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Often, various modalities capture distinct aspects of particular mental states or activities.

While machine learning algorithms can reliably predict numerous aspects of human

cognition and behavior using a single modality, they can benefit from the combination

of multiple modalities. This is why hybrid BCIs are gaining popularity. However, it is not

always straightforward to combine features from a multimodal dataset. Along with the

method for generating the features, one must decide when the modalities should be

combined during the classification process. We compare unimodal EEG and eye tracking

classification of internally and externally directed attention to multimodal approaches for

early, middle, and late fusion in this study. On a binary dataset with a chance level of

0.5, late fusion of the data achieves the highest classification accuracy of 0.609–0.675

(95%-confidence interval). In general, the results indicate that for these modalities,

middle or late fusion approaches are better suited than early fusion approaches.

Additional validation of the observed trend will require the use of additional datasets,

alternative feature generation mechanisms, decision rules, and neural network designs.

We conclude with a set of premises that need to be considered when deciding on a

multimodal attentional state classification approach.

Keywords: feature fusion, convolutional neural networks, attention, eye tracking, EEG, Markov Transition Fields,

Gramian Angular Fields

1. INTRODUCTION

Human-machine interaction is becoming increasingly ubiquitous. In our daily lives, we want
to seamlessly incorporate technology and thus rely on usability. By integrating implicit input
mechanisms, the synergy between users and machines is further enhanced: These enable a system
to infer information about the user without the user taking any explicit action, such as pressing a
button or speaking a command, and modify their behavior accordingly.

One way of implementing implicit input mechanisms is via biosignal-based recognition of
cognitive states. Biosignal-based recognition of cognitive states or activities in humans is a
broad research field because of the manifold options for input signals, classification algorithms,
and possible applications. For instance, a Brain-Computer Interface (BCI) can predict a user’s
attentional state from electroencephalographic (EEG) data and adapt the system’s behavior using
machine learning (Vortmann and Putze, 2020). Certain modalities are more suited to certain
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applications and scopes than others, but for the majority
of applications, more than one possible input signal can be
considered. For instance, brain activity can be supported by eye
gaze behavior. Such systems are commonly referred to as hybrid
BCIs (Kim et al., 2015).

The fundamental premise of such multimodal approaches
in the context of BCI machine learning is that the two
modalities may capture distinct aspects of the user state and
thus complement one another. While using a single modality
can result in reliable classification accuracy, combining two or
more modalities can enhance the system’s recognition power and
robustness, thereby improving its overall performance. D’Mello
and Kory (2012) demonstrated in a review of 30 studies that
multimodal classification yielded on average 8.12% improvement
over the unimodal classifiers. Possible aims of the combination
are to correct for temporally noisy data, resolve ambiguity, or the
exploitation of correlations (Baltrušaitis et al., 2018).

In this work, we want to systematically explore the
combination of EEG and eye tracking data for the classification
of internally and externally directed attention. The result of such
a classification could be used in a BCI to adapt the system to the
user state.

1.1. Multimodal Feature Fusion
Biosignal data is heterogeneous in nature due to its inherent
properties and recording mechanisms. For example, brain
activity can be recorded using an EEG, which measures
electrophysiological changes on the scalp and is usually recorded
in microvolt, whereas eye gaze behavior is recorded by eye
tracking devices that measure pupil dilation and infer gaze
coordinates. During unimodal approaches, the feature extraction
is either explicitly designed to generate meaningful features
from the data, or the classification process implicitly learns to
extract modality- and task-specific features (Kim et al., 2020). A
combination of several modalities for the classification process is
therefore not trivial.

The first opportunity to merge modalities is before the
beginning of the classification process. Such early fusion

approaches combine the biosignals on a feature level (Cheng
et al., 2020). The joint representation of previously extracted
meaningful features or preprocessed raw data presupposes that
all modalities can be aligned properly for classification. This
approach allows for the learning of cross-modal correlations
during the classification process, but requires concatenation of
the inputs and limits the extraction of modality-specific features.

