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The Component Process Model is a well-established framework describing an

emotion as a dynamic process with five highly interrelated components: cognitive

appraisal, expression, motivation, physiology and feeling. Yet, few empirical studies

have systematically investigated discrete emotions through this full multi-componential

view. We therefore elicited various emotions during movie watching and measured their

manifestations across these components. Our goal was to investigate the relationship

between physiological measures and the theoretically defined components, as well as

to determine whether discrete emotions could be predicted from the multicomponent

response patterns. By deploying a data-driven computational approach based on

multivariate pattern classification, our results suggest that physiological features are

encoded within each component, supporting the hypothesis of a synchronized

recruitment during an emotion episode. Overall, while emotion prediction was higher

when classifiers were trained with all five components, a model without physiology

features did not significantly reduce the performance. The findings therefore support

a description of emotion as a multicomponent process, in which emotion recognition

requires the integration of all the components. However, they also indicate that

physiology per se is the least significant predictor for emotion classification among these

five components.

Keywords: emotion, component model, autonomic nervous system, physiological responses, computational

modeling

INTRODUCTION

Emotions play a central role in human experience by changing the way we think and behave.
However, our understanding of the complex mechanisms underlying their production still remains
incomplete and debated. Various theoretical models have been proposed to deconstruct emotional
phenomena by highlighting their constituent features, as well as the particular behaviors and
particular feelings associated with them. Despite ongoing disagreements, there is a consensus
at least in defining an emotion as a multicomponent response, rather than a unitary entity
(Moors, 2009). This conceptualization concerning the componential nature of emotion is not
only central in appraisal theories (Scherer, 2009) and constructivist theories (Barrett et al., 2007),
but also found to some extent in dimensional (Russell, 2009) and basic categorical models

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2022.773256
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2022.773256&domain=pdf&date_stamp=2022-01-28
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:maelan.menetrey@epfl.ch
https://doi.org/10.3389/fcomp.2022.773256
https://www.frontiersin.org/articles/10.3389/fcomp.2022.773256/full


Menétrey et al. Physiological Contributions in a Multi-Componential Model of Emotion

(Matsumoto and Ekman, 2009) that consider emotions as
organized along orthogonal factors of “core affect” (valence
and arousal), or as discrete and modular adaptive response
patterns (fear, anger, etc.), respectively. Among these, appraisal
theories, such as the Component Process Model (CPM) of
emotion proposed by Scherer (1984), provide an explicit account
of emotion elicitation in terms of a combination of a few
distinct processes that evaluate the significance and context of
the situation (e.g., relevance, novelty, controllability, etc.) and
triggers a set of synchronized and interdependent responses at
different functional levels in both the mind and body (Scherer,
2009). Hence, it is suggested that multiple and partly parallel
appraisal processes operate to modify the motivational state (i.e.,
action tendencies such as approach, avoidance, or domination
behaviors), the autonomic system (i.e., somatovisceral changes),
as well as the somatic system (i.e., motor expression in face
or voice and bodily actions). Eventually, synchronized changes
in all these components—appraisal, motivation, physiology, and
motor expression—may be centrally integrated in a multimodal
representation (see Figure 1) that eventually becomes conscious
and constitutes the subjective feeling component of the emotion
(Grandjean et al., 2008).

Because the CPM proposes to define an emotion as a
bounded episode characterized by a particular pattern of
component synchronization, whereby the degree of coherence
among components is a central property of emotional experience
(Scherer, 2005a), it offers a valuable framework to model
emotions in computationally tractable features. Yet, previous
studies often relied on physiological changes combined with
subjective feeling measures, either in the perspective of discrete
emotion categories (e.g., fear, anger, joy, etc.) or more restricted
dimensional descriptors (e.g., valence and arousal) (see Gunes
and Pantic, 2010). As a consequence, such approaches have
generally overlooked the full componential view of emotion.
On the other hand, studies inspired by the appraisal framework
have often analyzed emotional response with linear analyses and
simple linear models (Smith and Ellsworth, 1985; Frijda et al.,
1989; Fontaine et al., 2013). Yet, based on the interactional
and multicomponent account of emotions in this framework
(Sander et al., 2005), non-linear classification techniques from the
field of machine learning may be more appropriate and indeed
provide better performances in the discrimination of emotions
(Meuleman and Scherer, 2013; Meuleman et al., 2019). However,
in the few studies using such approaches, classification analyses
were derived from datasets depicting the semantic representation
of major emotion words, but participants were not directly
experiencing genuine emotions.

In parallel, while physiology is assumed to be one of the
major components of emotion, the most appropriate channels
of physiological activity to assess or to differentiate a particular
emotion is still debated (see Harrison et al., 2013). For example,
dimensional and constructivist theories do not assume that
different emotions present specific patterns of physiological
outputs (Quigley and Barrett, 2014) or argue that evidence
is minimal for supporting specific profiles in each emotional
category, spotlighting the insufficient consistency and specificity
in patterns of activation within the peripheral and central

nervous systems (Wager et al., 2015; Siegel et al., 2018). It has
also been advocated that an emotion emerges from an ongoing
constructive process that involves a set of basic affect dimensions
and psychological components that are not specific to emotions
(Barrett et al., 2007; Lindquist et al., 2013). Therefore, the
modulation of autonomic nervous system (ANS) activity might
be tailored to the specific demand of a situation and not to a
discrete emotion. Peripheral physiological state occurring during
a given emotion type is therefore expected to be highly variable
in its physiological nature.

