicable to teaching designers due to the existing prevalence
of collaborative, project-based learning in design (Wang, 2010).
Our blended learning focus was by necessity: a technology
platform was needed to implement our ideas about student-led
teaching at the scale our courses required. To explain how we
arrived at these notions, we present the four research fields in
which this project is situated: programming education, design
education, open-ended learning, and blended learning.

2.1. Programming Education
Our 2018 prototype was inspired by another successful multi-
year experiment in online peer learning for creative coding
(Carvalho et al., 2014). The motivation behind that platform was
to explore the peer learning aspects of learning programming
in a web context (Carvalho and Saunders, 2018). Another key
idea in both projects is that teaching creative coding is a more
effective and accessible method compared to a traditional “plain”
programming course.

It is well established that learning to program is very
difficult (Gomes and Mendes, 2007), although directly saying
as much to students has been shown to disadvantage students
from underrepresented groups (Becker, 2021). Introducing
students to algorithmic thinking and complex problem solving
is a challenging task. Students must also simultaneously
learn complex syntax with high levels of abstraction, in
languages typically not designed to be a student’s first language.
Introductory programming courses typically aim to teach
programming generally, but must by necessity focus on a single
language, a confusing distinction for many students.

For educators, it is often difficult to personalize lessons due to
large class sizes in introductory courses. Learning programming
well-known to require significant individualized feedback based
on each student’s progress, which becomes challenging as classes
and courses scale up (McBroom et al., 2020). There is also the
challenge of students’ coding self-efficacy, which is associated
with prior exposure (and thus typically lower in non-CS cohorts)
as well as being linked to programming course outcomes
(Ramalingam et al., 2004). If coding self-efficacy is a high
predictor of coding success, and many HCI and design students
are not from the kind of backgrounds where they have had a high
exposure to programming before attending university, how can
we best improve it in our courses?

Difficulty learning programming is linked to a nexus of highly
related motivational, interest, and identity factors (Jenkins,
2002). This is particularly common in the increasing number
of contexts, like our own, where introductory programming is

a core component of non-computer-science courses (Guzdial,
2003). For many students in these contexts, the completion
of the subject may be seen as an inconvenient obstacle to
completing their degree: they are less likely to exhibit the critical
intrinsic motivation to learn that programming so benefits from.
These issues are known to be especially prominent in non-
white, non-male, non-cisgendered, non-heterosexual, and non-
native English speaking students students, as well as students
with disabilities (Peckham et al., 2007; Charleston et al., 2014;
Kargarmoakhar et al., 2020).

“Creative coding” is a computing pedagogy that offers some
solutions to these problems. In creative coding approaches,
programming is presented as a medium for creative (often visual)
expression (Reas and Fry, 2006), providing a simple means for
highly abstract concepts to be represented visually. This can often
lead to the “flow” of a complex program—a common sticking
point for students—being clearer and more easy to manipulate.
Many languages for creative coding are specifically designed
for people without strong technical backgrounds, such as the
Processing family of languages (Reas and Fry, 2007), which are
designed for artists and educators. The visual and interactive
nature of creative coding provides instant feedback to students
on what their program is doing, as the code typically revolves
around drawing to the screen. In addition to being more popular
among certain groups of non-traditional programming students
(Guzdial, 2003, 2009; Greenberg et al., 2012), creative approaches
to code are perfect for our HCI audience: our students identify as
designers, and this approach lets them see code as a medium for
design.

2.2. Design Education
Design education finds its foundations in the “atelier” or master-
and-apprentices model common in the fine arts until the late
nineteenth century. In this educational model a well-known
artist would coordinate a small group of assistants to produce
creative works, with the assistants learning on the job and then,
ideally, going off to start their own practices. This evolved into
what is commonly known as the “studio model,” the cornerstone
of architectural and industrial design education. Studio-based
teaching shifts the focus of the class toward the students, as
autonomous and curious practitioners-in-training. Structuring
learning in this way is supported by research into design
cognition, such as the notion of “reflective practice” (Schön,
1979, 1987). The reflective practitioner is one who can think and
re-think their plans while acting, and thus can respond to the
uncertainty, uniqueness and conflict involved in the situations in
which designers (and other professionals) practice. Important to
Schön’s argument is that the knowledge required to know how
to act is learned through intentional and critical practice, i.e., the
repeated act of placing one’s self in a situation in which they are
required to make design decisions. Studio-based education is the
pedagogical formalization of that notion, with a focus on repeated
learning-by-doing, interspersed with feedback and reflection.
The goal of design studios is to building the critical and tacit
knowledge required to become a reflective design practitioner
(Kuhn, 2001).

Frontiers in Computer Science | www.frontiersin.org 3 May 2022 | Volume 4 | Article 813889

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Grace et al. Teaching Interaction Designers to Code

In the last few decades studio-based education has found
purchase beyond the traditional design domains where it
was dominant throughout the twentieth century. Successful
applications have been applied throughout STEM (Kuhn, 1998;
Adams et al., 2003; Reimer and Douglas, 2003; Carvalho and
Saunders, 2018), in part because of the expanding attention on
design thinking as a general model for solving under-specified
problems involving people (Cross, 2011). As the scope of human-
centered design has expanded to include interactive products
and services of all kinds, the design studio has followed, and
now forms a core component of design programs with focusses
as diverse as game design, medical device design, information
visualization, and visual communication.

While there is much potential in this approach, the design
studio model is uniquely ill-suited to the modern university
context of ever-expanding classes and ever-shrinking teaching
budgets. Design studios are extremely expensive in terms
of face-to-face time, and require a high level of educator
expertise, not just in the design domain in question but in the
practice of studio teaching itself. It does not, at least in its
original conceptualization, permit easy scaling nor lend itself to
educational technologies. This paper reflects on how elements
of the studio model that would be familiar to our students—
open-ended learning, self-directed learning, and peer learning in
particular—might be applied to teach programming in a scalable,
blended way.

2.3. Open-Ended and Student-Led
Teaching
Open-ended learning, which has its roots in constructivism,
refers to “processes wherein the intents and purposes of the
individual are uniquely established and pursued” (Hannafin,
1995). It involves individual students having autonomy in
determining what to learn, and how they learn it. This definition
is by necessity broad, as the very essence of this approach
requires that there is not one correct way. Arguably the main
difference between open-ended learning and more traditional
directed methods, is that students are at the center of the learning
process (Land and Hannafin, 1997).

Open-ended learning is based on premise that effective
learning involves fitting new information together with what
students already know (Bada and Olusegun, 2015). It is also
related to the idea that learning is affected by context, as
well as by students’ beliefs and attitudes (Bereiter, 1994). This
paradigm views teaching as a process that helps learners to create
knowledge through interactive, engaging and authentic learning
experiences. Taking inspiration from constructivist theories,
Chickering and Gamson (1987) published ta well-known set
of principles for effective open-ended learning environments
in higher education. They included the encouragement of
both student-student and teacher-student co-operation, active
learning, prompt feedback, high expectations, and a respect for
functional diversity.

These open-ended principles have been integral in drawing
attention to good teaching and learning practices (Vaughan
et al., 2013), although primarily they have been used in

face-to-face contexts. In HCI education specifically, these
principles have been manifested through studio-style teaching
which emphasizes student autonomy, collaboration, creativity,
curiosity, and student-led feedback (Reimer and Douglas, 2003).
On the other hand, programming education tends to focus on
learning transferable skills through various kinds of problem-
solving (Carbone and Sheard, 2002; Rajaravivarma, 2005).

Open-ended learning has been adopted in programming
education (Carbone and Sheard, 2002; Blikstein, 2011), typically
with a focus on computer science and software engineering
students. Collaboration is often a key part of open-ended
learning, and existing research has sought ways both pedagogical
(Emara et al., 2017) and technological (Troussas et al., 2020;
Emara et al., 2021) to support and sustain collaboration amongst
teams of open-ended learners. Computational approaches to
analyzing and grouping students, however, have largely been
studied in the context of tasks in STEM with clear right answers:
assessing collaboration styles and assigning appropriate tasks in
creative design contexts is significantly more challenging. We are
not aware of significant research to date on how these open-
ended methods can be applied when teaching programming to
non-STEM audiences, such as to students of interaction design.
Our design students have existing familiarities with open-ended
and collaborative ways of learning, and it’s possible that their
expectations and outcomes will differ.

Student-led or peer learning is a closely related strain
of experimental pedagogy to open-endedness. In student-led
teaching, the design and/or conduct of some learning activities
is given over to one or more students, who lead their peers in
(usually collaborative) learning (De Volder et al., 1985). This has
been shown to increase learner engagement and achievement
in some settings (Casteel and Bridges, 2007), particularly when
involving students from under-represented groups (Rohrbeck
et al., 2003). Student-led teaching can be demanding (Robinson
and Schaible, 1995), but it benefits both the student-teacher and
the student-learners. The “protégé effect” is the common name
for how teaching something forces thinking critically about one’s
own understanding of it (Chase et al., 2009). Peer learning can be
considered an extension of active learning, in which learning-by-
teaching is an extreme form of learning-by-doing.

It should be noted that open-ended, student-led and self-
regulated approaches to learning are well known not to
always work for all kinds of students all the time (Land,
2000). Students sometimes retain prior misconceptions, fail to
sufficiently monitor and self-regulate, or engage only shallowly,
without analysis or self-reflection. Land refers to this as the
“metacognitive knowledge dilemma,” the problem of monitoring
learning in the absence of domain knowledge. It’s a fundamental
principle of constructivist approaches to learning that effective
educators extend students’ capability by framing new knowledge
in ways compatible with those students’ existing understanding
(Vygotsky, 1930–1934/1978). From that perspective it is then
unsurprising that removing the educator from the process can
lead to worse outcomes for some students, particularly those
who require more support. It has been recommended that open-
ended learning environments, particularly those rich in content,
incorporate organizing frameworks to help guide learners’

Frontiers in Computer Science | www.frontiersin.org 4 May 2022 | Volume 4 | Article 813889

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Grace et al. Teaching Interaction Designers to Code

metacognitive strategies and make their progress through the
content explicit (Land, 2000).

2.4. Blended Learning
Blended learning is an innovative pedagogical approach
to learning that seeks to use technology to improve the
differentiation of instruction according to student needs and
the facilitation of student interaction (Huynh et al., 2016).
A common misconception with blended learning is that it is
the transposition of physical classes transferred to a digital
space. When misapplied, blended learning can leave students
unengaged and isolated (Logan, 2015). According to Paniagua
and Istance (2018), a blended learning environment utilizes
technology to improve certain teaching and learning practices in
order to focus more time on making the physical classroommore
interactive, and the digital classroom more connected. Blended
learning can make rapid, unscheduled shifts in the format of
teaching (such as in response to public health orders instituted
during a pandemic) simpler to facilitate (Nielsen, 2012).

Horn and Staker (2014) outline that in order for any learning
environment to be effective, it must be student-centered. Student-
centered learning is closely related to open-ended learning (see
Section 2.3) and is defined as an instructional approach in
which students influence the content, activities and pace of
learning (Froyd and Simpson, 2008). This is consistent with
constructivist approaches to learning, i.e., where students have
the skills and opportunities to learn independently and from one
another (Wilson and Lowry, 2000). Technologically facilitated
flexibility in the time, place and pace of learning allows students
more opportunities to influence the way their learning happens
(Nassrallah et al., 2018).

Blended learning is often discussed in the context of
facilitating active learning, learning activities that encourage
students to “seek new information, organize it in a way that
is meaningful, and have the chance to explain it to others”
(Bransford et al., 2000). This form of instruction emphasizes
interactions with peers and tutors, with a focus on applying
knowledge and receiving rapid feedback (Freeman et al., 2014).
Placing students at the center of learning promotes a learning
environment that is more amenable to the metacognitive
development necessary for students to become independent
critical thinkers (Bransford et al., 2000). Critical thinking skills
are crucial in the development of both successful programmers
and designers (Jeong, 2017), making their encouragement central
to quality HCI education.

