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Device Classification for Industrial
Control Systems Using Predicted
Traffic Features
Indrasis Chakraborty*, Brian M. Kelley and Brian Gallagher

Lawrence Livermore National Laboratory, Livermore, CA, United States

To achieve a secure interconnected Industrial Control System (ICS) architecture, security

practitioners depend on accurate identification of network host behavior. However,

accurate machine learning based host identification methods depends on the availability

of significant quantities of network traffic data, which can be difficult to obtain due to

system constraints such as network security, data confidentiality, and physical location. In

this work, we propose a network traffic feature prediction method based on a generative

model, which achieves high host identification accuracy. Furthermore, we develop a

joint training algorithm to improve host identification performance compared to separate

training of the generative model and the classifier responsible for host identification.

Keywords: synthetic ICS traffic generation, traffic forecasting, Seq2Seq modeling, generative model, machine

learning

1. INTRODUCTION

Modern Industrial Control Systems (ICS) carry out the automation of industrial processes via
complex, interconnected, large-scale arrangements of sensors, actuators, and specialized and
general-purpose computing devices. As high-visibility ICS cyber-security events over the past two
decades have shown, left unsecured, these cyber-physical systems can be vulnerable to misuse
and abuse, leading to real-world consequences. A first step toward securing internetworked
cyber-physical ICS is to identify, or characterize the network hosts so that an informed security
posture assessment can be performed. Conventional Information Technology (IT) tools often
use human-specified rules, signatures, and fingerprints to characterize network hosts, and these
techniques have been adapted to ICS networks. These conventional characterization techniques
begin to break down in ICS environments due to the breadth of device types and specialized
communication protocols used in ICS networks; maintenance of databases used by conventional
techniques need to be continuously updated to keep up with the introduction of new device
types, operating systems and communication protocols. Due to the essential nature of critical
infrastructure and ICS for society at large, and the possibility of accurate and high-performance
automation of security-related tasks, such as the determination of device characteristics like model
and manufacturer, much work has been done recently in the field of Machine Learning (ML) to
devise methods of characterizing network hosts, and specifically, ICS devices, so as to avoid much
of the downsides of conventional host characterization techniques.

Previous work shows the effectiveness of both network traffic features and ICS protocol features
for ICS network device classification (Chakraborty et al., 2021). However, in order to acquire such
features, it is necessary to capture network traffic data from the relevant ICS network and then
perform network-packet level analysis on that data. This is a non-trivial undertaking, especially in
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ICS networks which may be physically isolated and difficult to
access, resource constrained (e.g., in network bandwidth and
storage), or where access is restricted due to confidentiality
concerns. In such an environment, we may have access to a
limited amount of network traffic data. The objective of this
work is to augment the collection of real ICS network data
with a computationally inexpensive process, which can generate
realistic traffic features as a function of time.

In this work, we frame the above as a time-series forecasting
problem and seek to answer two questions: (1) Given a partial
history of network traffic, can we accurately forecast that history
into the future? and (2) Can we use this network traffic forecast
to improve device classification performance? To answer these
questions, we develop and evaluate a novel approach comprised
of two key elements: (1) a time-series forecasting model based
on a sequence-to-sequence (Seq2Seq) deep learning architecture
and (2) a joint training procedure for the Seq2Seq model and
the device classifier, in which the Seq2Seq model functions
as a traffic feature generator and the classifier functions as a
data discriminator, implicitly evaluating the quality of the traffic
features generated by the Seq2Seq model. We demonstrate that
these two pieces are both necessary and sufficient to significantly
improve device classification performance (up to a 23% increase
in accuracy) in a data-constrained ICS setting.

1.1. Main Contribution
We highlight the main contribution of this work, before getting
into the technical details.

• The primary contribution of this work is the development
of a novel machine learning framework, which jointly
trains (a) a network traffic forecasting model and (b) a
traffic-feature based device classification model, and which
produces significant improvements in device classification
performance over a similar approach with independently
trained model components.

• This proposed framework is shown to be useful in a data-
constrained scenario, which is common for ICS due to
network security, as shown in Figure 1.