In contrast, some authors argue that measures of peripheral
autonomic activity may contain diagnostic information enabling
the representation of discrete emotions, that is, a shared pattern
of bodily changes within the same category of emotion that
becomes apparent only when considering a multidimensional
configuration of simultaneous measures (Kragel and LaBar,
2013). Because univariate statistical approaches, which evaluate
the relationship between a dependent variable and one
or more experimental independent variables, have shown
inconsistent results in relating physiology measures to discrete
emotions (Kreibig, 2010), the development of multivariate
statistical approaches to discriminate multidimensional patterns
offers new perspectives to address these issues. By assessing
the correlation between both dependent and independent
variables and by jointly considering a set of multiple variables,
multivariate analyses can reveal a finer organization in data
as compared with univariate analyses where variables are
treated independently. Accordingly, several recent studies used
multivariate techniques and described separate affective states
based on physiological measures including cardiovascular,
respiratory and electrodermal activity (Christie and Friedman,
2004; Kreibig et al., 2007; Stephens et al., 2010). Such results
support theoretical accounts from both basic (Ekman, 1992) and
appraisal models (Scherer, 1984) suggesting that information
carried in autonomic responses is useful to distinguish between
emotional states. In this view, by using the relationships
between multiple physiological responses in different emotional
situations, it should be possible to infer which emotion is
elicited. However, empirical evidence suggests that it is still
complicated to figure out from patterned physiological responses,
whether ANSmeasures are differentiated among specific emotion
categories or more basic dimensions (Mauss and Robinson,
2009; Quigley and Barrett, 2014). Moreover, it is often observed
that self-reports of emotional experience discriminate between
discrete emotions with a much better accuracy than autonomic
patterns (Mauss and Robinson, 2009).

In sum, there is still no unanimous conclusion about
distinguishable patterns of activation in ANS, due to the difficulty
to identify and associate reliable response patterns to discrete
emotions. As a consequence, the debate is not closed concerning
the functionality of physiology during an emotional experience.
Based on the CPM model, physiology is involved in shaping
emotion and can contribute to differentiating emotion. However,
while relevant, we hypothesize that the use of physiology alone is
limited in discriminating emotion but could be better understood
if integrated with the other major components of emotion.
Therefore, to provide further insights about the contribution
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FIGURE 1 | Component model of emotion with five components. As suggested by Scherer (1984), it starts with an evaluation of an event (Appraisal component)

which leads to changes in Motivation, Physiology and Expression components. Changes in all these four components modulate the Feeling component.

of physiology in emotion differentiation, we propose here
to examine how a full componential model can account for
the multiple and concomitant changes in physiological and
behavioral measures observed during emotion elicitation. In
addition, we examine the added information by each component
and hypothesize that considering the synchronized changes in
all components, the information in each component is already
encoded in the other components. To the best of our knowledge,
the present work represents one of the first attempts to investigate
the componential theory by explicitly considering a combination
of multiple, theoretically defined, emotional processes that occur
in response to naturalistic emotional events (from cinematic film
excerpts). By deploying a data-driven computational approach
based onmultivariate pattern classification, we aim at performing
detailed analyses of physiological data in order to distinguish
and predict the engagement of different emotion components
across a wide range of eliciting events. On the grounds of such
multicomponent response patterns, we also aim at determining
to what extent discrete emotion categories can be predicted
from information provided by these components, and what is
the contribution of each component in such predictions. We
hypothesize that a multicomponent account, as proposed by
the CPM (Scherer, 1984, 2009), may allow us to capture the
variability of physiological activity during emotional episodes, as
well as their differentiation across major categories of emotions.

MATERIALS AND METHODS

Assuming that a wide range of emotional sequences will engage
a comprehensive range of component processes, we selected a
number of highly emotional film excerpts taken from different
sources (see below). Physiological measures were recorded
simultaneously during the initial viewing of movie clips, with
no instructions other than be spontaneously absorbed by the
movies. Participants were asked, during a second presentation,
to fill out a detailed questionnaire with various key descriptors
of emotion-eliciting episodes derived from the componential
model (i.e., CoreGRID items) that assess several dimensions
of appraisal, motivation, expression, physiology, and feeling
experiences (Fontaine et al., 2013). We then examined whether

the differential patterns of physiological measures observed
across episodes could be linked to a corresponding distribution
of ratings along the CoreGRID items, and whether the combined
assessment of these items and physiological measures could be
used together to distinguish between discrete emotions.

Population
A total of 20 French-speaking and right-handed students (9
women, 11 men) between 19 and 25 years old (mean age =

20.95, SD = 1.79) took part in the main study. All of them
reported no history of neurological or psychiatric disorder, gave a
written informed consent after a full explanation of the study and
were remunerated. One participant completed only 2 sessions
out of 4, but the data collected were nevertheless included in the
study. This work was approved by Geneva Cantonal Research
Committee and followed their guidelines in accordance with
Helsinki declaration.

Stimuli Selection
To select a set of emotionally engaging film excerpts which could
induce variations along different dimensions of the component
model, a first preliminary study was conducted in separate
study (for more details, see Mohammadi and Vuilleumier, 2020;
Mohammadi et al., 2020). We selected a set of 139 film clips
from the previous literature on emotion elicitation, matching
in terms of time and visual quality (Gross and Levenson, 1995;
Soleymani et al., 2009; Schaefer et al., 2010; Gabert-Quillen
et al., 2015). Emotion assessment was collected in terms of
discrete emotion labels and componential model descriptors.
Initially, clips were evaluated over 14 discrete emotions (fear,
anxiety, anger, shame, warm-hearted, joy, sadness, satisfaction,
surprise, love, guilt, disgust, contempt, calm) based on amodified
version of the Differential Emotion Scale (McHugo et al., 1982;
Izard et al., 1993). For the component model, 39 descriptive
items were selected from the CoreGRID instrument, capturing
emotion features along the five components of interest: appraisal,
motivation, expression, physiology, and feeling (Fontaine et al.,
2013). This selection was performed based on the applicability
to emotion elicitation scenarios while watching an event in a
clip. The study was performed on Crowdflower, a crowdsourcing
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platform, and a total number of 638 workers participated. Based
on average ratings and discreteness, 40 film clips were selected for
this study (for more details, see Mohammadi and Vuilleumier,
2020). Shame, warm-hearted, guilt and contempt were excluded
from the list of elicited emotions because no clips received high
ratings for these four emotions.

Finally, another preliminary study was conducted to isolate
the highest emotional moments in each clip. To this aim,
five different participants watched the full clips and rated the
emotional intensity of the scene using CARMA, a software for
continuous affect rating and media annotation (Girard, 2014).
The five annotations were integrated to find the most intense
emotional events in each time series.

The final list of film excerpts was thus represented by 4 clips
for each of the 10 selected discrete emotions, with a total duration
of 74min (average length of 111 seconds per clip). Moreover,
between 1 and 4 highly emotional segments of 12 seconds were
selected in each film excerpt, for a total of 119 emotional
segments. The list of the 40 selected films in our final dataset is
presented in Supplementary Table S1. The duration, the initially
assigned emotion label, and the number of highly emotional
segments are indicated for each film excerpt.