Oppositely, late fusion approaches merge the modalities at
the end of the classification process. The inputs are separately
processed in individually tailored steps, typically until the
prediction of individual labels. The fusion happens on the
decision level based on the multiple predictions (Cheng et al.,
2020). In Mangai et al. (2010), this was discussed as classifier
combination because several classifiers are trained individually
per modality before the results of the classifiers are combined (or
one classifier is selected as overall output). The authors suggested
different approaches how to choose the classifier combination,
based on the available individual output formats per modality
classifier. For instance, if each classifier predicts only a class

label, an odd number of classifiers should be chosen to allow
for (weighted) majority votes for the final output. In other
cases, the classifiers could produce vectors in which the values
represent the support for each label. Such certainty evaluations
per modality classifier allow for a more sophisticated assessment
of the final combined multimodal output. A decision rule has
to define how the individual predictions are combined for the
final prediction. This rules can either be set or learned using
machine learning. The setting of a decision rule requires good a
priori knowledge on the expected results, while machine learning
based late fusion requires a large amount of data to enable the
training of such decision rule. Especially regarding the proposed
attention classification biosignal data, such large datasets are
often not available and rule-based late fusion approaches should
be favored. An apparent advantage of late fusion is the power of a
tailored classification processes, whereas the shortcoming lies in
the exploitation of modality correlations (Polikar, 2012).

One can also steer a middle course in fusing the modalities
in the middle of the classification process. The idea of middle

fusion (or halfway fusion) approaches is to first process the
modalities individually but merge intermediate results as soon
as possible, followed by further classification steps. In terms
of neural networks, the first layers process the distinct inputs
simultaneously before concatenating the layers’ outputs for the
following shared layers. The advantage of this fusion approach
is that the modalities could first be processed tailored to their
individual properties before exploiting the cross-correlations and
arriving at a joint prediction.

1.2. EEG and Eye Tracking Based Mental
State Detection
Hybrid BCIs have been used to detect a variety of mental states by
analyzing eyemovement patterns rather than relying on the user’s
explicit gaze behavior for direction control or target selection.
As mentioned before, MI is a suitable use case for BCIs in
general. Dong et al. (2015) used the natural gaze behavior of the
participants to smooth the noisy predictions that resulted only
from EEG motor imagery tasks. Cheng et al. (2020) explicitly
compared late and early fusion of the multimodal features for
their MI task. For the feature level fusion, they remarked that
EEG and eye tracking data are so dissimilar, fusing them is not
trivial and requires several preprocessing steps. For the decision
level fusion, they used a decision rule based on the D-S evidence
theory (Zhang et al., 2018). They found that feature fusion
outperforms single modalities and that late fusion outperforms
early fusion of eye tracking and EEG data.

In Guo et al. (2019), the authors investigate emotion
recognition using a multimodal approach. They combine eye
tracking and EEG data and classify the input after an early fusion
using a deep neural network model that combines Convolutional
Neural Networks (CNN) and Long Short-TermMemory (LSTM)
networks. For the early fusion of the modalities, they apply a
Bimodal Deep AutoEncoder (BDAE) that extracts a high-level
representation of features. This approach was first presented in
Liu et al. (2016). Another early fusion approach for emotion
recognition was examined in Lu et al. (2015). They fused 33
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different features from eye movement data with 62 channel
EEG signals and achieved 87.59% accuracy in classifying three
emotions. Zheng et al. (2014) combined EEG signals and pupil
dilation either in an early fusion approach or in a late fusion
approach and found that both improved the performance of the
emotion recognition model compared to unimodal approaches
with a slightly higher accuracy for early fusion. Later, the authors
presented a multimodal emotion recognition framework called
EmotionMeter that also combines EEG and eye tracking data to
recognize emotions in real-world applications. They successfully
classified four different emotions with an accuracy of more
than 85% using a multimodal neural network, outperforming
both single modalities (Zheng et al., 2019). Another study on
multimodal emotion recognition was conduced by López-Gil
et al. (2016) who found that combining different signal sources on
the feature level enables the detection of self-regulatory behavior
more effectively than only using EEG data. Most recently, Wu
et al. (2021) fused EEG and eye tracking data for emotion
classification using effective deep learning for a gradient neural
network. They report an 88% accuracy for the recognition of
eight emotions.

The authors of Zhu et al. (2020) demonstrated that
when eye movement and EEG data are combined for the
detection of depression, a content-based ensemble method
outperforms traditional approaches. The mental workload level
is another cognitive state that can be classified using the
proposed multimodal data. Debie et al. (2021) state in their
review, that the combined features outperform single modalities
for workload assessments. For example, Lobo et al. (2016)
fused previously extracted eye tracking and EEG features
on the feature level before training person-dependent and
person-independent classifiers on them. They found that an
almost perfect classification performance could be achieved for
individual classifiers while independent classifiers only reached a
lot worse accuracy.