3. MATERIALS AND METHODS

We present a reflective account of our iterative design process
over the course of the project, supplemented by a summative
thematic meta-analysis of the student experience as observed
through over 60 interviews. The project consisted of three cycles
of prototyping, evaluating and reflecting on our intervention,
with each cycle yielding its own insights that may inform
future projects. Education researchersmight bemost comfortable
framing this iterative approach as action research (Armstrong,
2019), with each cycle being an opportunity to act with and

then observe the students and teaching team. By contrast, HCI
researchers might conceive of it as research-through-design
(Zimmerman et al., 2007), with each cycle being an opportunity
to iteratively refine and reflect on the intervention itself.

The truth, as with all interdisciplinary research, is likely in the
middle somewhere—we contend that both apply equally here.
To that end we describe our process as three iterative cycles
(in the tradition of action research) of each of three processes:
prototyping, evaluating, and reflecting, although (in the tradition
of research-through-design) these are never as linear or separable
as they might at-first seem. Each cycle contains one or more
classroom-delivered prototypes, designed to build toward the
project’s goals, one or more periods of rich student-centered
evaluation (typically thematic analysis of interviews and/or
content analysis of platform data), and a series of reflections
on the efficacy and implications of those prototypes and their
analysis, in the tradition of reflective practice (Schön, 1979).
Activities within each cycle typically occurred in parallel, and
were undertaken by our interdisciplinary team of researchers
and educators, including some graduate students who were both.
Each cycle spanned approximately a year, or two semester-long
iterations of our design programming course.

The design insights gained from each cycle of the project’s
life come from reflections of the educators, system designers
and researchers—three groups that have significant overlap. Since
2018 the project has been the focal point for five undergraduate
honors theses, each a 1-year interaction design project exploring
and building on an aspect of the CCCs platform. All of those
honors students have also been part of the teaching team, forming
a unique coupling between teaching practice and research. HCI is
one of the few domains where it’s possible for there to be so much
overlap between the developers of an educational technology,
the front-line educators using it, and the researchers evaluating
it. That integration was a significant strength for the CCCs
project and one that we recommend that future HCI education
innovations adopt.

The contributions presented in this paper are derived from a
union of practice-based learnings (grounded in the experience of
making and using the CCCs platform in the tradition of research-
through-design) (Zimmerman et al., 2007), with ethnographic
data (from a meta-analysis of over 60 interviews with students
across the project’s life). From these data we synthesize principles
for how best to design for open-ended learning among HCI
students in future.

3.1. Overview of the Creative Coding
Challenges System
Running from 2018 to 2021, the CCCs project unfolded in
three cycles: prototyping in 2018/19, adapting to an all-online
environment in 2019/20, and finding a hybrid remote/face-
to-face balance in 2020/21. Each cycle started with a set
of goals, proceeded to design and development, in-class
delivery, evaluation through interviews and platform data, and
then reflection. The course is introductory programming in
p5.js (McCarthy et al., 2015), taught to both graduate and
undergraduate students in their first years of design programs.

Frontiers in Computer Science | www.frontiersin.org 5 May 2022 | Volume 4 | Article 813889

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Grace et al. Teaching Interaction Designers to Code

The undergraduate course contained 250–400 students and ran
once per year, while the graduate course is smaller (30–90
students) and ran every semester, for a total of over 1,250
students. Students approximately evenly split between Australian
domestic and International students from all over the world,
predominantly Asia. The undergraduate students were mostly
(more than 95%) enrolled in an interaction design focused
Bachelor’s program, while the postgraduate students were
enrolled in similarly-focused Masters or Postgraduate Diploma
programs. Gender balance was approximately 55% female, 45%
male, and <1% non-binary.

The initial design goal was a platform where students could
both complete open-ended coding challenges as well as design
and submit their own challenges for their peers to complete.
Coding challenges were envisaged as extension exercises to help
students apply their newly gained skills to creative problems of
an appropriate skill level. Making new challenges was conducted
as a form of self-directed learning in which we asked students
to “create a challenge that would have helped you to learn
something that you struggled with in the first 8 weeks of this
course.” We refer to this approach as “retrospective self-directed
learning” (RSDL) and intended it as a way to trigger the protg
effect and encourage mastery (Chase et al., 2009). Particularly
high-quality student-authored challenges would be included in
the platform in subsequent years in an asynchronous instance
of student-led teaching. As originally envisioned, students would
need to both complete and create challenges for grades in the
course as part of an innovative social learning network (Carvalho
and Saunders, 2018).

The first cycle of the project, detailed in Section 4.1, spanned
2018 and the first half of 2019. The team focussed on a user-
centered approach to getting a minimal viable prototype (MVP)
into classrooms, starting with technology probes (Hutchinson
et al., 2003) and user interviews. The second cycle spanned the
last half of 2019 and the first half of 2020, which would by
necessity prove to be a turning point for the project (see Section
4.2). The UI was overhauled and a challenge recommender
system developed, and then project pivoted to a platform for
fully online learning in response to the COVID-19 pandemic
and the closure of university campuses. The third cycle (see
Section 4.3) expanded on the (somewhat rushed) transition to
a fully online learning experience, exploring how to support
remote learning through both formally assessed and informal
peer learning experiences.

3.2. Thematic Meta-Analysis
We conducted interviews with staff and students as part of each
of the three cycles of research, using thematic analysis to explore
the impacts of our intervention. Each of these analyzes was
contained within a particular research project, often led by an
honors student, with its own specific aims, research objectives,
and coding scheme. These varied qualitative perspectives all
contributed to the iterative re-design of the CCCs platform, but
we also wanted a broader and more unified perspective. At the
conclusion of the project we conducted a meta-thematic analysis
(Batdi, 2017) to explore the underlying student experience of
blended open-ended learning in this context. To do this we

revised, coalesced, and expanded the initial codes, sub-themes
and themes from each of the studies conducted over the course
of the project.

The goal of this meta-analysis (see Section 5 for the results)
is to explore—independent of all the design revisions, new
features, and pedagogical changes—the impact of open-ended
and student-led learning on design students learning to program.
The meta-analysis sits alongside the insights about open-ended
learning that arose from the research-through-design process.
The triangulation of multiple data sources, multiple collection
methods, and multiple researchers (Campbell and Fiske, 1959)
across the three research cycles, coupled with the process of the
reflective meta-thematic analysis gives us a rich perspective on
the complexity of student experiences (Banning, 2003).

4. ITERATIVE DESIGN OF THE CREATIVE
CODING CHALLENGES SYSTEM

The Creative Coding Challenges platformwas developed as a way
to explore open-ended learning, blended learning, and student-
led learning pedagogies in an HCI context. The platform’s
iterative design and development can be characterized as
occurring in three cycles, each with its own goals, design
revisions, and evaluations.

4.1. Cycle 1: Discovery and Prototyping
The initial (2018–mid 2019) phase of the CCCs project combined
early probes into how the intervention could be structured
with our first full-semester deployment. The initial probes in
2018 were accompanied by a process of stakeholder interviews
exploring how students and teaching staff responded to open-
ended, student-led, and blended learning. The first design and
development cycle in early 2019 was focused on delivering an
MVP for classroom use as quickly as possible. This was followed
by another round of student interviews, this time to explore
responses to the MVP. The broad findings of this cycle were that
a) the challenge-based blended learning approach was valuable
for extensionmaterial, b) asking students to create challenges was
an effective learning activity, and c) offering students a choice of
what extension challenges to complete was confusing, and tended
to result in some students doing everything and the rest doing
nothing.

Our student cohort was familiar with blended learning and
creative coding approaches from the unit’s existing learning
activities, but we wanted to understand how they would respond
to a more open-ended approach. Before developing a fully
implemented platform, we first ran two small technology probes
as part of our prototyping phase to validate our design concepts
and obtain qualitative feedback from fifteen student interviews.

In the first probe, approximately 250 students used a simple
web interface to complete three Javascript creative coding
challenges in a single 2 h tutorial class. In this probe the
challenges were conducted in order, with no branching or choice.
The structure of challenges themselves would be familiar to
anyone who has explored the web for software development
tutorials: a blog-like rich media article with in-line editors in

Frontiers in Computer Science | www.frontiersin.org 6 May 2022 | Volume 4 | Article 813889

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Grace et al. Teaching Interaction Designers to Code

FIGURE 1 | An example challenge from our initial tech probes. Apart from minor advances to the editor (e.g., console access, stack traces) and some cosmetic

updates, the structure of each challenge’s page remained largely unchanged throughout the project.

which code could be written, saved, and run. See Figure 1 for an
example excerpt, in this case a challenge about learning recursion
by drawing and styling a tree.

The second probe was conducted toward the end of the
skills-focussed component of the class, before the pivot to
project work for the final few weeks. In this probe the
same cohort of 250 students were given choices as to which
challenge to complete next. We employed a tree-like structure
(seen in Figure 2) to show dependencies between challenges,
ensuring that students would complete required prerequisites
before moving on to more advanced concepts. Challenges
were separated into a “trunk” of mandatory challenges with a
branching series of optional “leaf” challenges for students to
complete at their discretion.

Two rounds of semi-structured interviews were conducted,
in order to evaluate these prototypes, one after each probe
was used in-class. Student participation in the interviews was
voluntary, conducted by researchers who were not in the face-
to-face teaching team, and expressly disconnected from any
suggestion that participation (or lack thereof) would impact
grades. The first round focused on the challenges themselves,
how they felt to do, what was fun, what wasn’t, as well as how
students searched for supplementary material to complement in-
class activities. The second set of interviews (administered to a
non-overlapping subset of students) focused on choice: how and

why students chose to do the subset of challenges they completed.
A speculative question concluded both sets of interviews, asking
how the student would feel if a lot more of these challenges
had been in the course, with the option to choose which ones
to complete.

Students loved the challenges themselves, particularly the ones
with clear multi-step instructions and well-crafted scaffolding.
Opinions on open-ended learning were broadly positive but with
some dissenters: perceived benefits included autonomy, more
productive time with teaching staff, and increased engagement.
Perceived disadvantages, however, included worries about
whether their sub-set of challenges would be comprehensive,
how much access to tutors they’d have if the course was heavily
“blended,” and how much motivation students would have to
do anything that wasn’t mandatory. Clearly just a taste of open-
ended learning inspired both joy and fear.

We also implemented our first RSDL assessment, with 180
students in a follow-up course being asked to create a coding
challenge that would have helped them learn a fundamental
coding skill (like arrays or objects). Our hypothesis was that
the protégé Effect would help solidify their knowledge, while
simultaneously giving us a source of new, diverse content
for our platform. The students performing this task had all
participated in the two “probe” workshops in the prior semester.
An additional round of (seven) interviews was conducted to

Frontiers in Computer Science | www.frontiersin.org 7 May 2022 | Volume 4 | Article 813889

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Grace et al. Teaching Interaction Designers to Code

FIGURE 2 | The challenge “tree” used in the second 1-week technology

probe that was the fore-runner for the CCCs platform. Mandatory challenges

are in green, optional in blue.

explore the impact of this self-directed learning-by-teaching
exercise. These questions focused on why students created the
challenge they did, why they felt it would have helped them learn,
and how they would feel if their work was used by other students.

The response among these (admittedly self-selecting for an
interview) students was overwhelming positive, with the vast
majority saying they’d created a challenge involving something
they themselves had struggled to learn, that they had learnt
more in creating it, and that they would feel positively about
other students completing their challenge in the future. Of
particular interest was the sense of “relatedness,” or shared
struggle: students making challenges felt that future students
would “come from the same head space,” or “understand [their]
pain.” However, themajority of the actual challenges produced by
students were not of high quality, mostly lacking in appropriate
scaffolding and/or being so disjointed from the course content
that they could not have been used. Nevertheless, the benefit to
their creators was apparent.

Following the success of these probes, we reflected on the
feedback in the interviews to implement the first full version
of the CCCs platform in the first semester of 2019. This first
complete design had two main goals: to collect some survey data
that could be used to improve the challenges, and to provide a
whole semester of examples to the students creating challenges in
the subsequent course. The branching “tree” interaction model
was shelved for simplicity, with all challenges being presented
as lists under each week, in approximately ascending order of
complexity. After completing each challenge, students were asked
to rate (on a five-point Likert scale) its level of difficulty and their
level of enjoyment in completing it—this feedback let us quickly
identify and revise challenges that were boring or too hard.