Experimental Paradigm
The whole experiment consisted of four sessions scheduled
on different days. Each session was divided into two parts,
fMRI experiment and behavioral experiment, lasting for about
1 and 2 h, respectively. In the current study we focus
only on the behavioral analysis and will not use the fMRI
data. Stimuli presentation and assessment were controlled
using Psychtoolbox-3, an interface between MATLAB and
computer hardware.

During the fMRI experiment, participants were engaged
in an emotion elicitation procedure using our 40 emotional
film excerpts. No explicit task was required during this phase.
They were simply instructed to let themselves feel and express
emotions freely rather than controlling feelings and thoughts
because of the experiment environment. Movies were presented
inside the MRI scanner on an LCD screen through a mirror
mounted on the head coil. The audio stream was transmitted
throughMRI-compatible earphones. Each session was composed
of 10 separate runs, each presenting a film clip preceded by a
5-seconds instruction screen warning about the imminent next
display and followed by a 30-seconds washout periods introduced
as a low-level perceptual control baseline for the fMRI analysis
(not analyzed here). Moreover, a session consisted of a pseudo-
random choice of 10 unique film clips with high ratings on
at least one of the 10 different pre-labeled discrete emotion
categories (fear, anxiety, anger, joy, sadness, satisfaction, surprise,
love, disgust, calm). This permitted to engage potentially different
component processes in every session. To avoid any order effect,
the presentation of all stimuli was counterbalanced.

The behavioral experiment was performed at the end of each
fMRI session, in a separate room. Participants were let alone
with no imposed time constraints to complete the assessment.
They were asked to rate their feelings, thoughts, or emotions
evoked during the first viewing of the film clips and advised not to

report what might be expected to feel in general when watching
such kinds of events. To achieve the emotion evaluation, the 10
film excerpts seen in the preceding session were presented on a
laptop computer with LCD screen and headphones. However,
the previously selected highly emotional segments (see “stimuli
selection” above) were now explicitly highlighted in each film
excerpts by a red frame surrounding the visual display. In order
to ensure that emotion assessment corresponded to a single event
and not the entire clip, the ratings were required right after each
segment by pausing the clips. The assessment involved a subset
of CoreGRID instrument (Fontaine et al., 2013), which is to
date the most comprehensive attempt for multi-componential
measurement in emotion. The set of 32 items (see Table 1) had
been pre-selected based on their applicability to the emotion
elicitation scenario with movies, rather than according to an
active first-person involvement in an event. Among our set of
CoreGRID items, 9 were related to the appraisal component, 6
to the expression component, 7 to the motivation component,
6 to the feeling component, and 4 to the bodily component.
Participants had to indicate how much they considered that the
description of the CoreGRID items correctly represented what
they felt in response to the highlighted segment, using a 7-level
Likert scale with 1 for “not at all” and 7 for “strongly.”

Thus, each participant had to complete 119 assessments
corresponding to 119 emotional segments. All responses were
collected through the keyboard, for a total of 3,808 observations
per participant (32 items × 119 emotional segments). Finally,
they were also asked to label the segments by selecting one
discrete emotion term from the list of 10 emotion categories.
Therefore, the same segment may have been classified by
participants into different emotion categories, and differently
from the pre-labeled category defined during the pilot phase
(where ratings were made for the entire film clip). In this study,
we always used the subjectively experienced emotions reported
by the participants as ground-truth labels for subsequent
classification analyses. The frequency histogram showing the
categorical emotions selected by the participants is presented in
Supplementary Figure S1.

Physiological Data Acquisition
A number of physiological measures were collected
during the first part of each session in the MRI scanner,
including heart rate, respiration rate, and electrodermal
activity. All the measures were acquired continuously
throughout the whole scanning time. The data were
first recorded with a 5,000Hz sampling rate using the
MP150 Biopac Systems software (Santa Barbara, CA),
before being pre-processed with AcqKnowledge 4.2 and
MATLAB 2012b.

Heart rate (HR) was recorded with a photoplethysmogram
amplifier module (PPG100C). This single channel amplifier
designed for indirectmeasurement of blood pressure was coupled
to a TSD200-MRI photoplethysmogram transducer fixed on
the index finger of the left hand. Recording artifacts and
signal losses were corrected using endpoint function from
AcqKnowledge, which interpolates the values of a selected
impaired measure portion. Secondly, the pulse signal was
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TABLE 1 | List of the 32 CoreGRID items.

Major components CoreGrid items

Appraisal

To what extent did you… 1) think it was incongruent with your standards
and ideas?

2) feel it was unpleasant for you?

3) think it violated laws or socially accepted
norms?

4) think it was unpleasant for somebody (in the
clip)?

5) think it was important and relevant for the goals
or needs of somebody?

6) feel the event was unpredictable?

7) feel the event occured suddenly?

8) think the event was caused by chance?

9) think the consequences were predictable?

Expression

To what extent did you… 10) press lips together?

11) close your eyes?

12) show tears?

13) have the jaw drop?

14) have eyebrows go up?

15) produce abrupt body movements?

Motivation

To what extent did you… 16) want to destroy something?

17) want to do damage, hit or say something that
hurts?

18) feel the urge to stop what was happening?

19) want to undo what was happening?

20) want the ongoing situation to last or be
repeated?

21) feel motivated to pay attention to what was
going on?

22) want to tackle the situation and do something?

Feeling

To what extent did you.… 23) feel bad?

24) feel calm?

25) feel good?

26) feel strong?

27) feel an intense emotional state?

28) experience an emotional state for a long time?

Body

To what extent did you… 29) experience muscles tensing (whole body)?

30) have a feeling of a lump in the throat?

31) have stomach troubles?

32) feel warm?

Participants were asked to indicate on a 7-point Likert scale how much the descriptions
represented what they felt.

exported to MATLAB and downsampled to 120Hz. To remove
scanner artifacts, a comb-pass filter was applied at 17.5Hz.
The pulse signal was then filtered with a band-pass filter

between 1 and 40Hz. Subsequently, the instantaneous heart
rate was computed by identifying the peaks in the pulse signal,
calculating the time intervals between them and converting
this distance into beats per minute (BPM). The standard heart
rate in humans goes from 60 to 100 bpm at rest. Hence,
it was considered that a rate above 100 bpm was unlikely
and the minimum distance between peaks will not exceed
this limit. This automatic identification was manually verified
by adding, changing or removing the detected peaks and
possible outliers.