1.3. Attentional State Classification
This study will examine different feature fusion strategies for
a multimodal classification of EEG and eye tracking data
to recognize internally and externally directed attention in a
paradigm that manipulates internal/external attention demands.
In general, attentional mechanisms are applied to filter the
vast amount of available information at every moment for
a better focus on relevant goals. Internally directed attention
refers to a focus on information that is independent of sensory
input, such as thoughts, memories, or mental arithmetic. It
can occur deliberately (e.g., planning; Spreng et al., 2010)
or spontaneously (e.g., mind wandering; Smallwood and
Schooler, 2006). Externally directed attention instead describes
a state of attentiveness to sensory input produced by the
surroundings (Chun et al., 2011). Because concurrent self-
evaluation of attentiveness to internal/external states while
completing particular tasks would directly interfere with the
direction of attention itself, a common approach is to ask
participants in retrospect. Arguably, a system that would
concurrently monitor the attentional state without interfering
with the user may be better suited for application.

The suitability of eye tracking data for this classification task
was shown by Annerer-Walcher et al. (2021) who achieved a
classification accuracy of 69% for 4 s windows of raw eye tracking
data. They compared gaze-specific properties and found that
blinks, pupil diameter variance, and fixation disparity variance
indicated differences in attentional direction. In Putze et al.
(2016) and Vortmann et al. (2019a), the authors showed that such
attentional differences can also be classified from EEG in different
settings. They achieved 74.3% for 2 s windows and 85% for 13 s
windows, respectively.

Eye tracking and EEG data have been collected simultaneously
in several studies on attention (e.g., Vortmann and Putze, 2021).
Kulke et al. (2016) investigated neural differences between covert
and overt attention using EEG. The eye gaze was analyzed to
control the correct labeling of the data. Dimigen et al. (2011)
performed a co-registration of eye movement and EEG data
for reading tasks and analyzed the fixation-related potentials.
However, in these studies, the modalities were not combined but
used for different purposes during the analysis.

To the best of our knowledge, the only paper that addresses
feature fusion of EEG and eye tracking data for internally
and externally directed attention in the context of attention
classification is by Vortmann et al. (2019b). The authors
implemented a real-time system for the attentional state
classification and found that a late fusion approach with a
decision rule improves the classification result of both single
modalities. For 1.5 s data windows, the classification accuracy for
the EEG data ranged between 0.56 and 0.81, for eye tracking data
between 0.46 and 0.78 and for the late fusion approach between
0.58 and 0.86, calculated for 10 participant and a chance level
of 0.5.

This work will systematically compare the unimodal
approaches for EEG and eye tracking data with early, middle,
and late fusion multimodal approaches for internally and
externally directed attention.

2. METHODS

A dataset of 36 participants was analyzed for within-person
classification accuracies of different multimodal neural networks.

2.1. Data
The data used in this study was recorded by Ceh et al. (2020)1. It
encompasses EEG and eye tracking recordings of 36 participants
(24 female, 12 male; age: M = 24 SD = 2.72; all right-handed;
four had corrected-to-normal vision). The data set was chosen
because the EEG and the eye tracking data were sampled with
the same sampling rate. This makes the temporal alignment
for the early fusion approaches easier and more accurate. The
data collection was performed in a controlled laboratory setup
which results in higher quality data and less confounding factors
compared to more flexible setups that require, for instance, free
movements (Vortmann and Putze, 2020).

1Publicly available at 10.17605/OSF.IO/5U6R9.
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2.1.1. Task
During the recording, the participants had to perform two
different tasks under two different conditions each. For all tasks,
a meaningful German word of four letters was presented. For
one task, the participants had to create anagrams of the word
(i.e., “ROBE” is transformed to “BORE”). For the other task,
a four-word long sentence had to be generated, each word
starting with one of the four letters from the presented word (i.e.,
“ROBE” is transformed to “Robert observes eye behavior”). The
employed paradigm builds on both a convergent (anagram) and
divergent (sentence generation) thinking task and has been used
in several studies investigating the effect of attention demands
in the visual domain (Benedek et al., 2011, 2016, 2017; Ceh
et al., 2020, 2021). Within the tasks, the attentional demands
are manipulated using stimulus masking: in half of all trials,
the stimulus is masked after a short processing period (500
ms), requiring participants to keep and manipulate the word
in their minds. This enforces completion of the task relying
on internally directed attention. In the other half of all trials,
the stimulus word is continuously available (20 s), allowing
for continuous retrieval using external sensory processing. The
paradigm thus differentiates convergent and divergent thinking
in a more internal vs. external attentional setting. For a detailed
description of the task, see the original article.