2. RELATED WORK

Time series modeling has historically been a key area of academic
research, forming an integral part of applications in topics
such as climate modeling (Mudelsee, 2019), biological sciences
(Stoffer and Ombao, 2012), and medicine (Topol, 2019), as well
as commercial decision making in retail (Böse et al., 2017),
finance (Andersen et al., 2005), and net-load consumption for
customer (Thayer et al., 2020) to name a few. While traditional
methods have focused on parametric models informed by
domain expertise such as autoregressive (AR) (Box and Jenkins,
1976), exponential smoothing (Winters, 1960; Gardner, 1985), or
structural time series models (Harvey, 1990), modern machine
learning methods provide a means to learn temporal dynamics
in a purely data-driven manner (Ahmed et al., 2010). With the
increasing data availability and computing power in recent times,

machine learning has become a vital part of the next generation
of time series forecasting models.

Deep learning in particular has gained popularity in recent
times, inspired by notable achievements in image classification
(Krizhevsky et al., 2012), natural language processing (Devlin
et al., 2018), and reinforcement learning (Silver et al., 2016).
By incorporating bespoke architectural assumptions, inductive
biases (Baxter, 2000), that reflect the nuances of underlying

FIGURE 1 | The accuracy of ICS device classification methods depends on

the amount of available data (blue arrow). In data-constrained environments,

classification accuracy may suffer. The goal of this work is to develop methods

to reduce the slope of the data-accuracy relation such that higher ICS device

classification accuracy may be obtained with less data (green arrow).

TABLE 1 | Feature list per protocol, per direction. In the “Symbol” column “a” is

either sent or received, representing each direction of flow.

Description Symbol

Number of packets a_num_packets

Volume of bytes transferred a_vol_bytes

Packet inter-arrival time- a_pinterarr_avg

Average (Mean)

Packet inter-arrival time- a_pinterarr_min

Minimum

Packet inter-arrival time- a_pinterarr_max

Maximum

Packet inter-arrival time- a_pinterarr_stdev

Standard Deviation

Packet size- Average (Mean) a_psize_avg

Packet size- Minimum a_psize_min

Packet size- Maximum a_psize_max

Packet size- Standard Deviation a_psize_stdev
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datasets, deep neural networks are able to learn complex data
representations (Bengio et al., 2013), which alleviates the need for
manual feature engineering and model design. The availability
of open-source backpropagation frameworks (Abadi et al., 2016;
Paszke et al., 2019) has also simplified the network training,
allowing for the customization for network components and
loss functions.

Given the diversity of time-series problems across various
domains, numerous neural network design choices have
emerged. A rich body of literature exists for automated
approaches to time series forecasting including automatic
parametric model selection (Hyndman and Khandakar, 2008),
and traditional machine learning methods such as kernel
regression (Nadaraya, 1964) and support vector regression
(Smola and Schölkopf, 2004a). In addition, Gaussian processes
(Williams and Rasmussen, 1996) have been extensively used
for time series prediction with recent extensions including
deep Gaussian processes (Damianou and Lawrence, 2013), and
parallels in deep learning via neural processes (Garnelo et al.,
2018). Furthermore, older models of neural networks have been
used historically in time series applications, as seen in Waibel
(1989) and Wan (1993).

In the domain of Information Technology communication
networks, traffic forecasting and prediction is an active area
of research. While the literature uses the terms somewhat
interchangeably, strictly speaking, forecasting is the task of using
a model to estimate the future value of a variable (such as number
of bytes transferred, for example) based on previous, time-
ordered values of the same variable, while prediction uses amodel
to estimate the value of an unknown variable based on the values

of other known variables. Thus, forecasting is a sub-discipline
of prediction that focuses on time. Historical and modern
uses of traffic forecasting include trunk demand servicing,
planning for network design and capacity upgrade requirements,
network control, bandwidth provisioning, and efficient resource
utilization. Early work focused primarily on the application of
Kalman filters, the Sequential Projection Algorithm (SPA), and
Autoregressive Integrated Moving Average (ARIMA) models
to predict traffic behavior of telecommunication networks and
Internet forerunners (Szelag, 1982; Groschwitz and Polyzos,
1994).