Respiration rate (RR) was measured using a RSP100C
respiration pneumogram amplifier module, designed specifically
for recording respiration effort. This differential amplifier worked
with a TSD201 respiration transducer, which was attached with a
belt around the upper chest near the level of maximum amplitude
in order to measure thoracic expansion and contraction. Using
a similar procedure as for HR preprocessing, the connect
endpoint function of AcqKnowledge was first employed to
correct manually the artifacts and losses of signal. After exporting
the raw signal to MATLAB, it was downsampled to 120Hz and
then filtered with a band pass filter fixed between 0.05 and 1Hz.
Lastly, the signal was converted to breaths per minute using the
same procedure as above. The standard respiration rate in human
goes from 12 to 20 breaths per minute at rest. Since participants
were performing a task inside a scanner which could be an
unusual environment, the higher maximum rate was increased
at 35 cycles per minute. Therefore, it was estimated that a rate
above 35 was unlikely and the minimum distance between peaks
will not exceed this limit. Again, this information was used in the
automatic detection of the signal peaks. The respiration rate was
thenmanually verified by looking at the detected signal peaks and
corrected, with outliers being removed when it was necessary.

Electrodermal activity (EDA) was registered using an
EDA100C electrodermal activity amplifier module, a single-
channel, high-gain, differential amplifier designed to measure
skin conductance via the constant voltage technique. The
EDA100C was connected to Adult ECG Cleartrace 2 LT
electrodes. Electrodes were placed on the index and the median
fingers of the participants left hand. Following the manual
correction of artifacts and losses of signal with the connect
endpoint function on AcqKnowledge, the raw signal was
exported to MATLAB. Similar to the two other physiological
signals, the EDA signal was downsampled to 120Hz. This
signal, recorded by BIOPAC in microSiemes (µS), was then
filtered with a 1Hz low pass filter. An IIR (infinite impulse
response) high-pass filter fixed at 0.05Hz was applied to derive
the Skin Conductance Responses (phasic component of EDA)
representing the rapidly changing peaks, while a FIR (finite
impulse response) low-pass filter fixed at 0.05Hz was applied to
derive the Skin Conductance Levels (tonic component of EDA)
corresponding to the smooth underlying slowly-changing levels
(AcqKnowledge 4 Software Guide, 2011).

Features and Normalization
MATLAB was used to select physiological values during
the 12-s duration of high emotional segments. From these
values, the means, variances, and ranges of each physiological
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signals (HR, RR, phasic and tonic EDA) were calculated.
We chose to focus specifically on the mean and variance
of these physiological signals, as these are the most reliable
and frequently reported features in studies associating discrete
emotions and physiological responses (Kreibig, 2010). For HR
and RR measures, respectively 4 and 17 responses during highly
emotional segments had to be removed in one participant due
to a corrupted signal, potentially induced by movements. For
EDA, 267 values had to be removed due to temporary losses
of signal, resulting in flat and useless measures. In particular,
EDA responses of two subjects were completely removed as
the EDA sensor could not capture their response. In order to
handle the missing values in the physiological data, dropouts
were replaced by mean value of the whole session during which
the signal loss has happened (i.e., missing value imputation).
Furthermore, the variance in physiological responses could be
very large and different across participants. Because it was
particularly important to reduce such variability in order to
avoid inter-individual biases, all physiological measures were
normalized within-subject using RStudio (1.1.383). To achieve
this, standardized z-scores were calculated from the physiological
data during the 4 sessions of each participant.

Regarding responses collected for the 32 CoreGRID items for
each high emotional segment, a within-subject normalization
into z-score was also performed. These normalized behavioral
data and the discrete emotion labels selected by the participants
for each emotional segment were incorporated to the related
physiological measures. In the end, for each of the 119 emotional
segments, we obtained a set of observations including 32
standardized CoreGRID items and 1 discrete emotion label, as
well as 8 standardized physiological values calculated offline.
However, the final dataset included 19 participants who attended
all 4 sessions (19 x 119 = 2,261), while 1 participant completed
2 sessions out of 4 (1 × 55 = 55). Also, for 11 participants, the
assessment of one of the emotional segments did not get recorded
due to a technical issue. Therefore, in total, there were (2,261
+ 55 – 11 =) 2,305 sets of observations instead of the possible
maximum of (20× 119=) 2,380 (∼3% of points loss).

Predictive Analyses
To investigate the relationship between physiology and the
component model descriptors, two analyses were performed.
First, we examined whether the physiology measures allowed
predicting component model descriptors and vice versa. Second,
we assessed whether distinct features from the componential
model allowed predicting discrete emotion categories and
compared the value of different components for this prediction.
For both analyses, multivariate pattern classifications using
machine learning algorithms were undertaken to predict the
variables of interest. Linear and non-linear classifiers including
Logistic Regression (LR) and Support Vector Machine (SVM)
with different kernels (linear, radial basis function, polynomial
and sigmoid) were applied. All analyses were carried out
using the RStudio statistical software, Version 1.1.383. Logistic
regressions were conducted with the “caret” package, Version
6.0 and multinomial logistic regressions with the “nnet” package,
Version 7.3. The binary and multiclass classifications using

Support Vector Machine were conducted with the “e1071”
package, Version 1.7.

First, the CoreGRID items were used as predictor variables
to predict the dependent variable, which was either the mean
or the variance of each physiological measure. To enable such
analyses and to simplify the computational problem, the scores of
the dependent variable were converted into two classes of “High”
and “Low” using the median value across all the participants
as a cutoff threshold. LR and SVM with linear and non-linear
kernels using 10-fold cross-validation were applied. To guarantee
test and training independence, each participant’s assessment was
included in either a test set or a training set. Conversely, similar
analyses were carried out to determine whether physiology
measures could encode the component model descriptors, but
now using the physiology measures as independent variables in
an attempt to predict the ratings of each CoreGRID item as either
above or below the median.

Secondly, to examine the relationship between the
component process model and discrete emotion types,
multiclass classifications using SVM were performed on
different combinations of CoreGRID items and physiological
measures in order to predict specific emotion categories as
labeled by the participants. Given the large number of classes
and limited number of samples per class with too many
predictors, a leave-one-subject-out cross-validation was used to
guarantee a complete independence between the training and
testing datasets.