4.2. Cycle 2: From Blended to Online,
Overnight
The second cycle spanned the last half of 2019 and the first half
of 2020, which would by necessity prove to be a turning point
for the project. The first goal of this cycle was to expand upon
the MVP, both in terms of its interaction and educational design.
A prototype educational recommender system was also deployed
to assist students with their confusion about what challenge to do
next. The second goal was to explore the quality of the student-
created challenges and add our first batch of student-created
content to the platform.

Interviews throughout the cycle evaluated student motivation
to do challenges beyond the minimum required, finding (as
hoped) that some students were intrinsically motivated to do
additional creative coding tasks. However, other students were
still struggling to find their footing, and a fraction of students
were obsessively doing every possible challenge to ensure they
didn’t “miss out.” At this time we started realizing that choice—
the goal of our open-ended and challenge-based approach to the
course—was a double edged sword, creating empowerment for
some students but anxiety for others. Understanding the cause of
this bifurcated experience and figuring out how to support choice
positively became a major focus of the project.

The CCCs platform was deployed to around 95 students in

the second half of 2019 with a fully re-worked user interface,

which can be seen in Figure 3. This revision focused on bringing

the interface to the professional standard expected by students
familiar with the modern web—a task made possible by the
fact that the teaching and research teams included professional

interaction designers and web developers.
We also prototyped an educational recommender system

(Bodily and Verbert, 2017) intended to provide support for those

students having difficulty choosing which challenge to complete
next. This used a hybrid knowledge-based and item-based
recommendation approach (Ricci et al., 2011), combining data
about students with data about challenges. The introduction of a
recommender system brought aspects of guided learning models
to our open-ended model, but it retained its open-ended nature
as engaging with the recommendations was always voluntary.
Metacognitively-aware personalisation is an established strategy
in learner modeling (Bull and Kay, 2013), and has been applied
in intelligent tutoring (Roll et al., 2007), and adaptive assessment
(Krouska et al., 2018) in addition to content (Hidayah et al.,
2018).

The logic for our recommendations, which appeared in a
banner at the top of the UI, was as follows: If there was
a mandatory challenge that had not been completed, the
recommender would always suggest that first. This caught most
of the disengaged or truly struggling students, who would be best
served by engaging with something introductory (or, most likely,
working on simpler exercises given out in class before tackling the
challenges). If not, the systemwould use the number of challenges
the student had completed as well as their average difficulty and
enjoyment ratings to place the student into one of two categories:
“striving,” or “thriving.”

Frontiers in Computer Science | www.frontiersin.org 8 May 2022 | Volume 4 | Article 813889

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Grace et al. Teaching Interaction Designers to Code

FIGURE 3 | The second version of the CCCs platform interface, showing challenges grouped into “modules,” each corresponding to a week of the course.

“Striving” students, those who had rated challenges more
difficult than average, were recommended challenges that
contained topics that were precursors to those in their most
recently completed challenge. A directed graph of programming
topics and their dependencies was constructed from the challenge
tags to support this. For example, understanding loops depends
on understanding conditional statements, and understanding
vector-based character movement depends on understanding
both arrays and co-ordinate systems. By contrast, “thriving”
students, or those who had rated challenges less difficult than
average, were instead recommended challenges that similar
students had enjoyed, a collaborative filtering approach based
on the Singular Value Decomposition algorithm (Su and
Khoshgoftaar, 2009). The goal was to try to empower those who
felt that choice was an opportunity, while offering support to
those who found choice anxiety-inducing.

12 students and six tutors were interviewed during this cycle,
primarily to establish the effectiveness of the recommender
system, but also (in the case of the students) to continue exploring
how they choose challenges and what improvements they might
want in the platform. A thematic analysis was conducted on
both cohorts together, with ideas around progress, difficulties,
communication and motivation emerging as important factors
to both staff and students. The vast majority of students were
positive about the CCCs platform and its challenges, for reasons
that can be broadly characterized as a preference for active
learning (Freeman et al., 2014). “Striving” students (we obtained
permission to retrieve each interviewed student’s record from the
platform) worried that there were things they were missing, and
often found challenges to not explain concepts in sufficient detail:

they needed more basic learning material than the recommender
could provide. “Thriving” students were more likely to view
the recommendations positively, but found that there weren’t
enough truly open-ended challenges in the system yet, and so
opportunities for truly serendipitous discovery were limited.

A significant fraction of students did not trust the
recommendation system’s ability to teach them what they
would need to pass the unit, and didn’t see how its suggestions
would directly lead to improved grades. Interestingly, a number
of students in both categories also wanted to re-do challenges
as revision, which the team had explicitly excluded from
recommendations. The recommender had helped start to
address the gap between those empowered by and fearful of
choice, but (and this attitude was prominent in both tutors and
students) there was still clearly a need for structured, teacher-led
learning. The challenges, even the mandatory ones, could only
build on top of that.

Also during the second semester of 2019, the first class
of students who had used the full CCCs platform completed
the RSDL task in the follow-up course. In-class observation
and informal discussion revealed that this cohort of students
also found the learning-by-teaching component of the task
helpful for reinforcing their knowledge. A small number
of student submissions—six in total, out of almost 180
submissions—were judged to be of sufficient quality to be
incorporated into the CCCs platform after significant editing.
These challenges were labeled as “student contributed,” and
our intent was to continue iterating on this formula year-on-
year. We planned to refine the recommender system, continue
working on how to empower student choice without triggering

Frontiers in Computer Science | www.frontiersin.org 9 May 2022 | Volume 4 | Article 813889

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Grace et al. Teaching Interaction Designers to Code

anxiety, and to keep integrating exceptional student-contributed
challenges.

It was at this point, however, that the COVID-19 pandemic
forced the course entirely online, and the role of the CCCs
platform—as well as the scope of this project—changed
significantly. Instead of a platform for what were effectively
“extension” exercises, CCCs had to become practically the whole
course, supplemented only by pre-recorded lectures and video-
conference tutorials. The notion of a “challenge” expanded
overnight to cover all tutorial exercises, which ran counter to
some of our findings but was the only feasible way to run the
course during the crisis. In addition to its enormous impacts on
themode of delivery, it also had resourcing impacts, as in the rush
to pivot online, further developing the recommender system was
not feasible and that component of the project was shelved.

It was always our intention that the research questions would
evolve as demanded by both the needs of the classroom and the
capabilities of the technology. However, the unexpected pivot to
fully-online learning caused our research to diverge to a degree
that we could not previously imagined. We were no longer able
to really assess (either qualitatively or quantitatively) whether
our year-on-year refinements were delivering improvements
to the student experience, because the contexts were now
so inconsistent with each other that such comparisons were
meaningless. COVID-19 also impacted the quantity and quality
of available challenges: instead of refining our open-ended
creative challenges and adding a few exceptional student
contributions, we had to rapidly shift the entire course online.
However, this offered a unique opportunity to study a different
question: how could we design effective open-ended and student-
led learning in a fully remote context?

4.3. Cycle 3: Pivot to the Protégé
The third cycle was all about consolidating the use the CCCs
platform as the main focal-point of the course. We remained in
remote-only mode for the second half of 2020 before returning
to a hybrid model with some face-to-face classes in the first half
of 2021. Throughout this cycle we focussed on further support
for remote students in the form of pair programming for open-
ended creative challenges, with very positive feedback. RSDL was
also implemented within the programming subject itself, rather
than as a component of the next semester’s follow-on subject, to
highly polarizing feedback.

Our experience rapidly pivoting online taught us that much
more structure was needed for effective remote-only learning.
To address that we abandoned the recommender system, which
was at its best extending in-class learning, since we now had to
focus on the course as whole. The “tree” structure from the first
cycle was re-introduced in a new UI. Each week of the course
starting with a pre-recorded lecture, then a tree of challenges,
some introductory (and mandatory), and some more advanced,
creative, and optional. This interface, which was used throughout
the third cycle, can be seen in Figure 4.

By the second COVID-affected semester we had made the
decision to pivot away from the notion that students could
choose their own path through the challenges by branching out
in directions that interested them. This “open-ended direction”

approach proved both difficult to support in remote-only
learning and difficult for students. As the platform now featured
“challenges” for every tutorial exercise rather than just extension
material, the ratio of mandatory-to-optional challenges increased
substantially. With the role of the platform as a place for open-
ended extension material no longer clear, the proportion of
students perceiving the platform’s open-endedness as anxiety-
inducing increased. The open-ended tasks where students could
choose how to solve a proscribed problem, however, were
still among the highest-rated challenges on the platform. This
suggested that the “no right answer so long as you make
something intereting” task structure inspired by creative coding
was still viable in remote learning contexts.

We also developed additional scaffolding for the RSDL task
in the form of a walkthrough to help students create their own
challenge. This approach framed the task as making a “puzzle,”
the solution to which required understanding something
something about one of the concepts in the course (e.g., arrays,
objects, nested loops, etc). This framing—which we had used
internally for a number of the well-regarded challenges—was
developed through a series of co-design workshops with students
and then evaluated in focus groups after students had submitted.
Student responses to the scaffolding were very positive, although
still only a fraction of student-submitted were of sufficient quality
to be included.

By 2021, with about half of our students back on campus, it
was clear that students were experiencing significant anxieties
during remote learning. A prominent source of student anxiety
appeared to be how their emerging grasp of programming
concepts compared to the course’s expectations. This was true
among both in-person and remote students, but stronger among
those not coming to campus. To explore this we conducted
39 interviews exploring students’ satisfaction with the platform
and course as a whole, the latter to capture some of the
sentiments around learning during the pandemic. The major
findings were that students neededmore connection, they needed
more support, and they neededmoremotivation. It was clear that
learning programming, which was an unfamiliar discipline for
many of our design students, was an isolating experience.

To address these needs we developed a remote, creative-
coding focussed version of the pair programming approach
(Wiebe et al., 2003) and piloted it in several tutorials. The pilot
was intended to add elements of peer learning (van Popta et al.,
2017) to our unit, a familiar experience for design students
used to working in creative teams. The goal was to introduce
programming in pairs as a middle-point between the tutor-led
walkthroughs ofmaterial and students working individually. This
created a three-layer “I do it, then we do it together, then you do
it yourself ” approach based on the notion of gradual release of
responsibility (Pearson andGallagher, 1983). Students conducted
these pair programming sessions remotely, completing creative
coding challenges together using video-conferencing (Zoom)
and a collaborative visual workspace (Miro) to structure their
challenge responses.

Five interviews were conducted with students who
participated in the pair programming pilot, with a thematic
analysis revealing that the process had helped them overcome

Frontiers in Computer Science | www.frontiersin.org 10 May 2022 | Volume 4 | Article 813889

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Grace et al. Teaching Interaction Designers to Code

FIGURE 4 | The final UI used in the CCCs system, after the pivot to fully remote learning. By this point the notion of “challenges” had been expanded to cover all

learning activities, not just open-ended extension material.

Frontiers in Computer Science | www.frontiersin.org 11 May 2022 | Volume 4 | Article 813889

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Grace et al. Teaching Interaction Designers to Code

isolation, develop better coding self-efficacy, and be more
pro-active with their learning. These social benefits of remote
pair-programming were actually more universal among the
interviewees than the benefits traditionally associated with
the method (i.e., learning from each other and holding each
other accountable). Most existing studies of pair programming
were face-to-face, which suggests that an additional benefit of
pair-programming for remote and isolated cohorts is the simple
opportunity for much-needed socialization.

We also moved the RSDL task into the programming unit
itself for the first time, with students in the last few weeks of
the course creating a challenge that they personally would have
benefitted from earlier in the course. Even though this exact
assessment had been completed as a “refresher” in the first few
weeks of the next semester’s course for 3 years now, this particular
version produced very different results.

The integrated RSDL task was the single most polarizing
assessment any of our teaching or research teams had ever seen.
Students either absolutely loved it, saying things like “I found
it was a turning point in my learning where I actually could
freely explore” or utterly hated the very idea of it, saying things
like “in industry they pay us for our work, we don’t pay them!.”
Five students were interviewed about their experiences with the
RSDL task, with another seven offering anonymous feedback via
a survey. One particularly negative group of responses exhibited
the sentiment that students felt they were not getting their
money’s worth: they felt that asking them to teach was asking
them to do our jobs for us. One hypothesis is that the student-
led teaching exercise may have become a trigger point for
broader student concerns about the value-for-money of remote
education, particularly among students who also expected amore
traditional mode of delivery.