Subsequent work continued to apply ARIMA model variants
to modern Internet traffic and mobile wireless networks while
improving the prediction time-step resolution (Shu et al., 1999;
Liang, 2002; Papagiannaki et al., 2003, 2005; El Hag and Sharif,
2007). Simultaneously, new methods based on Autoregressive
Conditional Heteroskedasticity (ARCH)models were introduced
(Krithikaivasan et al., 2007; Kim, 2011) to capture the observed
second-order non-stationarity of real traffic data.

Artificial Intelligence and Machine Learning methods for
predicting communication network traffic gained popularity in
the 2000’s with the successful application of fuzzy logic and
artificial neural network models (Liang, 2002; Guang et al., 2004).
A large volume of AI andMLwork for predicting traffic appeared
in the following decades, and we refer the reader to surveys of
ML applications to traffic forecasting and traffic characterization
(Mohammed et al., 2019; Xie et al., 2019), as applied to Software
Defined Networks in particular, for more detailed discussions.

In this article, we present a classification problem based
on predicted time series data. For an ICS dataset, availability

FIGURE 2 | Snapshot of the time series measurement of features associated with Site A.
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of sufficient network data significantly affects the classification
accuracy for classifying ICS and non-ICS devices, as shown
in Chakraborty et al. (2021). This motivates the requirement
of defining a time series prediction task, associated with a
classification task using the predicted time series data. Therefore,
our proposed method lies in the intersection of regression and
prediction tasks.

2.1. Paper Structure
The remainder of this article is structured as follows: in
Section 3 we describe the ICS dataset used for this work; in
Section 4 we formally introduce the problem solved in this
work; in Section 5 we introduce the method used for the
time series prediction and in Section 6 we develop the model
used for the prediction task; in Section 7 we describe the
results while using the prediction model for the classification
task; and finally, in Section 8, we discuss findings of our
current work.

3. DATA DESCRIPTION

Network flows from a production-level industrial electrical
distribution system (Site A) are utilized for this work. First, (TCP
and UDP) network flow datasets were generated for this system
by processing passively captured network traffic in PCAP form.
Based on the source port of the network flows, the flows are
categorized into ICS and non-ICS flows.

Network traffic for Site A is attributed to one of six different
protocol groups: ARP, TCP/IP, DNP3 (Distributed Network
Protocol, version 3), HTTP, TLS, and UDP. Before calculating
the traffic features, the packets within each flow are subdivided
according to these protocol types. Ten standard traffic features,
shown in Table 1, are selected for this flow classification task.
These traffic features are then computed for the extracted traffic
flows for Site A. Since the captured data from Site A is not

large enough to achieve sufficient device classification accuracy,
our objective is to forecast (predict) the traffic features listed in
Table 1 using the measured flows from Site A, which then can
be used to perform the flow classification task with expectantly
higher accuracy1.

To illustrate the observed characteristics of the Site A traffic
features, Figure 2 plots 10, 000 timesteps (with each timestep
having a resolution of 10 s, for a total of 100, 000 s) of each

1We have shown in Chakraborty et al. (2021) that a minimum amount of data is

required to achieve a specific ICS device classification accuracy.

FIGURE 4 | Total number of transferred packets for ICS and non-ICS devices

vs. time. Trend lines for both time series are shown as dashed and solid lines

for ICS and non-ICS devices, respectively. The inset shows the time series

“detrended,” i.e., the trend lines subtracted from the original time series.

FIGURE 3 | Schematic of Luong et al. (2015) context based Seq2Seq architecture.
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feature for sent and received packets, for both ICS and non-
ICS devices. Four different colors in Figure 2 indicate the sent
and received traffic features associated with ICS and non-ICS
traffic flows.

4. PROBLEM FORMULATION

Consider a dataset consisting of traffic features, Dt , is present
for Site A with ICS and non-ICS devices. This dataset can
be utilized to identify the device types (ICS or non-ICS, and
device manufacturer and model number), as demonstrated in
Chakraborty et al. (2021). Furthermore, we assume the length of
the collected dataset, t, is less than the optimal data length (T)
required for obtaining a desired device classification accuracy, as

TABLE 2 | Evaluation metrics for the ICS and non-ICS traffic feature prediction

architecture.

Metric Equation Description

MBE
1

2N

2N
∑

k=1

(ŷk − yk ) Assess prediction bias. Range:

[−∞,∞].