For all analyses, we used a grid search method to optimize
the parameters, but no significant improvement was observed,
so the default parameters were kept. Moreover, SVM with radial
basis function (RBF) kernel outperformed LR and other SVM
models. Therefore, we will only report the result from SVM with
RBF kernel.

It should be mentioned that the classes used for binary
classifications were pretty balanced since they were defined based
on the median value of the dependent variable, resulting in a
distribution close to 50–50 split. However, in the case of multi-
class classification, although the number of movie clips for each
pre-labeled emotion category was balanced, the final dataset was
not since we used the subjectively experienced emotions reported
by each participant as emotional labels. This imbalance may have
slightly affected the classification performance for some under-
or over-represented categories. To account for an effect of class
distribution, we reported the chance level in all comparisons as
well as the confusion matrix.

RESULTS

Multivariate Pattern Analyses: Binary
Classifications
Our first predictive analyses aimed to assess classification based
on multivariate patterns using either physiology measures or
CoreGRID items for different emotional movie segments. The
variables to be discriminated were treated as binary dependent
variables (High vs. Low), the classes being defined with respect
to the median value. One of the main assumptions of the CPM is
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that emotions rely on interdependent and synchronized changes
within the five major components, suggesting that changes
in any component might partly result from or contribute to
changes in other components. Therefore, our initial exploratory
analyses intended to examine whether physiological data (which
represent an objective proxy to some of the CoreGRID items
related to the physiology component) can be predicted using
the CoreGRID items (which evaluate the five components of
emotions), and vice versa. In other words, the idea was to
investigate whether physiological changes are encoded in other
emotional components. Based on the CPM, we expected to
observe that physiological responses could predict not only
physiology-related CoreGRID items, but also the items assessing
the other components.

In the first instance, we deployed SVM classifications with
10-fold cross-validation to predict each physiological measure
(mean or variance) as high or low from responses to the 32
CoreGRID items. Cross validation was applied to evaluate the
generalizability of the results to some extent. This classifier
yielded accuracies significantly greater than the chance rate of
50% for all physiological measures (Table 2). However, while
these binary classifications were statistically significant and effect
sizes were large, their discriminative performance remained weak
(on average, about 58% of correct responses).

Conversely, using the same classification approach, the ratings
of each CoreGRID item were predicted from the combination of
physiological measures and physiology items in the CoreGRID
questionnaire. Results from SVM showed that a majority of the
CoreGRID items could be predicted significantly better than the
chance level (Table 3), even though the classification accuracies
were still relatively low (on average, about 55% of correct
responses). The most reliable discrimination levels (highest t
values relative to chance rate) were observed for appraisals and
feelings of unpleasantness (55% of correct responses) as well
as action tendencies (want to destroy / to do damage, 58% of
correct responses).

Multivariate Pattern Analyses: Multiclass
Classifications
Our second and main aim was to investigate whether discrete
emotion categories as indicated by the participants can be
predicted from ratings of their componential profiles. Here, we
wanted to test whether the discrimination of discrete emotions
is supported by one particular component (e.g., the appraisal
component), distributed (equally) across the components, or
requires the full combination of all components. The first step
was to test how the entire data (physiological measures and
behavioral responses) could predict discrete emotion labels. This
more global pattern analysis for a multiclass variable required
to go further than simple binary classification. To achieve
this, a multiclass SVM classifications with leave-one-subject-
out cross-validation was performed, taking the combination of
within-subject normalized mean and variance measures from
the four physiological signals and all behavioral responses to
the CoreGRID items for the five emotional components as
predictors. Applying the SVM classifiers (generated with training

datasets) on separate testing datasets, we obtained an average
accuracy rate of 45.4% in comparison to a rate of 17.6% for the
chance level [t(19) = 10.852, p < 0.001, Cohen’s d = 3.41, 95% CI
(1.75 5.06)] (Figure 2A).

The confusion matrix showed that five emotion categories
(anger, calm, sadness and surprise) were correctly predicted
more than half of the times, with an accuracy range from 55
to 59.4% (Figure 2B). By contrast, predictions were extremely
unsuccessful for fear (misclassified as anxiety) and satisfaction
(misclassified as joy or calm). However, it is worth noticing that
these categorical emotions had a smaller number of instances
since they were less often selected by the participants (see
Supplementary Figure S1). Interestingly, incorrect predictions
for these two emotions were still related to some extent to the
target category. Indeed, mainly anxiety but also disgust and
surprise were predicted instead of fear, whereas joy and calm
were predicted instead of satisfaction. Love was also frequently
misclassified as joy and calm.

Concomitantly, statistical measures allowing the assessment
of prediction performance indicated that specificity and negative
predictive value were particularly high for all emotions
(Figure 2C). This suggests that the classification algorithm had a
notable ability to correctly reject observations that did not belong
to the emotion of interest, that is, to provide a good degree of
certainty and reliability for true negatives. In contrast, sensitivity
and positive predictive value were not as good and fluctuated
substantially across the emotions, with the best performance for
calm and the worst for fear and satisfaction (Figure 2C).

The second step consisted in investigating the added
information brought by each component in the classification
performance. To better identify the relation between discrete
emotions and interactions of different component processes,
we began by examining the effect on overall performance
when one component was excluded. Five multiclass SVM
classifications with leave-one-subject-out cross-validation were
performed using different combinations of these components
(Figure 3). In comparison to the accuracy rate of the complete
model using physiology and all the CoreGRID items (45.4%), the
accuracy rate of the reduced model without the body physiology
component (4 CoreGRID items and all physiological measures)
was lower but did not significantly change [45.2%, t(19) = −0.17,
p = 0.866, Cohen’s d = −0.01, 95% CI (−0.13 0.11)]. These
results suggest that information coming from features of the
body physiology component in our study may have already been
encoded in other components. On the other hand, with respect
to performance with the full model, reduced models without the
appraisal component [41.4%, t(19) = −4.598, p < 0.001, Cohen’s
d = −0.33, 95% CI (−0.48 −0.18)], without the expression
component [41.9%, t(19) =−4.358, p< 0.001, Cohen’s d=−0.29,
95% CI (−0.43 −0.15)], without the motivation component
[43%, t(19) = −2.489, p = 0.022, Cohen’s d = −0.21, 95% CI
(−0.37 −0.03)] or without the feeling component [44%, t(19) =
−2.349, p = 0.029, Cohen’s d = −0.12, 95% CI (−0.22 −0.02)]
were statistically less predictive, even though the effects sizes
remained relatively small.