In fact, the detractors of the “create a challenge” task were
almost entirely remote students studying from overseas due to
the ongoing pandemic, while the supporters of the task were
almost all in the face-to-face tutorials. Language issues may
have also played a part, as a portion of students appeared to
misunderstand the task and produce a completed puzzle without
any scaffolding or steps. Several of those students became hostile
when they received poormarks for these submissions, asking why
they should have to break their work into “baby steps” to help
other, struggling learners. To speak freely for a moment: an actual
flame-war broke out between supporters and detractors of the
assessment on the class discussion board, complete with an ugly
undercurrent of anti international-student sentiment. None of us
had ever seen anything like it—and it underscores the challenge
of effective open-ended learning in diverse student cohorts.

5. RESULTS

The thematic meta-analysis of interviews conducted throughout
the life of our project revealed student attitudes toward open-
ended blended creative coding fell into seven broad themes:
learning as a skill, learner technology, learner autonomy, social
learning, learning support, content complexity, and learner
struggles.

5.1. Learning as a Skill
In tertiary education, particularly in HCI, a more student-
centered approach to learning is encouraged. This means that
instead of instilling knowledge into students, we as educators
facilitate their learning by giving them the tools to develop
their own learning strategy. Table 1 shows the sub-themes that
made up this theme. The CCC platform encouraged students
to build their metacognitive learning skills through a more
reflective and introspective approach, with students agreeing that
the questionnaire at the end of each challenge allowed them to
“really reflect” on how much they have improved. This reflection
also allowed students to see the benefit of this subject outside
the scope of semester, “in this course I feel like I’m investing into
learning a new skill.”

The ability to reflect on one’s work also had an interesting
impact on students’ desire to push themselves, one student
admitted that “It was ok for me not to finish the advanced
challenges” because “I know I pushed my limits and can see that it
was my best attempt.” Students also acknowledged the difficulties
faced working independently, “I struggled a lot working through
some of the assignment challenges by myself ”. But upon reflection,
one student observed that “I’m glad I struggled on my own...
even though I felt so stressed during that time. It helped later, just
because you knew you had to struggle for it”. The initial difficulty
of the challenges seemed to encourage students to develop their
own protocol for solving them, with students being able to reflect
and “identify their own weaknesses”, and prioritize accordingly.

5.2. Learner Technology
Unsurprisingly, the technology that facilitates learning for
students significantly mediated their experiences, as reflected in
our interviews (see Table 2). The CCC platform was initially
designed to be used in partnership with physical tutorial classes,
however, due to the COVID-19 pandemic, online learning
resources were prioritized far more than originally planned.
This resulted in pandemic-affected students describing the online
tutorials and CCC platform as only “somewhat interchangeable”,
with others describing how they “couldn’t get enough information
from the [CCC] platform to do challenges by themselves”. This
physical/online learning disconnect was further exacerbated by
some innate limitations of online learning whereby the restrictive
nature of a virtual classroom “doesn’t allow [students] to feel
comfortable asking questions” with one student noting that they
“don’t trust who they don’t know - why would I want to talk to my
peers or tutors if I haven’t met them?”.

This negativity was in stark contrast to our pre-COVID
data collection, where students often expressed comfort seeking
clarification or help, stating, “I do not have an issue calling a tutor
over or messaging on slack, I feel quite supported in that regard.”
Despite these limitations and the challenges of pandemic-
impacted semesters, students did discuss how motivating and
impactful the CCC platform was. P5.js artworks are “really
inspiring” for students, and immediate visual feedback “drives
[them] toward a goal”. During scenarios where the challenge
outcome was not clearly communicated, students expressed
frustration, stating there’s “no answer for us to know what our goal

Frontiers in Computer Science | www.frontiersin.org 12 May 2022 | Volume 4 | Article 813889

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Grace et al. Teaching Interaction Designers to Code

TABLE 1 | Sub-themes within the “Learning as a Skill” theme.

Sub-theme Example quotes

Learning

Reflection

...you have to actually like to rate how you felt about that

particular challenge and whether you liked it before you can

move on. And I think it also has that kind of reflective aspect

to it, which I guess most other courses don’t really do.

yeah well now that we’re week 11 or 10 or whatever and now

I look back to when it was week 2 and I’m like “you have no

idea.” I appreciate being able to reflect on my process, a

motivator for sure.

Proactive

Learner

I feel like, I’m glad I struggled on my own, even though, like, I

feel so stressed during that time. Because it helped later, just

because you knew you had to struggle for it, and you had to

go really deep, maybe outside of traditional resources to

understand how to solve the problem.

In that time, I might have worked through it myself, maybe

that’s a good thing. But also, it’s like, it’s helpful to have that

help as well.

Value of

Learning by

Doing

I really like how there’s the structure, they introduce, you

know, maybe a few features or a few functions and whatever,

and then you put them into practice straight away.

I like the way that the lectures are broken down into

challenges like we’re not sitting there looking to learn about

theory, like we are doing something practical. I think that’s

how you learn.

Perceived Future

Benefit

In this course I feel like I’m investing into learning a new skill.

[Will you use programming after this semester for anything,

not necessarily P5, but programming in general?] - Probably. I

will...I think for certain I could use this one to design some

interesting program for my career or university, so I probably

will.

Student

Workflows

So that’s probably how I study, I identify my own weaknesses

based on what I think the quiz will be about.

It was a bit daunting at first, but then I started to make myself

structure. So now I like drawing out a picture and I’ve chosen,

like, I’m going to draw a sunflower for my final thing. And

hopefully as time progresses, it’s going to have interactive

elements. It is just all about breaking down the elements.

Recognizing

Own

Competencies

Some of the challenges, I didn’t finish them, but I felt good

about it, I mean I didn’t feel good but like I was relieved that I

like it. It was okay for me to not finish “advanced” challenges

cause honestly that was really hard for me.

If I do my best, I do not care if I don’t get a HD because I

know I pushed my limits and can see that it was my best

attempt, not everyone can get a HD.

Independent

Learning

[on learning concepts] by ourselves maybe a little bit helpful is

to make sure that everybody understood it

It’s like I need that hand holding. I need a basis because I feel

like I can’t build anything from scratch. But I think potentially

for the weeks beyond week 6, week 7 when we’re getting

closer to like the stage now where we’re building our own

thing, potentially be good to maybe hide that prefilled text so

that you can kind of have a go yourself at how you might

build it from scratch.

is”, and nothing for them to “go back and have a look” to see “how
off they are”.

TABLE 2 | Sub-themes within the “Learner Technology” theme.

Sub-theme Example quotes

Disconnect

Between Tutorial

and Platform

I think the lecture content and the challenges are quite

disjointed and don’t really help each other. I think they can be

incorporated better.

I didn’t have the knowledge to actually do that one and I

accidentally missed the bit where he was explaining it in

class, so I was just like, " shit. I guess I just have to submit the

not finished one." I didn’t get very far with that.

Online Learning

Limitations

I just don’t like speaking on calls, when there’s a lot of people.

That’s just how I am quite an introverted person. Yeah, I don’t

find it comfortable to ask the questions. So I honestly just

wouldn’t ask.

When I’m working on the challenge, I’m stuck. Like, I know

there are people to ask, but there’s 70 people in the one

session, so I feel a little bit bad sometimes asking and also, I

guess since we’re in that zoom group, I can’t really go to the

person next to me and ask because there’s no one there.

Creative/visual

Code allows for

Instant

Feedback

I really liked the method where you can test your code and

then you can immediately see the result.

I find it helpful when I can visualize what the outcome will be,

it is motivating!

What Students

Need From

Learner

Platforms

I like the way that the lectures are broken down into

challenges like we’re not sitting there looking to learn about

theory, like we are doing something practical. I think that’s

how you learn.

If I like the picture I want to do the exercise. If the picture isn’t

attractive I feel less willing to do the exercise.

Platform Design I know we have choice, but I still feel I need to follow the

structure

I think the content on the website (ccc platform) is too limited

and maybe more examples would be better.

5.3. Learner Autonomy
Feelings of both autonomy and a lack thereof arose regularly in
our interviews with students, as can be seen in Table 3. Students
had a strong desire for different types of choices. Some students
liked the ability to choose what they learnt, “It’s giving the student
or myself autonomy and agency to kind of learn core foundational
concepts that are essential across the whole unit”. However, this
wasn’t a clear majority. When asked whether they felt they had a
choice in what challenges they could complete, many students we
interviewed expressed that they thought they “were just required
to do everything to do well”.

Fear of failure was a prominent reason for students not feeling
like they had any choice, mostly relating to the mid-semester
exam: “I’ll get to the exam and with my luck, the random question
will be the area that I didn’t choose to learn more about”. Other
students instead appreciated the autonomy to choose how they
complete the challenge, rather than what they learn. Students
appreciated “the opportunity to explore and do your own thing”,
noting that “it’s more personal driven, which I like. You get to come
up with a design that you imagined, not what was given to you as
a brief.”

Frontiers in Computer Science | www.frontiersin.org 13 May 2022 | Volume 4 | Article 813889

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Grace et al. Teaching Interaction Designers to Code

TABLE 3 | Sub-themes within the “Learner Autonomy” theme.

Sub-theme Example quotes

Desire for

Choice

I like the freedom of choice. Like, you know, if you’re not

making us do everything, like some people just don’t have

time or, and some people just want to learn more, so it’s up to

them.

It’s giving the student or myself autonomy and agency to kind

of a learn core foundational concepts that are essential

across the whole unit

Inspiring

Self-Directed

Learning

It’s good to have help with other people. But you also need to

be challenged individually to go deeper.

I don’t think me and P3 really use the driver thing anyway, we

just kind of did it on our own, and worked out how to

collaborate and solve problems, all right.

Freedom to

Explore

I also like the opportunity to explore and do your own thing,

like the challenges in the first week. It’s more personal driven,

which I like. You get to come up with a design that you

imagined, not what was given to you as a brief.

This is the thing I’ve already got in mind that I want to do. I

already know, I like to come into this class. I have all these

ideas and I’m thinking how can I best use this class to realize

these ideas? So I’m already gravitating toward things that I

think are more relevant.

Feeling

Comfortable

Being

Challenged

Challenging my own thinking around problems that I would

have originally just disregarded, that I had solved in the first

place.

There are some things like, I feel like, I’m glad I struggled on

my own, even though, like, I feel so stressful during that time.

Because it helped later, just because you knew you had to

struggle for it.

Satisfaction of

Visible Progress

I also like the ability to kind of go back and look at what

challenges you’ve done and haven’t because you can’t

complete a challenge unless you’ve completed the previous

one.

I think it’s just like that bit of representation that this is what

we’re focusing on now and you’ll build up to be able to

complete these future interactions, these features concepts,

which I think is really encouraging.

Motivated by

Marks

To be completely honest. I will only focus on what is testable

on the exam

Just because for me as a student, I want to optimize what will

get me the most marks in my limited time. Um, and if I know

that the criteria would be like looking at these elements and

um, creating a novel idea and if the challenge is related

directly back to that criteria, then I would prioritize them first.

Conquering

Individual Goals

Well, you instantly fall in love with the challenge that you

struggle with at first and then you conquer yourself.

I think there’s a sense of satisfaction in being able to, like

solve problems

Sense of

Accomplishment

My main motivation is to just get all the greens over here

when I finished one challenge and I completed properly. Gives

me like what motivation to go to the next one and finish that

one too

[the challenges] the reason why I think is enjoyable is that I

am doing what I want to, during this challenge I can feel a

kind of achievement or when I can, solve the problem myself.

5.4. Social Learning
Social factors played a big role in student attitudes toward
open-ended learning (see Table 4). Feelings of isolation and
detachment from peers predated the pandemic, seen in
sentiments like “Yeah, no, they [students] don’t really help me. I
don’t know. I don’t really know how to ask anyone. I haven’t made
that sort of connection with anyone yet”. A fear of judgement by
their peers was also present: “I wouldn’t ask a peer to help me
cause I would be worried they are smarter than me”. Students who
completed the course during the pandemic definitely experienced
enhanced feelings of isolation: “Just naturally being virtual and
away from people, you just don’t feel as connected.” When we
introduced pair programming to our virtual classroom, students
acknowledged that there was a major improvement to learning,
“even just the practice of explaining, or pretending that you know
what you’re explaining catalyses learning”.