2.1.2. Conditions
The effects of manipulating attention using these tasks were
previously looked at for EEG (Benedek et al., 2011), fMRI
(Benedek et al., 2014), and eye tracking (Benedek et al.,
2017) data, or a combination of EEG and ET (Ceh et al.,
2020), and fMRI and eye tracking (Ceh et al., 2021) data.
Across these studies, the investigators found robust differences
between the internal and external conditions on the level of
eye behavior (e.g., increased pupil diameter during internally
directed cognition; Benedek et al., 2017; Ceh et al., 2020, 2021),
EEG (e.g., relatively higher alpha power over parieto-occipital
regions during internally directed cognition; Benedek et al., 2011;
Ceh et al., 2020), and fMRI (e.g., internally directed cognition
was associated with activity in regions related to visual imagery,
while externally directed cognition recruited regions implicated
in visual perception; Benedek et al., 2016; Ceh et al., 2021). The
observed attention effects were highly consistent across both
tasks in all studies (i.e., across different modalities).

In this study, we will not differentiate between the two tasks.
The classification will be based on masked (internally directed
attention) and unmasked (externally directed attention) stimuli.
Each participant performed 44 trials of each condition (chance
level for the classification= 0.5).

2.1.3. Recordings
EEG was recorded with a BrainAmp amplifier by Brain Products
GmbH with a sampling rate of 1,000 Hz using 19 active
electrodes, positioned according to the 10-20 system in the
following positions: Fp1, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz,
C4, T8, P7, P3, Pz, P4, P8, O1, and O2. Additionally, three
electrooculogram electrodes were included (left and right of the
eyes, and adjacent to the radix nasi). References were placed on

the left and right mastoid and the ground electrode was placed
centrally on the forehead. Impedances were kept below 30 kOhm.

The eye tracking data was recorded using an EyeLink 1000
Plus eye tracker by SR Research Ltd. with a sampling rate of 1,000
Hz. For amore detailed description of the experimental setup and
procedure (see Ceh et al., 2020).

2.2. Preprocessing
Simple preprocessing steps were applied to both data input sets to
reduce the noise in the data. The classification will be performed
per participant, with participant-dependently trained classifiers.
Thus, correcting data to account for inter-individual differences
is not necessary.

For the eye tracking, the X- and Y- coordinates and the
pupil diameter of the left and the right eye were cleaned
from non-existing values by dropping the respective samples.
Binocular blinks (as defined by the eye tracker’s built-in detection
algorithm) were also excluded. The X- and Y-coordinates
recorded by the eye tracker can be interpreted as the current gaze
position relative to the screen.

The EEG data were processed using the MNE toolbox by
Gramfort et al. (2013). First, the data was bandpass-filtered
between 1 and 45 Hz using windowed FIR filters. An additional
notch filter was applied at 50 Hz (power-line noise). Afterward,
the data was re-referenced to average. Bad channels or epochs
were not excluded from the data.

For both data sets, each trial was cut into four non-overlapping
3 s windows: 3–6, 7–10, 11–14, and 15–18 s after trial onset. The
first seconds of each trial were not used to avoid an effect of
the masking process in the data. In total, each participant’s data
set contained 4∗44 = 176 data windows. No baseline correction
was applied.

We generated two feature sets for each modality. As argued
earlier, for early feature fusion approaches, the input format
from both modalities must be temporally compatible so it can
be combined. The data synchronization was performed on the
basis of the available timestamps. Missing values were dropped
for both modalities. The first feature set is the plain preprocessed
time series, without any further computations or feature
extraction steps. This raw input has been proven suitable for
EEG data classification (Schirrmeister et al., 2017). To generate
the second feature set, we followed an approach introduced
in Wang and Oates (2015). The authors suggest transforming
time-series data into representative images that convolutional
neural networks can classify. The first algorithm for the
image generation is called Markov Transition Field (MTF).
MTFs represent transition probabilities between quantiles of the
data. As a second algorithm, they suggest Gramian Angular
Summation Fields (GASF), which visualizes the distances
between polar-coordinates of the time series data. They argue that
both approaches keep spatial and temporal information about the
data. The application of this feature generation approach for eye
tracking data during internally and externally directed attention
was implemented by Vortmann et al. (2021). They were able to
show that the imaging time-series approach with a convolutional
neural net achieve higher classification accuracies than classical
eye gaze-specific features.
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TABLE 1 | Shallow FBCSP Convolutional Neural Network structure (shallow

FBCSP CNN) from Schirrmeister et al. (2017), implemented using the braindecode

toolbox by Schirrmeister et al. (2017).