MAE
1

2N

2N
∑

k=1

|ŷk − yk | Evaluate uniform prediction errors.

Range: [0,∞].

RMQE
( 1

2N

2N
∑

k=1

(ŷk − yk )
4
)0.25

Evaluate prediction accuracy, higher

penalty for large errors than RMSE.

Range: [0,∞].

RMSE
( 1

2N

2N
∑

k=1

(ŷk − yk )
2
)0.5

Evaluate prediction accuracy while

penalizing large errors. Range: [0,∞].

Acc
1

2N

2N
∑

k=1

|ŷk − yk |/yk Mean absolute percent correct.

Range: [0, 1].

FIGURE 5 | Variation of the evaluation metrics (averaged over the extracted

features) with the number of LSTM hidden neurons. The black vertical line is

the number of neurons we selected for our architecture.

shown in Section 4 of Chakraborty et al. (2021). Now we formally
define the two problem statements.

Problem 1 (Prediction model). Given a traffic feature dataset of
time length t, and an optimal data length requirement of T, can we
develop a prediction model for forecasting the traffic features from
time t to time T?

Problem 2 (Classification using prediction model). Using the
prediction model from Problem 1, can we get the desired device
classification accuracy for Site A?

FIGURE 6 | Variation of the evaluation metrics with input sequence length.

The black vertical line is the selected input sequence length for our proposed

architecture.

FIGURE 7 | Variation of the evaluation metrics with the output sequence

length (prediction length). The black vertical line is the selected output

sequence length for our architecture.
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TABLE 3 | Parameter list and the selected values for the Seq2Seq model.

Parameter Range Selected Value

Neurons [20,190] 100

Encoder unit [40,380] 200

Decoder unit [30,1000] 30

5. TIME-SERIES PREDICTION
METHODOLOGY

One of the primary tasks associated with solving Problem 1
and Problem 2 is obtaining a sufficiently accurate2 prediction
of traffic features for ICS and non-ICS traffic. We propose
a sequence-to-sequence model (Seq2Seq) based deep network
architecture for the time series prediction task. The Seq2Seq
model (Sutskever et al., 2014) is comprised of a Long Short
Term Memory (LSTM, Hochreiter and Schmidhuber, 1997)
based encoder-decoder.

5.1. Seq2Seq Model
We used a sequence-to-sequence model architecture as shown
in Figure 3 with context based encoding-decoding as in Luong
et al. (2015). Here we repeat some important aspects of
the Luong context-based Seq2Seq architecture, as we refer to
aspects of this architecture that were tuned for our application
in Section 6.4.

Let E , {he1, h
e
2, . . . , h

e
n} represent the hidden states of the

n encoder units and D , {hd1 , h
d
2 . . . , hdq} represent the hidden

states of the q decoder units of a Seq2Seq model, where each
h∗i ∈ Rh×1 comes from a LSTM unit. The prediction at each
decoder is calculated as defined below.

hdi = f (hdi−1, ŷi−1),

αi∗ = score(hdi ,E),

ᾱi∗ = Softmax(αi∗),

ci =

l
∑

j=1

ᾱijh
e
j , (1)

h̃di = tanh(Wh ⋆ [ci; h
d
i ]),

ŷi = g(h̃di ).

In Equation (1), f is a recurrent unit like a LSTM, hdi−1 represents
the hidden state from the previous decoder unit and ŷi−1 ∈

R
k×1 is the k-variate prediction of the previous decoder unit

passed as input to the current decoder unit. ᾱi⋆ ∈ R
l×1 is the

attention weight vector for decoder i over the encoder hidden
states (i.e., l = ‖E‖) and ci ∈ R

h×1 is the attention context vector
calculated as a linear combination over all E, and corresponding
attention weights ᾱi⋆.

2Prediction accuracy is defined in the literature (Thayer et al., 2020) based on

several performance metrics, such as root mean square error, mean bias error etc.

FIGURE 8 | Histogram plot of percentage of prediction error variation with

different traffic features.

The attention energy vector αi⋆ for the i-th decoder unit can
be calculated in multiple ways. The attention energies can be
calculated purely based on the current hidden vector or as a
function of the alignment between the current hidden vector and
encoder states, as shown in Equation (2).

score(hdi ,E) = Wαhi (2)

The attention energies are then normalized using a softmax
transformation, to obtain the attentionweights ᾱi∗ ∈ R

l×1, which
is then used to obtain the attention context vector ci.