Students also appreciated the support from their peers, and
having someone there they can vent to: “I think it was nice to,
like, mutually support each other.” The online classroom also
presented barriers to language accessibility, with some students
feeling that “the context of physical space and classrooms is
very important to help us understand English”. The ability to
actively converse with peers also was hindered, with one student
expressing a need for “tutors to teach us how to ask questions”,
with students with English as a second language expressing that
“It’s not a problem about listening, it’s about talking”.

5.5. Learning Support
A very prominent desire amongst students was additional
learning support (see Table 5). This was often expressed
through students vocalizing their concern over “minimal revision
opportunities”. With some students agreeing that “week to week
when you come to class things progress based on what you’ve
learned previously. And if you don’t go back and revise and
do it, you struggle.” This can be attributed to the issue of
autonomy (see Section 5.3), with students feeling that open-
ended learning makes it difficult to know what knowledge will
be critical in future tasks. Students also expressed discomfort
researching additional resources unless promoted or encouraged
by the tutor, noting that tutors have a “sense of authority” and
“if it worked for the tutor then it should work for us.” This also
caused some initial hesitancy with pair programming, with some
students agreeing that “sometimes with students, you can’t be
sure they are right. With tutors, it is their job, so you trust them
more.” Regardless of when students completed the course (pre
or during the pandemic), they expressed that access to tutors
was something that they really craved: “one-on-one time with the
tutors is absolutely the most valuable thing. Right. But it’s kind of
limited to class time.”

5.6. Content Complexity
The perception that learning to code is inherently difficult was
a common thread amongst the cohorts of students, as seen in
Table 6). For some, that initial fear deterred them from the
beginning: “I was so nervous coming into this subject, and it just
made my experience worse”. For others, the pace of the course
was stressful, with some students surprised that the “difficulty

Frontiers in Computer Science | www.frontiersin.org 14 May 2022 | Volume 4 | Article 813889

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Grace et al. Teaching Interaction Designers to Code

TABLE 4 | Sub-themes within the “Social Learning” theme.

Sub-theme Example quotes

Improvements to

Communication

Some of the tutors’ replies will be easy to understand and

some tutors’ answers will make us more confused.

But in the grading standard, the definition of originality is very

vague.

Effective Partner

Matching

I think if we were on different levels in programming

knowledge, that would be frustrating probably for both

parties.

I think it was nice to, like, mutually support each other.

Learning from

Others

I think peer learning is really, really important.

Because there’s a lot of times where I’m pretty good at

something. But others, I just need another perspective. And I

can’t always just do that in the classroom, because that’s

spent teaching us like the content and everything.

Encouragement

from Peers

Even just the practice of explaining, or pretending that you

know, what you’re explaining catalyses learning.

I am initially quite happy that I get to be mingling with other

people, I think because of all the remote learning at the

moment. It’s nice, just any opportunity to kind of work with

others.

Judgement by

Others

I asked like on the second of [or] third week, one of the

students in like, the explanation was just like, Oh, like how

come you don’t know this? And so I was like a little bit taken

back by it.

I feel like when they say ask the general chat in slack

sometimes it might be stupid questions.

Willingness to

Engage

if I had a question about what they were teaching in class, I

would just act straight away.

We can divide into groups and work together. I think that will

be great for me and can help us. So some questions can be

asked and answered.

Language

Accessibility

questions to my tutors. But if tutors are explaining to me I

can, I understand. It’s not a problem about listening, it’s about

talking.

If I just watch the CCC, I cannot code anything, well not

anything, but a lot of things that I cannot understand

including the english explanation.

Feeling

Detached from

Tutors/Peers

Just naturally being virtual and away from people, you just

don’t feel as connected.

Yeah, no, they [students] don’t really help me. I don’t know. I

don’t really know how to ask anyone. I haven’t made that sort

of connection with anyone yet, because we only had 3 weeks

together. So, it’s been difficult.

increased so much”, or that there was not a lot of time to “reinforce
your learning”. This unexpected difficulty was often the cause of
students struggling to learn transferable skills, with one student
noting that they “get very confused as to how to apply different
techniques” and that they know “how it is done, and how it is
useful, but if you asked me to use it in a challenge I couldn’t.”

The rapid expansion of the platform’s role in 2020 also created
some issues around content quality. Students expressed that at

TABLE 5 | Sub-themes within the “Learning Support” theme.

Sub-theme Example quotes

Revision

Opportunities

[cont.] - because I guess week to week when you come to

class things progress based on what you’ve learned

previously. And if you don’t go back and revise and do it, you

struggle.

("extra challenge" challenges) even if it’s not compulsory, I like

how it just helps you test your skills more

Resource

Availability

[cont.] - If I don’t get the idea of why this function works, I’m

checking YouTube from the coding train. All students use that.

I feel like I don’t learn things very well. Right. Um, and I’ve

been struggling to find resources that will help me to just

practice.

Trouble Applying

Tutorial Content

Ook, to be honest, I don’t, I don’t love the, um, creative

challenges. Um, I don’t, I have actually just not found them

very useful, especially without guidance, especially out of the

context of the classroom.

Sometimes it’s really exhausting because I can’t figure out

what to do.

Tutor

Accessibility

The one-on-one time with the tutors is absolutely the most

valuable thing. Right. But it’s kind of limited to class time.

But also with this online model, it’s a little bit harder to access

help. It pushes you toward self learning a bit more.

Desire for

Credible/Reliable

Sources

Whereas, like I like the sense of authority of you guys, I don’t

know, I assume you guys thought about the best way to give

us this information.

[on preference between help from tutors v students] I think

teachers, because then you know as a fact that the answer is

right.

Establishing

Expectations

It’ll always be a concern in the back of my head as to how

much I’m supposed to learn to do well in the course.

I just don’t know what exactly the tutor wants and the rating

is relatively subjective.

A Boost of

Learning

Support

[the platform green indicators] I think it’s really helpful because

it tells me which one I need to work on.

So I think if that recommendation model can really guide

students into focusing on what’s really important, not just for

assessments as well, but just in general, like as a designer or

as a developer, like what are the core things you need to get

right and what are you struggling with and filling in that gap. I

think that’d be really good cause I think a lot of students kind

of like give up really early with programming because they

can’t really get the basics. And if you don’t get the basics you

can’t really get the bells and whistles.

times the challenges were verbose or overly complicated, “why
do you need that much text for a challenge that takes a couple
of minutes?”. To at least one student the text descriptions that
were intended as scaffolding added “more anxiety than if they
weren’t there”. Conversely, students suggested that some of the
harder challenges “were not explained at all”, with students feeling
like they were “left in the dark”. Some challenges that were
well-received pre-pandemic evoked these responses once the
course switched to remote learning, suggesting that the levels of

Frontiers in Computer Science | www.frontiersin.org 15 May 2022 | Volume 4 | Article 813889

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Grace et al. Teaching Interaction Designers to Code

TABLE 6 | Sub-themes within the “Content Complexity” theme.

Sub-theme Example quotes

Unexpected

Difficulty

[cont.] - the challenge, I mean, uh, in the beginning, in the

beginning challenge is easy and uh, I can easily solve it, but

the second challenge is just like, look, difficulty improved so

much.

I think it moves, uh, very quickly. Uh, I think all of the

challenges are challenging, which makes them very

interesting. Um, but I think it would be, um, you there’s not a

lot of time to reinforce your learning.

Knowledge

Confirmation

I feel like we need a way to make sure that we understand,

we know what we’ve been taught.

Um, maybe the marks we give to each challenge and we can

know which we didn’t do well, so we can we really again,

yeah. And I found that we usually need to ask for a resolution

in Slack. Maybe you can after 1 week or something like that.

Put the, say the answer. Maybe some of the solutions to each

challenge.

Trouble

Generalizing

Concepts

Um, however, when I get the feedback on the code,

sometimes I don’t understand the thinking behind what I’ve

done wrong, so I get the change in the code, but I’ve still

gone, wow, I never would’ve thought of that. I don’t know

what to do. So I still feel a little bit like I’m not quite learning

my own mistakes as much as I do one on one.

I get very confused as to how to apply different techniques,

such as the mapping. What does it mean? I see how it is

done, and how it is useful, but if you asked me to use it in a

challenge I couldn’t.

Fundamental

Difficulty of

Computational

Thinking

I think it depends on the challenge, how difficult it is because

in the beginning I thought the basic class was very easy, so

just out of class I wouldn’t usually use the platform, but after

weeks 4 and 5 the challenge became very difficult.

Some of my friends are finding it a bit difficult, especially

because it’s the first time doing a programming related unit

scaffolding required for complex and open-ended content is very
environmentally dependent.

5.7. Learner Struggles
Lastly, but expressing a critical component of the student
experience, particularly among a portion of the cohort, were
sentiments relating to the struggle of learning to program (see
Table 7). In particular, catering for different learning styles
presented itself as a major barrier. Some students struggled to
adapt to the open-ended and student-led way of learning: “how
am I supposed to determine for myself when I have learnt or done
enough to be confident?” Some felt quite overwhelmed by the
freedom: “I think one of the biggest things for me is like, sometimes
I’ll get the answer, but I don’t think I’m doing it right or in the right
order.” A very interesting theme that came to light during the
pandemic courses was the cultural learning differences. Students
from outside of Australia stated that in previous semesters they
could “pick up the culture a lot quicker, which made it easier to
adapt”. When learning from their home country however, this was
“a lot harder”.

Open-ended learning was a big adjustment for some
international students: “coming from an Asian learning
background, it’s been ingrained that like everything that’s
presented to you is testable.” Other students, mostly those who
came from HCI or design backgrounds appreciated open-ended
learning, “I think doing everything online, being forced to do
everything online, made it a bit more transparent in different ways
that we can learn.” Overall, and regardless of background, study
fatigue played a big role in inducing anxiety amongst students,
some stating that they “had had enough” and just submitted
what they had because “they were sick and tired of getting
things wrong”. Continuous practice seemed to be exhausting
for students learning remotely, “practicing is much harder than
normal studying, my brain cannot copeâ”.

6. DISCUSSION

As a research-through design project paired with a summative
meta-evaluation, the findings arising from this research come in
two parts: the meta-analysis of our student interviews, and the
design insights arising from almost 4 years of iterative interaction
design. Here we present both, starting with what we have learned
from our students and then putting it all together into a set
of recommendations for future open-ended learning in HCI
contexts.

6.1. Understanding Student Attitudes
Toward Open-Ended Blended Learning
As in any meta-analysis of a long-running project, student
attitudes were extremely broad, covering the content, the delivery
methods, the teaching team, their emotional responses, their
learning needs, and more. Within the seven themes that we
identified, however, is a common thread by which we intuit
student attitudes toward open-ended learning can be understood:
a tension between open-ended blended learning as a source of
empowerment, and as a source of anxiety. Over and over, the same
educational innovations produced both responses in different
students, and through the lens of our meta-analysis we think we
can begin to explain why.

The freedom to self-direct learning was appreciated by some
students, and from our analysis we know that those students
tended to be more motivated. While we don’t know causality
of that relationship (did motivation cause open-ended learning
to be empowering, or did empowerment cause open-ended
learning to be motivating?), we can leverage existing studies of
learner motivation to make some educated guesses. The self-
determination theory of motivation (SDT) (Deci and Ryan,
2012) is widely used in education contexts (Lavigne et al., 2007)
and states that motivation requires autonomy (the capacity for
impact), competence (the perception of ability, i.e., self-efficacy)
and relatedness (the feeling of being in a community). Our
open-ended creative coding model was designed, from the SDT
perspective, to maximize autonomy, since it let their programs
produce compelling and elaborate visual output that they could
directly manipulate in code. Teaching during the pandemic
highlighted the importance of relatedness (and its absence,

Frontiers in Computer Science | www.frontiersin.org 16 May 2022 | Volume 4 | Article 813889

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Grace et al. Teaching Interaction Designers to Code

TABLE 7 | Sub-themes within the “Learner Struggles” theme.