Layer name Type Properties

conv_time Conv2d Out = 40, kernel_size = (25, 1), stride = (1, 1)

conv_spat Conv2d Out = 40, kernel_size = (1, 23), stride = (1, 1)

bnorm BatchNorm2d Out = 40, eps = 1e-05, momentum = 0.1

pool AvgPool2d Kernel_size = (75, 1), stride = (15, 1), padding = 0

drop Dropout p = 0.5

conv_classifier Conv2d Out = 2, kernel_size = (194, 1), stride = (1, 1)

TABLE 2 | Simple Convolutional Neural Network structure (simple CNN) similar to

Vortmann et al. (2021), implemented using the PyTorch library by Paszke et al.

(2019). fc, fully connected.

Layer name Type Properties

conv1 Conv2d Out = 60, kernel_size = (5, 5), stride = (1, 1)

conv2 Conv2d Out = 120, kernel_size = (5, 5), stride = (1, 1)

conv_dropout Dropout2d p = 0.5

fc1 Linear In = 9,720, out = 500

fc2 Linear In = 500, out = 120

fc3 Linear In = 120, out = 20

fc4 Linear In = 20, out = 2

We calculated theMTF and the GASF image with 48x48 pixels
for each channel in the data, resulting in 12 images for the eye
tracking data: 2 images ∗ 2 eyes ∗ [x-coordinate, y-coordinate,
pupil diameter] and 44 images for the EEG data: 2 images ∗

(22 EEG channels + 3 EOG channels). This results in an image
matrix of 56 images per trial.

2.3. Classifier
The classification was performed in a person-dependent manner,
resulting in an individual model for each participant. We used
two different convolutional neural networks as classification
algorithms, one for each feature set (time-series features and
image features). Schirrmeister et al. (2017) introduced a shallow
CNN that was inspired by Filterbank Common Spatial Pattern
(FBCSP) analysis for EEG time-series. The layers of the network
can be seen in Table 1. This shallow FBCSP CNN will be
used to classify the time series feature set of both modalities.
As optimizer, we used the AdamW optimizer (Loshchilov and
Hutter, 2017), null loss, a learning rate of 0.0625 ∗ 0.01, and a
weight decay of 0.5∗0.0001.

The second neural network that we used for the image features
was the simple CNN adapted from Vortmann et al. (2021).
Table 2 describes the network structure in detail. This time, the
Adam optimizer (Kingma and Ba, 2014), cross-entropy loss, a
learning rate of 0.0001, and no weight decay were used. The
label prediction the maximum of the softmax of the output layer
was calculated.

In the first step, we classified the data using single modality
approaches. The data were randomly split into training and

FIGURE 1 | (A) Single modality classification approach for EEG data using the

shallow FBCSP Convolutional Neural Network. The preprocessed time-series

is used as the input. (B) Single modality classification approach for eye

tracking data using a Simple Convolutional Neural Network. The stacked

images represent the Markov Transition Fields and Gramian Angular Fields

computed on the raw data (see section 2.2). Both: ŷ is the class prediction.

testing data, using 33% for testing (stratified). We trained for a
maximum of 30 epochs with a batch size of 40. Early stopping
was applied if the classification accuracy on the training data was
above 95% for more than five epochs to avoid overfitting.

The EEG data were classified using the time series feature set
and the shallow FBCSP CNN (see Figure 1A). The eye tracking
data were classified using the image feature set and a simple
CNN (see Figure 1B). All evaluations are based on the network
accuracy tested on the test data. Because of the equal distribution
of the two conditions, the chance level for a correct window
classification is 50%. The training and testing split, followed
by the classification process, was repeated five times for each
participant with each modality and fusion approach. As a final
result for each participant, we calculated the average accuracy for
the five runs.

2.4. Fusion Approaches
We compared the single modality results to four different fusion
approaches. For the early feature fusion, we implemented two
different versions: (1) the image feature sets of the EEG and
eye tracking data are concatenated and classified by a simple
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FIGURE 2 | (A) Early fusion approach using image features for EEG and eye tracking data. The stacked images are classified by a Simple Convolutional Neural

Network. (B) Early fusion approach using time series of EEG and eye tracking data. The combined input is classified by the shallow FBCSP Convolutional Neural

Network. Both: ŷ is the class prediction.

CNN, and (2) the time series feature sets of both modalities
are combined and classified using the shallow FBCSP CNN (see
Figure 2). All parameters and training strategies were identical to
the single modality classification process described in section 2.3.

In the middle fusion approach, the time-series features of
the EEG data and the image features of the eye tracking data
were used. As described in Figure 3, both feature sets were
first processed simultaneously by different neural networks. A
reduced version of the shallow FBCSP CNN got trained on the
EEG data. The reduced model is identical to the model described
in Table 1 but the output size of the last layer (conv_classifier)
was increased to 40. The eye tracking data were used to train
the first layers of a simple CNN, until after the first linear layer
(fc1; see Table 2). At this point, the outputs of both networks
got concatenated, changing the input size of the second fully
connected layer (fc2) before passing through the rest of the linear
layers of a simple CNN.