Next, the attention hidden state h̃di of the i-th decoder is
obtained by imposing a nonlinear transfer function (hyperbolic
tangent) over an affine transformation (with Wh ∈ R

h×2h) of
the concatenation of ci and hdi . Finally, g is a function which
calculates the i-th prediction ŷi from the corresponding decoder

attention hidden state h̃di i. For this case, we consider g to be a
linear function. In Figure 3, a schematic of the proposed Seq2Seq
architecture is shown.

6. PREDICTION MODEL DEVELOPMENT

In this section we will utilize the Seq2Seq architecture mentioned
in Section 5.1 to solve Problem 1. Before describing the solution
results, we briefly describe the data processing step and the
evaluation metrics for the time series prediction.
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6.1. Data Generation
The network flow data contains packet level information between
different devices present in the dataset. We have extracted
different traffic features (as listed in Table 1) across specific type
of device (in both sending and receiving direction). Therefore
from the network flow data, we extract time series measurement
of different traffic features across individual present devices. We
have collected the network flow data for a pre-defined amount
of time. In Section 6.5, for brevity we evaluated our prediction
model for predicting ICS and Non-ICS flows (average of all the
traffic features for the broader class of ICS and Non-ICS devices),
however in Section 7, we evaluated the time series prediction
performance for individual devices. In this whole section, the
experimental setup is as described in Problem 1, with t = 12, 000
and T = 16, 000, unless explicitly mentioned otherwise.

6.2. Data Processing
For the prediction task, we extracted the trend lines using “scikit-
learn”-SVR (support vector regression) package, from the time
series measurements for both ICS and non-ICS flows. As shown
in Figure 4, the blue and red solid lines show the total number
of transferred packets for ICS and non-ICS flows, respectively.
In Figure 4, the black lines show the trend line for both type of
flows. For the prediction task, the proposed architecture will be
evaluated for the “detrend” line, as shown in the zoomed-box in

Figure 4. The “detrend” line is calculated by subtracting the trend
line from the traffic feature measurements.

6.3. Evaluation Metrics
Table 2 describes the metrics used to evaluate the performance of
the proposed Seq2Seq model architecture.

6.4. Seq2Seq Model Exploration
In this section, we will evaluate the effect that different
architecture hyperparameters (number of hidden neurons of the
LSTM layer, input sequence length, i.e., input data dimension,
output sequence length, i.e., output data dimension) have on
ICS and non-ICS sequence prediction performance. We used
standard k-folding, with k = 100 (160 time points in each
fold), for evaluating the performance of different hyperparameter
values, using the evaluation metrics introduced in Section 6.3.

As shown in Figure 5, we varied the number of LSTMneurons
(dimension h as introduced in Section 5.1) of the Seq2Seq model
between 20 and 190, with an increment of 10, and plotted
the evaluation metrics (Figure 5, all the evaluation metrics are
calculated as an average over all the traffic features). As shown
in Figure 5, with an increase in the number of hidden neurons,
all the evaluation metrics improve, although there is a parabolic
increase in the number of trainable parameters. Therefore, for
the sake of the burden of computational complexity, we have

FIGURE 9 | Time series plots of the true and predicted values for ICS traffic features. We have plotted the first 1, 000 data points out of predicted 4, 000, for visual

clarity.
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selected 100 hidden neurons for our Seq2Seq model architecture
for future performance evaluation.

We also evaluated the prediction performance of the proposed
Seq2Seq model, by varying the input sequence length (number of
input data points at each step, i.e., number of encoder units n as
introduced in Section 5.1). As shown in Figure 6, the evaluation
metrics are plotted while varying the input sequence length
between 40 and 380 (as before, all the evaluation metrics are
calculated as an average over all the traffic features). Figure 6
shows that MAXE improves while increasing n between 40 and
180, and stays almost unchanged thereafter, while the other three
metrics remain unchanged while varying n. This shows that
the effect of increasing input sequence length does not affect
the prediction performance. Therefore, we have selected 200
encoder units for our Seq2Seq model architecture for future
performance evaluation.