Sub-theme Example quotes

Start Paralysis So most of the class I’m left with, like I don’t know

what I’m doing, or where to start. So that’d be

sitting there doing nothing cause I didn’t get the

beginning part of it.

Most people don’t really understand what you’re

supposed to do with this challenge because it just

shows a static image of what it’s supposed to look

like. They didn’t understand that you loop over the

circles and show a different position at each time.

So that was kind of confusing

Different Learner

Styles

I think doing everything online, being forced to do

everything online, made it a bit more transparent in

different ways that we can learn.

Like, the tutors are great, but then to teach the

knowledge that you have to someone else is very

different for every student. Like, I learn better in

different ways to other people.

Desire for more

Engaging

Instructions

The second one I had a bit more trouble with. I

found that there was a lot of text dump up front, so

there were lots of blocks of texts and like, I found

that reading through that my brain just kind of mush

and couldn’t pass it quite that well.

[cont.] - I think it’s missing like a punch in, in its

delivery. So, um, like summarizing it more might be

applicable

Cultural Learning

Differences

[If there were a lot more challenges available in

CCCs, and you were able to choose which ones to

do, specializing in different areas or techniques, how

would you go about choosing?] - I think, like firstly,

that would stress me out. Um, because like in my

head, especially like coming from an Asian learning

background, you’ve just had to- it’s been ingrained

that like everything that’s presented to you is

testable. And then I would feel like I would need you

to go through all of that.

Creative coding stressing the importance of solid

practice is somehow not working for me. Practice

does not necessarily equate to no-brain copying.

Lack of

Confidence

P4 was sort of saying "it’s okay. Like, I don’t know

what to do you, you can do it", whereas I feel like he

had the ability to do it was probably a lack of

confidence.

I think one of the biggest things for me is like,

sometimes I’ll get the answer, but I don’t think I’m

doing it right or in the right order.

Fears Related to

Failure

[on the platform] if I always fail at first, I, I don’t want

to begin yeah. I don’t want to continue.

[on the platform] So I think I like in order, um, like

from some easy things to begin so I can get out of

fear if I fail

Anxiety Over

Open-Ended

Platforms

I would just assume I would have to learn all of

them. Because I’ll get to the exam and with my luck,

the random question will be the area that I didn’t

choose to learn more about. So I just assume I have

to learn everything.

(Continued)

TABLE 7 | Continued

Sub-theme Example quotes

I guess in lectures you just sit there and consume an

hour’s worth of information and then the tutorial,

they just kind of regurgitate that information again

and like you might do an activity that’s almost

unrelated to the lecture somewhat.

Insufficient

Scaffolding in

Open-Ended

Tasks

There needs to be more detail and more step by

step because this is the most useful for people who

haven’t understood code before.

There are never enough guidelines

Study Fatigue [On when to submit assignments] After I was done,

honestly, I felt like it didn’t really match the grading

criteria, but one of the reasons is because I was sick

of it and tired. I didn’t really have enough energy to

go further on

The only thing I would say about the class time is

that in the 3 h slot, like I feel like because it’s so, I’m

not, I haven’t, I don’t have background in

programming, so I use so much cognitive power at

the beginning that like I’m kind of, not bad, but like

I’m a bit tired and foggy toward the end. And then

generally toward the end is the more complicated

part of what we’re learning

Feeling

Overwhelemed

So like I’m getting, falling further and further behind

because I still don’t understand a couple of weeks

ago.

I guess for me I didn’t feel like I had a choice.

Because I felt like we were just required to do

everything to do well, if that makes sense.

isolation) on learning, and our peer learning exercises helped
address this. But it was the third attribute, the perception of
competence, that our analysis suggests drove the central tension
between empowerment and anxiety.

We found that those students who knew where they stood,
and who were comfortable being challenged, felt empowered.
Those that were uncertain about their standing felt anxious,
either because they were used to having “right” answers to judge
their own performance, because they had a fear of failure, or
because they felt they had to do everything because it might be
“on the test.” Choices created anxiety not because of the perceived
difficulty of challenges themselves, but because they obscured
traditional markers of progress or attainment that less-confident
students rely on. A key takeaway from our project is that open-
ended learning can make it hard for students to understand where
they are at relative to their peers or their instructors’ expectations.

The competency that we observed was not only in terms of
prior programming skill: if that were the case, then perhaps
our courses progressed too quickly, requiring prior exposure
to succeed. Instead we saw a significant fraction of students
talking in interviews about their metacognitive strategies for
approaching the unit, and how those skills in learning itself were
critical to success in our open-ended learning unit. Freedom
to choose—and its inverse, the fear of not knowing where you
stand—are dependent not only on your prior mastery of the

Frontiers in Computer Science | www.frontiersin.org 17 May 2022 | Volume 4 | Article 813889

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Grace et al. Teaching Interaction Designers to Code

material but on your mastery of your own learning. Student-
driven learning requires students to lead, and many are not
equipped to do so, particularly when forced into remote learning
environments.

The desire to “know where I stand” was a powerful theme
throughout all our cycles of interviews. Whether it related to the
choice in open-ended learning or the isolation of being a remote
student during the pandemic, students struggling with learning
outside their comfort zone had significant fears of failure. This
can be thought of as a kind of “hierarchy of needs” for learners. If
progression in your degree is at stake, you’re not going to focus on
enriching experiences, or to put it another way: learning doesn’t
matter if don’t think you’re going to pass.

Our recommender system prototype was a key example of this
dichotomy at work: from a content appropriateness perspective
our recommender was very successful, suggesting challenges
that would have helped students master concepts they were
struggling with. However, many students—the exception being
those who were confident in their performance—did not trust
that the personalized content could help them meet course-wide
objective standards: in that moment they were not primarily
concerned with learning, but with meeting learning objectives!
It’s too easy to dismiss these “grades first” attitudes as reflective
of students with extrinsic motivations, but SDT suggests that
intrinsic motivation can only arise after those fears of failure
are addressed. These issues are not insurmountable, we feel
that good design—both of learning activities and platforms—
can provide support to those who are not yet possessed of the
necessary confidence, while still opening up choices to those
who are.

The empowerment/anxiety dichotomy we discovered aligns
with prior research in the domain of self-regulated learning
(SRL), where ameta-review showed thatmetacognitive strategies,
motivation and emotional regulation were three common themes
across many SRL models (Panadero, 2017). Past studies of open-
ended learning environments have demonstrated similar failure
cases, including the resilience of prior misconceptions (Land and
Hannafin, 1997) and the inability to deploy effective information
retrieval strategies (Oliver and Hannafin, 2001). This suggests
a complex self-reinforcing relationship between metacognition,
motivation, and competence in open-ended learning. We suggest
a possible connection to similar positive feedback loops observed
in studies of learner self-efficacy (Schunk, 1995), which can be
reinforced by authentic positive mastery experiences (i.e., “small
wins”).

Given the uneven efficacy of open-ended learning, particular
when classes turned remote, we found ourselves pivoting over
the course of the pandemic toward supporting our students
to feel confident and capable. Open-ended choice motivated
students with high self-efficacy, but created anxiety among those
without. Creative coding, with its open-ended design tasks,
helped some students reach the self-efficacy required for them
to succeed by promoting the kind of highly visible “little wins”
that contribute to the enactive mastery experiences that are so
critical for effective open-ended learning (Land, 2000). Asking
students to design educational activities for their peers helped
yet more students—particularly those from design backgrounds

who were used to thinking about human-centered design tasks—
but alienated those unused to thinking in that way. It was pair
programming during lockdown that was the most positively-
received intervention in the project, perhaps because it offered
a human touchpoint. Knowing that even a single other student
was struggling with the same concepts seemed to provide a sense
of relatedness absent in remote learning.

The seven themes that emerged from our meta-analysis are all
tied to this central tension. Furthermore, our themes explore the
relationship between the empowerment/anxiety dichotomy and
complicating factors like remote learning and learners operating
outside of their comfort ground (like designers learning to code).
Our qualitative findings support both the overall positive efficacy
of open-ended learning and its failure modes in students with
insufficient metacognitive strategies and motivation. In the next
section we present the implications of our findings in the form of
three principles for designing effective open-ended programming
activities for non-CS students.

6.2. Designing Effective Blended
Programming Pedagogies for Designers
The three and a half year research-through-design process we
followed for this project has yielded three design insights that
we think are valuable for future open-ended learning projects in
HCI, particularly for non-computing students.

Where possible, design open-endedness within, not between
learning activities. We found that creative coding challenges,
where students had to apply a particular technology to an open-
ended problem, to be much more effective than offering choices
of which activities to do. Students with low coding self-efficacy
(even those who were getting reasonable grades) found the
choice of activities anxiety-inducing, especially the notion of
recommended-but-not-mandatory activities. Would content in
those activities be tested in the exam? Would it be necessary for
the final assignment? In all cases the answer was no—otherwise
it would have been a mandatory exercise—but students did not
trust that, possibly due to previous educational experiences where
“everything could be on the test.” Particularly when dealing
with students early in their degrees, the use of mandatory
activities containing open-ended problems added choice while
largely avoiding this phenomenon. Examples of activities with
embedded open-endedness include “create a visual composition
using nested arrays” or “create a design that merges stylistic
elements of these two stimulus images.” Care must be taken
when such activities are graded, that their open-ended nature is
supported with clear grading rubrics, such that even a struggling
student should know when they are “done.”

Even a single other student makes remote learning better,
allowing students of all ability levels to share their struggles and
achievements. Pair programming is a well-known methodology
in computing education and software development practice,
but it seems particularly apt to an HCI and design context.
Students of design are likely to be both proficient at and
receptive to collaboration, and their positive response to our
synchronous peer learning exercises suggests this translates to
effective learning in pairs. Working in pairs, even on challenging

Frontiers in Computer Science | www.frontiersin.org 18 May 2022 | Volume 4 | Article 813889

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Grace et al. Teaching Interaction Designers to Code

tasks, was found to be more tolerable and less likely to trigger the
anxiety and fear of failure we observed in students attempting
our challenges alone. As proposed in the “Lightweight Teams”
approach (MacNeil et al., 2016), students working together need
not imply group projects that are worth a significant percentage
of students’ grades. We applied pair programming on in-class
activities of little or no grade impact, and found that student
motivation among participants in our pilot was very high. While
the benefits we observed were likely magnified by the effect of the
pandemic on students social lives more broadly, even outside of
such extreme events many students suffer social isolation and a
lack of support networks (Wu et al., 2015).

Student-led learning is human-centered design, or at least
it can productively be framed as such to HCI students. Students
in HCI and design degrees, especially professional degrees aimed
at producing human-centered designers, are likely to respond
positively to the idea of making something that helps someone
else solve a problem. Where tasks can be framed as human-
centered design, doing so may improve student self-efficacy. The
major benefit we observed was for the student in the teaching
role, confirming the “Protg effect” notion that one of the best
ways to learn (or at least to master) something is to teach it. We
used student-led teaching in an asynchronous and retrospective
mode, with students being asked to make something that
would have helped them learn, effectively designing for their
past selves. Student-led teaching was also observed occurring
naturally in the peer learning sessions, with (we hypothesize)
similar effects.

7. LIMITATIONS OF THIS RESEARCH

Like all research-through-design, care must be taken when
generalizing our findings, as they are the result of an iterative
reflective practice attuned to a specific context, rather than an
empirical attempt to observe population-wide facts (Zimmerman
et al., 2007). Our findings should be read in the context they
were generated, and the insights and design principles we draw
from them are intended as suggestions for future practitioners
and researchers, rather than conclusive objective truths.

Beyond the epistemological limitations, however, our
study also has a number of specific scope limitations that
bear mentioning. Our student population was drawn from
a large Australian comprehensive research university, with
about 60% of our students being Australian citizens and
40% international, primarily from Asia. The sociocultural
expectations of our cohort may not align with those at other
institutions worldwide. Furthermore, our course was delivered
to first-year undergraduate and first-year coursework masters
students, so both cohorts were in their first year of study, which
may have had implications for their level of metacognitive
development. Finally, this study overlapped with the second-
worst pandemic in living memory, a period during which
significant disruption to the tertiary education sector occurred,
including border closures, stay-at-home orders and widespread
layoffs in many of the industries where students work part-time.
While irredeemable on a global scale, COVID-19 was a mixed

blessing for this study, as while it prevented any year-over-
year comparison of the efficacy of our approaches it did let
us study our approaches in both blended and fully-remote
contexts.