Lastly, in the late fusion approach, the EEG and eye tracking
data were classified separately as described for the single modality
approaches. The prediction probabilities of both classes were
used to decide on the final prediction (see Figure 4). We used
the following decision rule: if both modalities predict the same
label, use it as the final prediction. Else, if the probability of
the EEG prediction P(ŷ) > 0.5, use the label predicted by the
EEG classifier. Else, use the label that was predicted by the eye
tracking classifier.

The decision was mutual (case 1) in 0.572± 0.074 of the trials.
For 0.368± 0.071 of the trials, the EEG prediction was passed on
and for 0.06± 0.024 the eye tracking decision was used.

3. RESULTS

All reported results are the statistics computed across all
participants. We will first report the mean, standard deviation,

range, and 95%-confidence interval of each approach, before
testing for significant differences. All results can be seen in
Figure 5.

The EEG-based single unimodal classification reached an
average accuracy of 0.635± 0.095. The results ranged from 0.450
to 0.859, and the 95%-confidence interval of the classification
accuracy for a new subject is [0.603, 0.668].

For the eye tracking approach, the average accuracy was 0.582
± 0.092 within the range [0.397, 0.870]. The 95%-confidence
interval was [0.551, 0.614].

When both modalities were represented by their time-series
and processed with the shallow FBCSP CNN (Early Fusion—TS),
the mean accuracy was 0.572± 0.077 (range [0.386, 0.853]).With
a 95% confidence, the classification accuracies for this approach
will reach between 0.545 and 0.598. The early fusion approach
using image features (Early Fusion—Images) reached an average
accuracy of 0.608 ± 0.083 over all participants. The range for
this approach was [0.422, 0.887] and the 95%-confidence interval
[0.580, 0.636].

For the middle fusion, the mean accuracy was 0.617 ±

0.101, range of [0.431, 0.870], and 95%-confidence interval of
[0.583, 0.652].

Finally, the late fusion approach with the decision rule
described in section 2.4 achieved the highest mean classification
accuracy with 0.642 ± 0.096, a range of [0.456, 0.881] and a
confidence interval between 0.609 and 0.675.

We performed the significance analysis using a paired
two-tailed t-test of the accuracy on all combinations of
approaches (see Table 3). Our main aim in this study was to
identify promising approaches for the feature combination of
a multimodal classifier. These results hint at which approach
is worth improving, adjusting, and optimizing further. Thus,
we would prefer a False Positive over a False Negative because
it would make us “exclude” a promising approach for further
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FIGURE 3 | Middle fusion approach using image features for eye tracking data

in combination with the first steps of a Simple Convolutional Neural Network

and the time series of EEG data with the reduced shallow FBCSP

Convolutional Neural Network. The concatenated outputs are put through

further linear layers. ŷ is the class prediction.

studies on this topic. Following this philosophy, we chose a
less conservative correction for multiple testing. By controlling
the False Detection Rate (FDR) following Benjamini and
Hochberg (1995), we find six significant differences. For the
single modalities, the results for the EEG classification are
not significantly better than the eye tracking results because
they were identified as a false positive. Between the two early
fusion approaches, the results obtained by the image feature set
were significantly better than for the time-series features. No
classification approach was significantly different from all other
approaches, but the multimodal late fusion outperformed both
unimodal classification approaches.

4. DISCUSSION

A system requires information in order to adapt more effectively
to the needs of its users. The synergy may increase further,
if a user does not have to explicitly state such requirements.
Biosignals are a means of implicitly acquiring information,
and combining multiple signals concurrently may result in a
more accurate fit. Thus, we classified attention as internally or
externally directed using 3 s multimodal EEG and eye tracking

FIGURE 4 | Late fusion approach using image features for eye tracking data in

combination with a Simple Convolutional Neural Network and the time series

of EEG data with the shallow FBCSP Convolutional Neural Network. The

probabilities of the predictions P(ŷ) are used for the final prediction ŷ.

data in the current study. We compared different feature sets
and feature fusion strategies. For the two feature sets and neural
networks, we chose one combination that was previously used for
EEG data (Schirrmeister et al., 2017) and one combination that
was previously used for eye tracking data (Vortmann et al., 2021).