Finally, the prediction performance of the proposed Seq2Seq
model is evaluated by varying the output sequence length
(number of output time step, i.e., number of decoder units
q as introduced in Section 5.1). As before, four evaluation
metrics were computed while varying q between 30 and 1, 000.
All the evaluation metrics degrade while increasing the output
prediction sequence length as shown in Figure 7. Note that, for
this evaluation, the aforementioned model parameters are kept
constant at the selected value. Therefore, we have selected 30

decoder units for our Seq2Seq model architecture for future
performance evaluation.

For further clarity, we have put the detailed parameter values
of Seq2Seq model, in Table 3.

6.5. Performance Comparison of ICS and
Non-ics Traffic Features
In this section, we evaluate the prediction performance between
ICS and non-ICS traffic features. In Figure 8, we calculated
the percentage of prediction error3 and plotted the histogram
variation with different traffic features. The features are in the
same order as they appear in Table 1. Therefore, features 1 to
10 are for ICS flows and 11 to 20 are for non-ICS flows. For
both ICS and non-ICS traffic flows, the prediction performance
is better for maximum and standard deviation values of packet
inter-arrival time, compared with the other eight features. It
is important to note here that using the recursive feature
elimination (RFE, Guyon et al., 2002) algorithm, in the context
of device classification, our prediction model performs better
for predicting the highest ranked traffic features, such as packet
inter-arrival time.

3100× (true value-prediction value)/true value.

FIGURE 10 | Time series plots of the true and predicted values for non-ICS traffic features. We have plotted the first 1, 000 data points out of predicted 4, 000, for

visual clarity.

Frontiers in Computer Science | www.frontiersin.org 8 March 2022 | Volume 4 | Article 777089

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Chakraborty et al. Seq2Seq Model Based Feature Prediction

6.6. Time Series Comparison
In this section we plot time series measurements and their
prediction for the test dataset. Figures 9, 10 show the overlapped
time series plots of the true value and the predicted value
for ICS and non-ICS traffic features. The Seq2Seq architecture
performs better in predicting all of the traffic features, except
for the one associated with packet size. Even for the packet size
related features (which vary the most with time), our proposed
architecture performs significantly well.

6.7. Performance Comparison With Other
Methods
In this section, we perform comparisons with other
contemporary machine learning models present in the
existing literature. Specifically, we compare the proposed
Seq2Seq model’s performance with Multilayer Perceptron
(MLP) (Rosenblatt, 1961), Linear Regression (LR) (Bianco et al.,
2009), Linear Support Vector Regression (LSVR) (Smola and

FIGURE 11 | Performance comparison of the Seq2seq model with existing

methods. The top plot shows the normalized RMSE, and the bottom plot

shows the normalized MAE.

Schölkopf, 2004b), Random Forest (RF) (Hedén, 2016), and
Gaussian Mixture model (Srivastav et al., 2013). We evaluated
the prediction performance of these methods for our dataset,
presented in Figure 11. We observe that the Seq2Seq model
outperforms all of the aforementioned machine learning
methods in all performance categories.

Furthermore, we compare the performance of the proposed
Seq2Seq model with three different loss functions (weighted
combination of mean absolute error (MAE), Kullback-Leibler
divergence (KL), and Maximum absolute error (Max), and the
Dilated ConvNet (Yazdanbakhsh and Dick, 2019). As shown in
Figure 12, for different traffic features, the Seq2Seq model with
the combination loss function of (10*MAE+KL+Max) performs
better than other deep network architectures.

FIGURE 12 | MAE variation averaged over all traffic features for different deep

network architectures.

FIGURE 13 | Confusion matrix with 12000 data points of measured data. The

classification dataset is unbalanced with a class ratio of 17:21:2:1:12:2 (the

class ratio has the same order as the confusion matrix).

Frontiers in Computer Science | www.frontiersin.org 9 March 2022 | Volume 4 | Article 777089

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Chakraborty et al. Seq2Seq Model Based Feature Prediction

7. CLASSIFICATION USING THE SEQ2SEQ
PREDICTION MODEL

Device classification requires measured data from Site A of at
least time length T for satisfactory classification performance
(Chakraborty et al., 2021). For our dataset, using the optimal time
length calculation, we have evaluated the required length to be
16, 000 data points for achieving overall classification accuracy
more than 90% across all present devices. However, suppose
that only 12, 000 data points of measured data from Site A
are available, leading to reduced classification performance. We
propose to use an additional 4, 000 time steps of predicted data to
improve the performance of the classification task.