8. CONCLUSION

This project has been a unique opportunity to study the effects
of different levels of technology-enhanced learning on open-
ended learning pedagogies. Without the COVID-19 pandemic,
we would have continued focussing on our platform to support
open-ended learning a traditional face-to-face context. In that
less-tragic timeline we would have likely designed both the
interaction model and the learning activities of our intervention
to minimize the anxiety felt by some students during open-
ended learning. Instead we explored the notion of open-
endedness in a much more broad set of educational contexts:
face-to-face pre-pandemic, fully remote during the first wave,
and hybrid after. With that exploration has come a rich
understanding of the ways that open-ended learning can both
empower and impair design students when they are learning to
program.

At their most broad, our findings can be summarized as
“open-ended learning helps some students some of the time,”
but to do so elides nuance. It’s tempting to say that some
students can “handle” freedom, while others are too focussed
on their marks and grades to appreciate it, but this too is
reductive: the real question is which students and why. Our
findings suggest that at least one major cause for the anxiety that
can arise from open-ended learning is a lack of understanding
of one’s own skills relative to expectations, leading to a fear
of failure. Once that fear sets in, anything not directly and
obviously connected to the exams or major assignments is
likely to be discarded. This contrasts with the empowerment
felt by the majority of the cohort when open-ended learning
is successfully employed, but in order to be inclusive with our
pedagogies these fears need to be addressed. We have outlined
three design principles that might help do so, at least when
teaching programming to design-focussed HCI students: adding
open-endedness within rather than between activities, using
pair programming, and appealing to students’ human-centered
design skills with student-led learning. These principles were
derived from the iterative research-through design process we
used during the CCCs project and codified through the meta-
analysis of student attitudes conducted thereafter. We hope that
they can help direct HCI educators in the critical task of teaching
students from design backgrounds to program.

DATA AVAILABILITY STATEMENT

The datasets presented in this article are not readily available
because our ethics approval prohibits sharing even de-
identified interview transcripts outside of the research team.
Requests to access the datasets should be directed to KG
(kazjon.grace@sydney.edu.au).

Frontiers in Computer Science | www.frontiersin.org 19 May 2022 | Volume 4 | Article 813889

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Grace et al. Teaching Interaction Designers to Code

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the University of Sydney Human Research Ethics
Committee. The patients/participants provided their written
informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

AE-P developed the system and wrote the associated sections of
the manuscript. BK performed the thematic meta-analysis and
wrote the associated sections of the manuscript. LB co-ordinated
the units into which our intervention was deployed and assisted
with the writing of the manuscript. KG initiated the project,
wrote the balance of the manuscript, and provided mentoring

throughout. All authors contributed to the article and approved
the submitted version.

FUNDING

We acknowledge the support, both financial and advisory, of
the Education Innovation Team at the University of Sydney,
particularly Dr Jessica Frawley. They were instrumental in the
founding of the Creative Coding Challenges platform in 2018.
The University of Sydney supported this research internally
in several ways. The Deputy Vice Chancellor for Education
supported the initiation of the project through a 2018 Strategic
Education Innovation award. The School of Architecture, Design
and Planning, where the authors work, supported this article’s
processing fees.

REFERENCES

Adams, R. S., Turns, J., and Atman, C. J. (2003). Educating effective engineering

designers: the role of reflective practice. Design. Studies 24, 275–294.

doi: 10.1016/S0142-694X(02)00056-X

Armstrong, F. (2019). “Social constructivism and action research: transforming

teaching and learning through collaborative practice,” in Action Research for

Inclusive Education (London: Routledge), 5–16.

Bada, S. O., and Olusegun, S. (2015). Constructivism learning theory: a

paradigm for teaching and learning. J. Res. Method Educ. 5, 66–70.

doi: 10.9790/7388-05616670

Banning, J. (2003). Ecological Triangulation: An Approach for Qualitative Meta-

Synthesis. What Works for Youth with Disabilities Project: US.

Batdi, V. (2017). Smart board and academic achievement in terms of the process

of integrating technology into instruction: a study on the McA. Croat. J. Educ.

19, 763–801. doi: 10.15516/cje.v19i3.2542

Becker, B. A. (2021). What does saying that ’programming is hard’ really say, and

about whom? Commun. ACM 64, 27–29. doi: 10.1145/3469115

Bereiter, C. (1994). Constructivism, socioculturalism, and popper’s world 3. Educ.

Res. 23, 21–23. doi: 10.3102/0013189X023007021

Blikstein, P. (2011). “Using learning analytics to assess students’ behavior in open-

ended programming tasks,” in Proceedings of the 1st International Conference

on Learning Analytics and Knowledge, LAK ’11 (New York, NY|: Association

for Computing Machinery), 110–116.

Bodily, R., and Verbert, K. (2017). Review of research on student-facing learning

analytics dashboards and educational recommender systems. IEEE Trans.

Learn. Technol. 10, 405–418. doi: 10.1109/TLT.2017.2740172

Bransford, J. D., Brown, A. L., Cocking, R. R., and Others (2000). How People

Learn, Vol. 11. Washington, DC: National academy press.

Bull, S., and Kay, J. (2013). “Open learner models as drivers for metacognitive

processes,” in International Handbook of Metacognition and Learning

Technologies (Ann Arbor, MI: Springer), 349–365.

Campbell, D. T., and Fiske, D. W. (1959). Convergent and discriminant

validation by the multitrait-multimethod matrix. Psychol. Bull. 56, 81–105.

doi: 10.1037/h0046016

Carbone, A., and Sheard, J. (2002). “A studio-based teaching and learning

model in IT: what do first year students think?” in Proceedings of the

7th Annual Conference on Innovation and Technology in Computer Science

Education, ITiCSE ’02 (New York, NY: Association for Computing Machinery),

213–217.

Carvalho, L., Goodyear, P., Wardak, D., and Saunders, R. (2014). “Peep: peer

support for programing,” in The Architecture of Productive Learning Networks

(Sydney, NSW: Routledge), 97–111.

Carvalho, L., and Saunders, R. (2018). Coding, designing and networking:

fostering learning through social connections. Res. Learn. Technol. 26:1–18.

doi: 10.25304/rlt.v26.2006

Casteel, M. A., and Bridges, K. R. (2007). Goodbye lecture: a student-led seminar

approach for teaching upper division courses. Teach. Psychol. 34, 107–110.

doi: 10.1177/009862830703400208

Charleston, L. J., George, P. L., Jackson, J. F., Berhanu, J., and Amechi, M. H.

(2014). Navigating underrepresented stem spaces: experiences of black women

in us computing science higher education programs who actualize success. J.

Divers High. Educ. 7, 166. doi: 10.1037/a0036632

Chase, C. C., Chin, D. B., Oppezzo, M. A., and Schwartz, D. L. (2009). Teachable

agents and the protégé effect: increasing the effort towards learning. J. Sci. Educ.

Technol. 18, 334–352. doi: 10.1007/s10956-009-9180-4

Chickering, A. W., and Gamson, Z. F. (1987). Seven principles for good practice in

undergraduate education. AAHE Bull. 3:7.

Cohen, D. K., and Ball, D. L. (2007). Educational innovation and the problem of

scale. Scale Educ. 1, 19–36.

Cooper, A. (1999). “The inmates are running the asylum,” in Software-

Ergonomie’99 (Wiesbaden: Springer), 17–17.

Cross, N. (2011). Design Thinking: Understanding How Designers Think andWork.

Oxford: Berg.

De Volder, M. L., De Grave, W. S., and Gijselaers, W. (1985). Peer teaching:

academic achievement of teacher-led versus student-led discussion groups.

Higher Educ. 14, 643–650. doi: 10.1007/BF00136502

Deci, E. L., and Ryan, R. M. (2012). “Self-determination theory,” in Handbook

of Theories of Social Psychology, Vol. 1, eds P. A. M. Van Lange, A. W.

Kruglanski, and E. T. Higgins (Thousand Oaks, CA: Sage Publications), 416–

437. doi: 10.4135/9781446249215.n21

Emara, M., Hutchins, N. M., Grover, S., Snyder, C., and Biswas, G. (2021).

Examining student regulation of collaborative, computational, problem-

solving processes in open-ended learning environments. J. Learn. Anal. 8,

49–74. doi: 10.18608/jla.2021.7230

Emara, M., Tscholl, M., Dong, Y., and Biswas, G. (2017). Analyzing Students’

Collaborative Regulation Behaviors in a Classroom-Integrated Open Ended

Learning Environment. Philadelphia, PA: International Society of the Learning

Sciences.

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H.,

and Wenderoth, M. P. (2014). Active learning increases student performance

in science, engineering, and mathematics. Proc. Natl. Acad. Sci. U. S. A. 111,

8410–8415. doi: 10.1073/pnas.1319030111

Froyd, J., and Simpson, N. (2008). “Student-centered learning addressing faculty

questions about student centered learning,” in Course, Curriculum, Labor, and

Improvement Conference, Vol. 30 (Washington DC), 1–11.

Gomes, A., and Mendes, A. J. (2007). “An environment to improve programming

education,” in Proceedings of the 2007 International Conference on Computer

Systems and Technologies (Ruse), 1–6.

Greenberg, I., Kumar, D., and Xu, D. (2012). “Creative coding and visual portfolios

for cs1,” in Proceedings of the 43rd ACM Technical Symposium on Computer

Science Education, SIGCSE ’12 (New York, NY: Association for Computing

Machinery), 247–252.

Guzdial, M. (2003). “A media computation course for non-majors,” in Proceedings

of the 8th Annual Conference on Innovation and Technology in Computer

Science Education (Atlanta, GA), 104–108.

Guzdial, M. (2009). Education teaching computing to everyone. Commun. ACM

52, 31–33. doi: 10.1145/1506409.1506420

Frontiers in Computer Science | www.frontiersin.org 20 May 2022 | Volume 4 | Article 813889

https://doi.org/10.1016/S0142-694X(02)00056-X
https://doi.org/10.9790/7388-05616670
https://doi.org/10.15516/cje.v19i3.2542
https://doi.org/10.1145/3469115
https://doi.org/10.3102/0013189X023007021
https://doi.org/10.1109/TLT.2017.2740172
https://doi.org/10.1037/h0046016
https://doi.org/10.25304/rlt.v26.2006
https://doi.org/10.1177/009862830703400208
https://doi.org/10.1037/a0036632
https://doi.org/10.1007/s10956-009-9180-4
https://doi.org/10.1007/BF00136502
https://doi.org/10.4135/9781446249215.n21
https://doi.org/10.18608/jla.2021.7230
https://doi.org/10.1073/pnas.1319030111
https://doi.org/10.1145/1506409.1506420
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Grace et al. Teaching Interaction Designers to Code

Hannafin, M. J. (1995). “Open-Ended learning environments: Foundations,

assumptions, and implications for automated design,” in Automating

Instructional Design: Computer-Based Development and Delivery Tools (Berlin;

Heidelberg: Springer Berlin Heidelberg), 101–129.

Hidayah, I., Adji, T., and Setiawan, N. (2018). “A framework for improving

recommendation in adaptive metacognitive scaffolding,” in 2018 4th

International Conference on Science and Technology (ICST), (Yogyakarta:

IEEE), 1–5.

Horn, M. B., and Staker, H. (2014). Blended: Using Disruptive Innovation to

Improve Schools. San Francisco, CA: John Wiley & Sons.

Hutchinson, H., Mackay, W., Westerlund, B., Bederson, B. B., Druin, A., Plaisant,

C., et al. (2003). “Technology probes: inspiring design for and with families,” in

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems

(College Park, MD), 17–24.

Huynh, D., Zuo, L., and Iida, H. (2016). “Analyzing gamification of “duolingo”

with focus on its course structure,” in Games and Learning Alliance (Asahidai:

Springer International Publishing), 268–277.