In a preliminary analysis of classification accuracies for the
two single modalities, we discovered that prediction accuracies
based on EEG data (M = 0.635) were significantly higher than
those based on eye tracking data (M = 0.582). Regardless of the
suitability of the modalities themselves, the disparities could also
be explained by the disparate classification processes.

Interestingly, fusion of image features (M = 0.608)
outperformed time series classification (M = 0.572) significantly
for the two early fusion approaches. The image features were
previously used for the eye tracking classification. As a result,
we conclude that the different accuracies cannot be attributed
solely to the quality of the classification approaches themselves.
Rather than that, it appears as though the classification strategy
and modality being used interact.

Neither of the early fusion approaches outperformed the
single modalities by a significant margin. The time-series-based
early fusion approach (M = 0.572) performed even worse than
the unimodal EEG classification (M= 0.635). As discussed in the
related work, other early fusion strategies have been used in the
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TABLE 3 | P-values of two-tailed paired t-test for the comparison of the feature fusion approaches.

EEG ET Early—TS Early—images Middle Late

Only ET <0.001

Early fusion—TS = 0.005 = 0.578

Early fusion—images = 0.141 = 0.068 = 0.038

Middle fusion = 0.42 = 0.091 = 0.002 = 0.648

Late fusion =0.016 <0.001 = 0.003 = 0.0693 = 0.268

Average accuracy (%) 63.5 58.2 57.2 60.8 61.7 64.2

Significant differences are marked in bold. A significance threshold of α < 0.05 is assumed. FDR correction by Benjamini and Hochberg (1995) was applied to correct for multiple

testing. TS, time series.

FIGURE 5 | Boxplots for the classification accuracies of the different fusion approaches visualizing the lower to upper quartile values of the data, with a line at the

median. The whiskers represent the 95% range of the data. Diamonds represent outliers.

past to combine EEG and eye tracking data (Mangai et al., 2010;
Liu et al., 2016; Guo et al., 2019). Different feature extraction
algorithms or early statistics-based feature fusion techniques
could be used in future studies to improve classification accuracy
for the early fusion approaches. However, it was already noted in
Polikar (2006) that early fusion is not reasonable as opposed to
late fusion because of the diversity in the data. Thus, we see an
advantage for middle and late fusion approaches.

As proposed in the section 1, a middle fusion could be
an effective way to combine the advantages of feature-level
and decision-level fusion. Individual modalities are processed
independently first, resulting in classifier branches that are
optimally adapted and trained for each modality. The two
branches are connected in themiddle, and the available data from
both modalities can be used to train the rest of the network.
While this approach enables correlations to be exploited, it also
identifies significant unimodal data patterns that would bemissed

by other feature extraction approaches used in early fusion
strategies. The primary difficulty with themiddle fusion approach
is network design. While it combines the strengths of the other
two fusion strategies, it also incorporates their challenges. In a
first step, suitable feature extraction and representation, as well
as network structure for each modality, have to be found. These
neural network branches must be designed in such a way that
they allow for concatenation at a predetermined point. Finally,
the neural network’s subsequent layers must be appropriately
designed for the merged modalities. On the one hand, complex
correlations, and interactions must be discovered in order for
the network to outperform a late fusion approach. On the
other hand, the network’s complexity must remain reasonable in
comparison to the amount of data available. Otherwise, middle
fusion networks will almost certainly have an excessively large
number of parameters, rendering them unsuitable for a wide
variety of applications.
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It is difficult to generalize the results of the middle fusion, in
particular: The neural network’s structure is extremely adaptable,
with an infinite number of possible configurations. The fully
connected layers add parameters for successfully classifying
multimodal data by learning correlations. The results of this
study indicate that middle fusion is more promising than
unimodal and early fusion approaches, but does not outperform
late fusion. We assume that the network structure chosen was
not optimal for maximizing the benefits of intermediate fusion.
The layers were designed to resemble the individual unimodal
networks and merged appropriately to maintain comparability.
We hypothesize that more conservative and informed neural
network engineering could significantly improve classification
results. On the downside, this engineering is likely to be highly
dataset and application dependent and will require a thorough
understanding of the modalities’ interactions.

In conclusion, our findings indicate that performing feature
fusion in the middle of the classification process can slightly
improve classification performance when compared to early
fusion approaches. But supposedly, the neural network that
intermediately combines the two modalities is subject to many
adjustments and requires special engineering for each feature set
combination and application.

While there was no significant difference between the middle
fusion (M = 0.617) and the late fusion (M = 0.642), the
late fusion approach was the only approach to significantly
outperform both unimodal approaches in this data set. However,
it did not outperform both early fusion approaches.