As proposed in Chakraborty et al. (2021), we used the traffic
features as features for classifying various devices present in Site
A. Before showing the performance of our prediction model in
this context, we define our baseline performance as the device

classification performance with 12, 000 measured data points. As
seen in Figure 13, the confusion matrix shows the classification
performance for six devices, with all available measurement data.
We further note that we can achieve an overall classification
accuracy of 73.62%, where “Workstation” and “Server” are
misclassified most often. Similarly, misclassification is also noted
between SEL devices.

Now, as previously proposed, we added 4, 000 data points
from our prediction model, along with the present 12, 000
measurement data points. Then, these 16, 000 data points
of traffic features are used as feature vectors for classifying
the same six devices. Similar to Figures 13, 14 shows the
updated confusion matrix for the device classification task.
Although we have added more data points to our feature
set, we do not see any significant classification performance
increase when compared to the baseline result. More precisely,

FIGURE 14 | Confusion matrix with 12, 000 data points of measured data and

4, 000 data points of predicted data with separate training of Seq2Seq

model and the classifier. The classification dataset is unbalanced with a class

ratio of 17:21:2:1:12:2 (the class ratio has the same order as the confusion

matrix).

SEL-735, SEL-751, and SEL-787 classification performance was
improved on average over 15%, however the classifier shows
a performance reduction of 10% for SEL-2240, with the new
dataset.

Next, we propose to train the Seq2Seq model and the
classifier with a combined loss function to improve the device
classification accuracy.

7.1. Combined Training of Seq2Seq Model
and Classifier
We propose to improve the device classification performance
shown in Figure 14, by a joint training of the Seq2Seq model
and the classifier. The Seq2Seq model works as a traffic feature
generator, while the classifier responsible for device classification
works as a data discriminator, evaluating the quality of the traffic
features generated from the Seq2Seq model. For demonstration,
we adopt the notation similar to Arora et al. (2017) and Li et al.
(2018). Let G = Gg , g ∈ U andD = Dd, d ∈ V denote the Seq2Seq
model based traffic feature generator and device classification
based discriminator respectively, where Gg and Dd are functions
parameterized by g and d. U,V ⊆ R

p represents the respective
parameter spaces of the generator and discriminator. Finally, let
G∗ be the target known distribution to which we would like to
fit our Seq2Seq model, which utilizes the measured 12000 data
points. We incorporate a combined weighted loss of regression
and classification for the combined training of G and D. We
found a weight ratio of 1 : 10, for regression to classification,
works best for optimum classification performance; this was
determined by experimental variation of the weight ratio.

To compare performance with Figure 14, we generated
the same amount of predicted data as in Figure 14, using
the combined loss function training. The classification
performance is shown in Figure 15, which shows an overall

FIGURE 15 | Confusion matrix with 12, 000 data points of measured data and

4, 000 data points of predicted data with combined training of the Seq2Seq

and the classifier. The classification dataset is unbalanced with a class ratio of

17:21:2:1:12:2 (the class ratio has the same order as the confusion matrix).
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increase in classification accuracy of around 15%, across
all devices. Particularly, we can see a classification accuracy
improvement of over 23% for “Workstation” and “Server” device
types. The traffic feature prediction using this combination
loss function performs significantly better compared to
both the separate training (Figure 14) and the baseline
(Figure 13).

8. CONCLUSION

ICS device classification requires a minimum amount of collected
traffic flow data for satisfactory classification performance. Due
to various constraints, we do not always have access to the
required amount of data and therefore we propose an alternative
approach of device classification. Our proposed approach utilizes
a Seq2Seq based deep network architecture for traffic feature
prediction, related to device classification. Moreover, a classifier
responsible for identifying device types is used to evaluate the
quality of the predicted data. We further show that a combined
training of a prediction model and a classifier improves the
device classification performance by as much as 23%, compared
to separate training.
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