In addition, we examined the specific contribution in emotion
classification of all major components. These contributions
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TABLE 2 | Predictions of physiological changes from the 32 CoreGRID items.

Binary classification Accuracy Chance level t df p-value Cohen’s D 95% CI

SVM classifier

HR Mean 0.59 0.5 7.175 9 <0.001 3.497 [0.76 6.23]

Variance 0.55 0.5 4.308 9 0.002 1.480 [0.43 2.52]

RR Mean 0.56 0.5 8.490 9 <0.001 2.950 [1.26 4.63]

Variance 0.54 0.5 7.133 9 <0.001 2.246 [1.00 3.48]

Phasic EDA Mean 0.58 0.5 8.549 9 <0.001 4.494 [0.81 8.17]

Variance 0.61 0.5 12.641 9 <0.001 2.616 [1.70 3.53]

Tonic EDA Mean 0.59 0.5 10.691 9 <0.001 5.231 [1.29 9.17]

Variance 0.60 0.5 17.761 9 <0.001 7.062 [2.08 11.31]

Cross-subject binary SVM classifications. Accuracy rate represents the percentage of correct classifications. Paired t-tests were conducted to verify significant differences between
SVM classifier and chance level. Bold values indicate statistically significant differences (p < 0.05). As estimates of effect size, we report Cohen’s d and 95% confidence interval.

were assessed by predicting discrete emotion labels from each
component separately. Five multiclass SVM classifications with
leave-one-subject-out cross-validation were performed from the
appraisal, expression, motivation, feeling, and body components
(body items and all physiological measures). Since prediction
performance from each of the five emotion components yielded
accuracies significantly greater than the chance rate of 17.6%
(Figure 4), we also analyzed the average sensitivity rate across
the different classifiers in order to determine more precisely
the power of each component to distinguish the different
discrete emotions.

While the results above suggested that the percentage
of correct predictions was generally similar regardless of
the particular component used to train the classifiers, these
additional analyses indicate that the pattern of features from
specific components may yield a more reliable detection of
particular emotions relative to others (Figure 5A). Moreover,
it appeared also that some emotion classes were consistently
well-discriminated by all components (e.g., calm and sadness),
while others (fear, love, and satisfaction) were poorly predicted
by any component. Conversely, some components could have
more importance for particular emotions (e.g., surprise is well-
predicted by appraisal features but not by the combination of
body and physiological features, while motivation features seem
best at predicting anger and joy).

Furthermore, since we observed that the body and physiology
component was the least effective in discriminating discrete
emotions, we also examined the sensitivity rates for each
emotion and compared the performance of models using either
the body-related CoreGRID items (i.e., subjective ratings),
the physiological measures (i.e., objective recordings), or both
information (Figure 5B). Consistent with the results above, we
found that the sensitivity rates obtained with these models
all showed a very poor discrimination for the majority
of emotions, except for calm which was more successfully
discriminated in comparison to predictions based on other
components. Interestingly, the subjective body-related items
from CoreGRID tended to surpass the objective physiology
data [t(19) = 3.448, p = 0.002, Cohen’s d = 0.88, 95% CI
(0.27 1.49)].

DISCUSSION

The CPM defines emotions by assuming that they are
multicomponent phenomena, comprising changes in appraisal,
motivation, expression, physiology, and feeling. A considerable
advantage of this theory is that it offers the possibility of
computational modeling based on a specific parameter space,
in order to account for behavioral (Wehrle and Scherer,
2001; Meuleman et al., 2019) and neural (Leitão et al., 2020;
Mohammadi et al., 2020) aspects of emotion in terms of
dynamic and interactive responses among components. The
current research applied multivariate pattern classification
analyses for assessing the CPM framework with a range of
emotions experienced during movie watching. Through this
computational approach, we first investigated the links between
physiology manifestations and the five emotion components
proposed by the CPM to determine predictive relationships
between them. Second, we investigated whether discrete
emotion types can be discriminated from the multicomponent
pattern of responses and assessed the importance of
each component.

Assuming that physiological responses are intertwined with
all components of emotion, we expected that ratings on the
32 CoreGRID features would carry information sufficient to
predict corresponding physiological changes. Effectively, SVM
classifications provided prediction accuracies significantly better
than the chance level. However, information from the CoreGRID
items did not allow a high accuracy, even though prediction
was simplified by being restricted to a binary distribution.
This modest accuracy may be explained by a great variability
across participants, which could reduce the generalizability of
classifiers when they were applied to all individuals rather than
within subject. It might also reflect heterogeneity in intra-
individual physiological responses among emotions with similar
componential patterns. In parallel, the opposite approach to
predict ratings of CoreGRID features based on the means and
variances of physiological responses also yielded a performance
significantly higher than chance level but still relatively low.
Because each CoreGRID item focuses on quite specific behavioral
features, it is however not surprising that the sole use
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TABLE 3 | Predictions of individual CoreGRID item ratings from physiological responses.

Binary classification Accuracy Chance level t df p-value Cohen’s D 95% CI

SVM classifier

Appraisal

Think it was incongruent with your standards and ideas 0.55 0.50 4.587 9 0.001 1.924 [0.43 3.41]

Feel it was unpleasant for you 0.54 0.50 4.319 9 0.002 2.322 [0.14 4.49]

Think it violated laws or socially accepted norms 0.55 0.50 6.011 9 <0.001 2.780 [0.63 4.92]

Think it was unpleasant for somebody (in the clip) 0.55 0.50 7.981 9 <0.001 4.409 [0.60 8.21]

Think it was relevant for the goals or needs of somebody 0.51 0.50 0.31 9 0.763 0.083 [−0.48 0.64]

Feel the event was unpredictable 0.52 0.50 2.900 9 0.017 1.352 [−0.002 2.71]

Feel the event occured suddenly 0.55 0.50 5.454 9 <0.001 2.298 [0.61 3.98]

Think the event was caused by chance 0.54 0.50 3.194 9 0.011 0.925 [0.19 1.65]