By comparison, the late fusion approach’s optimization of the
decision rule contains fewer parameters and is easily adaptable to
new feature sets. However, the approach suggested here required
expert knowledge to come up with a decision rule. For more
efficient decision level fusion, statistical approaches or attention
mechanisms could be applied (Mirian et al., 2011).

Improved unimodal classification pipelines would be a
primary goal of improving late fusion. The primary disadvantage
of the late fusion approach discussed in section 1 is the absence
of correlation exploration between the modalities, which are
processed independently. Thus, any information encoded in
the early combination cannot be discovered using late fusion
approaches that combine the modalities only at the decision
level. A possible solution to this issue would be to add another
“branch” of classification that predicts an output based on fused
input, while maintaining the single modality classification. In our
example, the decision rule would consider the EEG, ET, and a
third combined prediction in addition to the two predicted labels
and their probabilities.

We discovered during the training process that classification
accuracy was highly dependent on the current training and test
split for the same data set. Increasing the size of the data set
may eliminate this effect. If more training data were available, the
variance in the data would help to reduce bias and the likelihood
of overfitting on the training data.

Another aspect that requires further thought is the inter-
subject variability. The appropriate classification approach may
depend on the participant and the quality of the data of each
modality. For subjects with low individual EEG and eye tracking

TABLE 4 | Summary of the advantages, challenges, and premises for each fusion

approach.

Fusion approach Advantages (+), Challenges (−), and Premises (*)

Early fusion + Possibly finds correlations between modalities

− Very different data structures to combine

− Must use similar feature structures for all modalities

* The same sampling rates for the data

* Or preprocessing to adapt the data to each other

* Best used when high chance of important modality

interactions

Middle fusion + Tailored initial modality specific layers

+ Possibly finds correlations between modalities

+ Can work with different feature structures

− Advanced NN engineering

* Enough data for complex NN structure

* Preliminary individual engineering of individual

modalities was very different

* Possibly important modality interactions

Late fusion + Tailored modality specific network design and features

+ Missing data from one modality can be easily

compensated

− Finding a suitable decision rule or algorithm

* Either good insight to find decision rule

* Or enough data to train decision using ML

* Best used when low chance of important modality

interaction

classification accuracies a middle or early fusion approach might
increase the accuracy significantly. On the other hand, it the
individual classification accuracies are already good, a late fusion
might benefit from the modality specific classification.

We used a designated EEG and eye tracking co-registration
study to have similar data quality for both modalities. The
data was collected in a controlled laboratory environment.
Applications and use cases with a more flexible setup and varying
data qualities require another examination because one of the
suggested approaches could be better suitable to correct for the
worse quality of one modality than the others.

Overall, the differences between the approaches are not
substantial enough to generally recommend the use of one over
the others. We were able to show that a classification of more
strongly internally vs. externally directed attention based on
short data windows is possible above chance level for several
approaches. We assume that the best fusion approach is highly
dependent on the structure of the available multimodal data (e.g.,
sampling rate, data quality) and conclude that testing several
approaches is necessary to find the most suitable for the data set.
Table 4 summarizes the advantages, challenges, and premises for
each fusion approach.

4.1. Future Work
The current results may inspire further, more fine-grained
comparisons even within the groups of early fusion approaches,
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middle fusion networks, and late fusion decisions. On top of
the presented suggestions on improving the current approaches,
classification accuracy might increase if pre-trained models or
transfer learning were applied For future work, other comparable
data sets will be used to enlarge the data available for the
training. The generalizability of the presented results should also
be tested with further unrelated data sets. This study exclusively
analyzed the data person-dependently. In the future, person-
independence should be evaluated. The classification of unseen
participants would include training the model on a pooled
dataset of other participants, for example, in a leave-one-out
approach. While the increased size of the training dataset might
improve the accuracy of the classifier, the differences between
participants might increase the variance in the dataset. Previous
results have shown that the person-independent classification
of EEG data is difficult and person-specific models are still
the norm (Vortmann and Putze, 2021), whereas attempts to
classify the eye tracking data of unseen participants for different
attentional states were promising on larger datasets (Vortmann
et al., 2021). However, the problem of generalizability was
already discussed by Annerer-Walcher et al. (2021) who state
that for internally and externally directed attention eye tracking
data does not generalize well over participants. Our results
have shown that a multimodal classifier outperforms unimodal
classifiers for within-person training and testing and the next
step will be to explore whether these improvements also hold for
person-independent classification. For the real-time application
of such a classifier in a BCI, the possibility to classify unseen

participants without the need for person-dependent training

data would highly increase the range of applications and the
usability.
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