Jenkins, T. (2002). “On the difficulty of learning to program,” in Proceedings of

the 3rd Annual Conference of the LTSN Centre for Information and Computer

Sciences, Vol. 4 (Citeseer), 53–58.

Jeong, C. (2017). Effects of pair programming in an introductory programming

course for college students: academic performance and student satisfaction. J.

Korean Assoc. Inform. Educ. 21, 537–545. doi: 10.14352/jkaie.21.5.537

Kargarmoakhar, M., Lunn, S., Zahedi, L., Ross, M., Hazari, Z., Weiss, M. A., et

al. (2020). “Understanding the experiences that contribute to the inclusion of

underrepresented groups in computing,” in 2020 IEEE Frontiers in Education

Conference (FIE) (Uppsala: IEEE), 1–9.

Klingner, J. K., Boardman, A. G., and McMaster, K. L. (2013). What does it take

to scale up and sustain evidence-based practices? Except. Child. 79, 195–211.

doi: 10.1177/0014402913079002061

Krouska, A., Troussas, C., and Virvou, M. (2018). “Computerized adaptive

assessment using accumulative learning activities based on revised bloom’s

taxonomy,” in Joint Conference on Knowledge-Based Software Engineering (New

York, NY: Springer), 252–258.

Kuhn, S. (1998). The software design studio: an exploration. IEEE Softw. 15, 65–71.

doi: 10.1109/52.663788

Kuhn, S. (2001). Learning from the architecture studio: implications for project-

based pedagogy. Int. J. Eng. Educ. 17, 349–352.

Land, S. M. (2000). Cognitive requirements for learning with open-ended learning

environments. Educ. Technol. Res. Dev. 48, 61–78. doi: 10.1007/BF02319858

Land, S. M., and Hannafin, M. J. (1997). Patterns of understanding with open-

ended learning environments: a qualitative study. Educ. Technol. Res. Dev. 45,

47–73. doi: 10.1007/BF02299524

Lavigne, G. L., Vallerand, R. J., and Miquelon, P. (2007). A motivational model of

persistence in science education: a self-determination theory approach. Eur. J.

Psychol. Educ. 22, 351–369. doi: 10.1007/BF03173432

Logan, B. (2015). Deep exploration of the flipped classroom before implementing.

J. Instruct. Pedagogies. 16, 1–16. Available online at: https://www.aabri.com/jip.

html

MacNeil, S., Latulipe, C., Long, B., and Yadav, A. (2016). “Exploring lightweight

teams in a distributed learning environment,” in Proceedings of the 47th

ACM Technical Symposium on Computing Science Education (Charlotte, NC),

193–198.

McBroom, J., Yacef, K., and Koprinska, I. (2020). “Scalability in online computer

programming education: automated techniques for feedback, evaluation and

equity,” in Proceedings of the 13th International Conference on Educational Data

Mining (EDM 2020) (Sydney, NSW), 802–805.

McCarthy, L., Reas, C., and Fry, B. (2015). Getting Started With P5. js: Making

Interactive Graphics in JavaScript and Processing. San Francisco, CA: Maker

Media, Inc.

Nassrallah, Z., Frankfurt, M., and Hill, R. V. (2018). A student’ centered,

active learning approach to teaching spinal cord anatomy. FASEB J. 32.

doi: 10.1096/fasebj.2018.32.1_supplement.lb510

Nielsen, L. (2012). Five reasons i’m not flipping over the flipped classroom.

Technol. Learn. 32, 46–46.

Oliver, K., and Hannafin, M. (2001). Developing and refining mental models in

open-ended learning environments: a case study. Educ. Technol. Res. Dev. 49,

5–32. doi: 10.1007/BF02504945

Panadero, E. (2017). A review of self-regulated learning: six models and four

directions for research. Front. Psychol. 8, 422. doi: 10.3389/fpsyg.2017.00422

Paniagua, A., and Istance, D. (2018). Teachers as Designers of Learning

Environments: The Importance of Innovative Pedagogies. Educational Research

and Innovation. OECD Publishing. OECD Publishing. 2, rue Andre Pascal,

F-75775 Paris Cedex 16. Available online at: http://www.oecd.org.

Pearson, P. D., and Gallagher, G. (1983). The gradual release of responsibility

model of instruction. Contemp. Educ. Psychol. 8, 112–123.

Peckham, J., Harlow, L. L., Stuart, D. A., Silver, B., Mederer, H., and Stephenson, P.

D. (2007). Broadening participation in computing: issues and challenges. ACM

SIGCSE Bull. 39, 9–13. doi: 10.1145/1269900.1268790

Penuel, W. R., Fishman, B. J., Haugan Cheng, B., and Sabelli, N. (2011). Organizing

research and development at the intersection of learning, implementation, and

design. Educ. Res. 40, 331–337. doi: 10.3102/0013189X11421826

Rajaravivarma, R. (2005). A games-based approach for teaching the introductory

programming course. SIGCSE Bull. 37, 98–102. doi: 10.1145/1113847.1113886

Ramalingam, V., LaBelle, D., and Wiedenbeck, S. (2004). “Self-efficacy and mental

models in learning to program,” in Proceedings of the 9th Annual SIGCSE

Conference on Innovation and Technology in Computer Science Education

(Leeds), 171–175.

Reas, C., and Fry, B. (2006). Processing: programming for the media arts. Ai Soc.

20, 526–538. doi: 10.1007/s00146-006-0050-9

Reas, C., and Fry, B. (2007). Processing: A Programming Handbook for Visual

Designers and Artists. Cambridge, MA: Mit Press.

Reimer, Y. J., and Douglas, S. A. (2003). Teaching hci design with the studio

approach. Comput. Sci. Educ. 13, 191–205. doi: 10.1076/csed.13.3.191.14945

Ricci, F., Rokach, L., and Shapira, B. (2011). “Introduction to recommender

systems handbook,” in Recommender Systems Handbook (Negev: Springer),

1–35.

Robinson, B., and Schaible, R. M. (1995). Collaborative teaching: reaping the

benefits. College Teach. 43, 57–59. doi: 10.1080/87567555.1995.9925515

Rohrbeck, C. A., Ginsburg-Block, M. D., Fantuzzo, J. W., and Miller, T. R.

(2003). Peer-assisted learning interventions with elementary school students:

a meta-analytic review. J. Educ. Psychol. 95, 240. doi: 10.1037/0022-0663.

95.2.240

Roll, I., Aleven, V., McLaren, B. M., and Koedinger, K. R. (2007). Designing

for metacognition–applying cognitive tutor principles to the tutoring

of help seeking. Metacogn. Learn. 2, 125–140. doi: 10.1007/s11409-007-

9010-0

Schön, D. A. (1979). The Reflective Practitioner. New York, NY: Basic Books.

Schön, D. A. (1987). Educating the Reflective Practitioner: Toward a New Design for

Teaching and Learning in the Professions. San Francisco, CA: Jossey-Bass.

Schunk, D. H. (1995). “Self-efficacy and education and instruction,” in Self-Efficacy,

Adaptation, and Adjustment (New York, NY), 281–303.

Su, X., and Khoshgoftaar, T. M. (2009). A survey of collaborative filtering

techniques. Adv. Artif. Intell. 2009, 421425. doi: 10.1155/2009/421425

Troussas, C., Giannakas, F., Sgouropoulou, C., and Voyiatzis, I. (2020).

Collaborative activities recommendation based on students’ collaborative

learning styles using ANN and WSM. Interact. Learn. Environ. 1–14.

doi: 10.1080/10494820.2020.1761835

Tversky, B. (2015). “On abstraction and ambiguity,” in Studying Visual and Spatial

Reasoning for Design Creativity (New York, NY: Springer), 215–223.

van Popta, E., Kral, M., Camp, G., Martens, R. L., and Simons, P. R.-J. (2017).

Exploring the value of peer feedback in online learning for the provider. Educ.

Res. Rev. 20:24–34. doi: 10.1016/j.edurev.2016.10.003

Vaughan, N. D., Cleveland-Innes, M., and Randy Garrison, D. (2013). Teaching

in Blended Learning Environments: Creating and Sustaining Communities of

Inquiry. Alberta: Athabasca University Press.

Vygotsky, L. S. (1930–1934/1978). Mind in Society: The Development of Higher

Psychological Processes. Cambridge, MA: Harvard University Press.

Wang, T. (2010). A new paradigm for design studio education. Int. J. Art Design

Educ. 29, 173–183. doi: 10.1111/j.1476-8070.2010.01647.x

Wiebe, E., Williams, L., Petlick, J., Nagappan, N., Balik, S., Miller, C., and Ferzli, M.

(2003). “Pair programming in introductory programming labs,” in Proceedings

Submitted to American Society for Engineering Education Annual Conference

and Exposition, Vol. 2003. Raleigh, NC: Researchgate.net.

Wilson, B., and Lowry, M. (2000). Constructivist learning on the web. New Dir.

Adult Contin. Educ. 2000, 79–88. doi: 10.1002/ace.8808

Frontiers in Computer Science | www.frontiersin.org 21 May 2022 | Volume 4 | Article 813889

https://doi.org/10.14352/jkaie.21.5.537
https://doi.org/10.1177/0014402913079002061
https://doi.org/10.1109/52.663788
https://doi.org/10.1007/BF02319858
https://doi.org/10.1007/BF02299524
https://doi.org/10.1007/BF03173432
https://www.aabri.com/jip.html
https://www.aabri.com/jip.html
https://doi.org/10.1096/fasebj.2018.32.1_supplement.lb510
https://doi.org/10.1007/BF02504945
https://doi.org/10.3389/fpsyg.2017.00422
https://doi.org/10.1145/1269900.1268790
https://doi.org/10.3102/0013189X11421826
https://doi.org/10.1145/1113847.1113886
https://doi.org/10.1007/s00146-006-0050-9
https://doi.org/10.1076/csed.13.3.191.14945
https://doi.org/10.1080/87567555.1995.9925515
https://doi.org/10.1037/0022-0663.95.2.240
https://doi.org/10.1007/s11409-007-9010-0
https://doi.org/10.1155/2009/421425
https://doi.org/10.1080/10494820.2020.1761835
https://doi.org/10.1016/j.edurev.2016.10.003
https://doi.org/10.1111/j.1476-8070.2010.01647.x
https://doi.org/10.1002/ace.8808
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Grace et al. Teaching Interaction Designers to Code

Wing, J. M. (2008). Computational thinking and thinking about computing.

Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 366, 3717–3725.

doi: 10.1098/rsta.2008.0118

Wu, H.-P., Garza, E., and Guzman, N. (2015). International student’s challenge and

adjustment to college. Educ. Res. Int. 2015, 202753. doi: 10.1155/2015/202753

Zimmerman, J., Forlizzi, J., and Evenson, S. (2007). “Research through design as a

method for interaction design research in HCI,” in Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, CHI ’07 (New York, NY:

Association for Computing Machinery), 493–502.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Grace, Klaassens, Bray and Elton-Pym. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Computer Science | www.frontiersin.org 22 May 2022 | Volume 4 | Article 813889

https://doi.org/10.1098/rsta.2008.0118
https://doi.org/10.1155/2015/202753
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

	An Open-Ended Blended Approach to Teaching Interaction Designers to Code
	1. Introduction
	2. Background
	2.1. Programming Education
	2.2. Design Education
	2.3. Open-Ended and Student-Led Teaching
	2.4. Blended Learning

	3. Materials and Methods
	3.1. Overview of the Creative Coding Challenges System
	3.2. Thematic Meta-Analysis

	4. Iterative Design of the Creative Coding Challenges System
	4.1. Cycle 1: Discovery and Prototyping
	4.2. Cycle 2: From Blended to Online, Overnight
	4.3. Cycle 3: Pivot to the Protégé

	5. Results
	5.1. Learning as a Skill
	5.2. Learner Technology
	5.3. Learner Autonomy
	5.4. Social Learning
	5.5. Learning Support
	5.6. Content Complexity
	5.7. Learner Struggles

	6. Discussion
	6.1. Understanding Student Attitudes Toward Open-Ended Blended Learning
	6.2. Designing Effective Blended Programming Pedagogies for Designers

	7. Limitations of This Research
	8. Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References