Think the consequences were predictable 0.55 0.50 7.949 9 <0.001 3.891 [0.88 6.90]

Expression

Press lips together 0.55 0.52 5.251 9 <0.001 2.790 [0.32 5.25]

Close your eyes 0.56 0.54 4.019 9 0.003 1.279 [0.37 2.18]

Show tears 0.57 0.52 4.272 9 0.002 2.001 [0.29 3.70]

Have the jaw drop 0.56 0.51 4.929 9 <0.001 2.748 [0.18 5.31]

Have eyebrows go up 0.53 0.50 4.316 9 0.002 2.059 [0.28 3.83]

Produce abrupt body movements 0.56 0.54 3.069 9 0.013 1.106 [0.14 2.06]

Motivation

Want to destroy something 0.58 0.54 6.843 9 <0.001 3.312 [0.72 5.90]

Want to do damage, hit or say something that hurts 0.58 0.52 5.223 9 <0.001 2.683 [0.36 4.99]

Urge to stop what was happening 0.53 0.51 1.862 9 0.095 0.727 [−0.19 1.65]

Want to undo what was happening 0.54 0.51 3.605 9 0.005 1.381 [0.25 2.50]

Want the ongoing situation to last or be repeated 0.54 0.53 0.925 9 0.378 0.397 [−0.53 1.33]

Motivated to pay attention to what was going on 0.53 0.50 2.719 9 0.023 1.476 [−0.17 3.12]

Want to tackle the situation and do something 0.54 0.53 1.329 9 0.216 0.469 [−0.31 1.25]

Feeling

Feel bad 0.55 0.50 9.361 9 <0.001 4.547 [1.11 7.98]

Feel calm 0.53 0.50 2.614 9 0.028 1.197 [−0.06 2.45]

Feel good 0.54 0.50 3.537 9 0.006 1.252 [0.25 2.24]

Feel strong 0.59 0.54 4.406 9 0.002 1.792 [0.41 3.17]

Feel an intense emotional state 0.54 0.51 2.689 9 0.024 0.943 [0.05 1.82]

Experience an emotional state for a long time 0.52 0.50 2.323 9 0.045 0.78 [−0.02 1.59]

Body

Experience muscles tensing (whole body) 0.54 0.51 4.202 9 0.002 1.905 [0.31 3.50]

Feeling of a lump in the throat 0.53 0.51 2.958 9 0.015 1.095 [0.11 2.07]

Have stomach troubles 0.54 0.54 1.006 9 0.340 0.428 [−0.50 1.36]

Feel warm 0.56 0.50 6.414 9 <0.001 2.549 [0.82 4.27]

Cross-subject binary SVM classifications. Accuracy rate represents the percentage of correct classifications. Paired t-tests were conducted to test for significant differences between
SVM classifier and chance level. Bold values indicate statistically significant differences (p < 0.05). As estimates of effect size, we report Cohen’s d and 95% confidence interval.

of physiology would be insufficient to precisely determine
the ratings.

More importantly, if experiencing an emotion affects
simultaneously more than one major component of emotion,
one would expect that componential responses are clustered
into qualitatively differentiated patterns (Scherer, 2005a;
Fontaine et al., 2013). In the CPM view, an emotion arises
when components are coherently organized and transiently
synchronized (Scherer, 2005b). Accordingly, subjective emotion
awareness might emerge as the conscious product of the feeling

component generated by such synchronization (Grandjean
et al., 2008). However, verbal accounts of conscious feelings may
restrict the richness of emotional experience when using only
declarative reports. Therefore, we anticipated that integrating
the five components together into multivariate pattern analyses
would provide higher accuracy rates in emotion prediction.
This hypothesis was effectively confirmed, as the best prediction
performances were obtained from non-linear multiclass
SVM when the 32 CoreGRID items and the physiological
measures were used all together in the model. Nevertheless, it is
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important to note that through our one-component-out model
comparisons, we found that the body and physiology component
was negligible in the overall discrimination of discrete emotion
labels. Indeed, prediction performances of a model without body
and physiology features were not significantly different from
those of the complete model, demonstrating that information
derived from these data may have already been encoded in other
components. However, further analyses could help to better
confirm this observation.

Critically, the CPM assumes a strong causal link between
appraisal and other components of emotion, since appraisal
processes are the primary trigger of emotion and should
account for a major part of qualitative differences in feelings
(Moors and Scherer, 2013). For example, a cross-cultural study
demonstrated that an appraisal questionnaire alone (31 appraisal
features) could discriminate between 24 emotion terms with an
accuracy of 70% (Scherer and Fontaine, 2013). In our study, we
found all components provided relevant information. Moreover,
although being the best predictor, the appraisal component did
not provide significantly more information compared to the
other components, except in comparison to the model using
only body and physiology features. Overall, prediction from
components did not significantly differ across emotions. At
least three components were always predicting one emotion
category within the same range of accuracy. These results are
consistent with the assumption of a synchronized and combined
engagement of these components during emotion elicitation. It is
possible, however, that some results were affected by the uneven
distribution of events across classes (Supplementary Figure S1),
such as for calm (high representation) which stood out as the
most recognizable state regardless of the component used, or
for fear, love, and satisfaction (low representation) where all
classifiers were poorly sensitive.

In line with our data indicating that physiological measures
did not reliably discriminate among emotion categories, the
relationship between physiological responses and emotions has
long fueled conflicting views. Some authors claimed that there
is no invariant and unique autonomic signature linked to
each category of emotion (Barrett, 2006), or that physiological
response patterns may only distinguish dimensional states
(Mauss and Robinson, 2009). In contrast, because emotions
imply adaptive and goal-directed reactions, they might trigger
differentiated autonomic states to modulate behavior (Stemmler,
2004; Kragel and LaBar, 2013). In this vein, Kreibig (2010)
reviewed the most typical ANS responses induced across
various emotions and pointed to fairly consistent and stable
characteristics for particular affective experiences, but without
explicitly confirming a strict emotion specificity since no unique
physiological pattern could be highlighted as directly diagnostic
of a single emotion. It has also been shown that a single or
small number of physiological indices are not able to differentiate
emotions (Harrison et al., 2013). Our findings support this view
by suggesting that a broader set of measures should be recorded
to increase discriminative power, including physiology as well as
other components.

Our study is not without limitations. First, statistical machine
learning methods may be considered as uninterpretable black

boxes. Indeed, SVM analysis gives no explicit clue on functional
dimensions underlying classification performances. Second,
these data-driven methods often need large amounts of data. We
acquired data over a large number of videos and events covering
a range of different emotions, but discrimination of specific
patterns among the different emotion components was relatively
limited with our sample of 20 participants. Third, although
participants were asked to report their initial feelings during the
first viewing, changes in emotional experience due to repetition
or potential recall biases may not be completely excluded since
each movie segment was played again before rating CoreGRID
items. Fourth, we used a restricted number of CoreGRID items
due to time and experimental constraints. It would certainly
be beneficial to measure each component in more detailed
ways by taking more features into account. For instance, motor
behaviors (e.g., facial expressions) could be evaluated with direct
measures such as EMG rather than self-report items. This could
help to provide more objective and perhaps more discriminant
measures, particularly concerning variations of pleasantness
(Larsen et al., 2003). As another example, given that the appraisal
component is crucial for emotion elicitation, a wider range of
appraisal dimensions might allow a more precise discrimination
of discrete emotions and physiological patterns. In the same
way, it is also possible that the set of items selected from
the original CoreGRID instrument may account for suboptimal
discrimination performances (i.e., improving or degrading the
classification of certain categories of emotion). Lastly, even
though using film excerpts has many advantages (e.g., naturalistic
and spontaneous emotion elicitation, control over stimuli and
timing, standardized validation, and concomitant measurement
of physiological responses), an ideal experimental paradigm
should evoke first-person emotions in the participants to fully test
the assumptions of the CPM framework. In other words, the only
way to faithfully elicit a genuine emotion is to get participants
to experience an event as pertinent for their own concerns,
in order to activate the four most important appraisal features
(relevance, implication, coping, normative significance) that are
thought to be crucial to trigger an emotion episode (Sander
et al., 2005). Viewing film excerpts is an efficient (Philippot, 1993)
but passive induction technique and, therefore, the meaning
of some appraisal components might be ambiguous or difficult
to rate. As a result, subjective reports of behaviors and action
tendencies were most likely different compared to what they
would be for the same event in real life. We also cannot rule
out that the correspondence found between CoreGRID items and
discrete emotion labels could partially be affected by the order
of the measures collected. For example, providing component-
related ratings first may have activated knowledge of the emotion
construct that was then used to select a label. Future research
should developmore ecological scenarios that can be experienced
by participants according to their self-relevance and followed
by true choices of possible actions. For example, a sophisticated
and ecological method was recently developed by connecting a
wearable physiological sensor to a smartphone (Larradet et al.,
2019). Upon detection of relevant physiological activity, the
participant received a notification on her smartphone requesting
to report her current emotional state. Alternatively, a study
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FIGURE 2 | (A) Predictions of discrete emotion labels from physiological measures and responses to the 32 CoreGRID features. Cross-subject multiclass SVM

classification with leave-one-subject-out cross-validation. Accuracy rate represents the percentage of correct classifications. The error bars show the standard

deviation. Paired t-tests were conducted to assess significant differences between SVM classifier and chance level, as highlighted by asterisks indicating the p-value
(***p < 0.001). (B) Confusion matrix of emotion labels. The diagonal running from the lower left to the upper right represents the correct predicted emotion.

(C) Statistical measures of classification performances across emotions. Average of statistical measures assessing the performances from the 20 classifiers. The error

bars show the standard deviation.

FIGURE 3 | Emotion classification using one-component-out models. Cross-subject multiclass SVM classifications with leave-one-subject-out cross-validation.

Accuracy rate represents the percentage of correct classifications. The error bars show the standard deviation. Paired t-tests have been conducted and significant

differences between SVM classifier and chance level are highlighted (asterisks indicate the p-value: ***p < 0.001).
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FIGURE 4 | Emotion classification using the components independently. Cross-subject multiclass SVM classifications with leave-one-subject-out cross-validation.

Accuracy rate represents the percentage of correct classifications. The error bars show the standard deviation. Paired t-tests have been conducted and significant

differences between SVM classifier and chance level are highlighted (asterisks indicate the p-value: **p < 0.01, ***p < 0.001).

FIGURE 5 | (A) Sensitivity of emotion detection using the components independently. (B) Sensitivity of emotion detection using body and physiology components

separately. Sensitivity rate represents the average of the sensitivity measures for each emotion label across the leave-one-subject-out cross-validation. The error bars

show the standard deviation.

used virtual reality games to assess the CPM across various
emotions (Meuleman and Rudrauf, 2018) and found that fear
and joy were predicted by appraisal variables better than by other

components, whereas these two emotions were generally poorly
classified in our study. Other recent studies have also made use
of (virtual reality) video games to assess appraisal and other
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emotion components during brain imaging (Leitão et al., 2020)
or physiological (Bassano et al., 2019) measurements.

CONCLUSION

Taken together, our results support the reliability and the
interindividual consistency of CPM in the study of emotion.
Multivariate pattern classification analyses generated results
better than chance level (with statistical significance) to
predict (1) changes in physiological measures from the 32
CoreGRID items, (2) ratings of the majority of CoreGRID
items from physiological measures, and (3) discrete emotion
labels that refer to conscious feelings experienced by the
participants and presumably emerge from a combination of
physiological and behavioral parameters. Overall, we observed,
however, that physiological features were the least significant
predictor for emotion classification. Yet, since our results also
suggest that physiology was encoded within each of the other
major components of emotion, they support the hypothesis
of synchronized recruitment of all components during an
emotion episode.

Further work is now required to determine why certain
patterns of behavioral and physiological responses were
misclassified into incorrect emotion categories and to study
more deeply the links between different emotions. Similarly, it
is also needed to explain the importance of various components
in the recognition of different emotion categories. For instance,
it would be valuable to determine whether poor discrimination
stems from a too low sensitivity of the CoreGRID items and
physiological measures or whether some categories of emotions
simply cannot be differentiated into distinct entities with such
methods, perhaps due to a high degree of overlap within the
different components of emotion. Future developments allowing
objective measures for each component during first-person
elicitation paradigms are required to limit as much as possible
the use of self-assessment questionnaires and ensure ecological
validity. Overall, the current study opens a new paradigm to
explore the depth of processes involved in emotion formation
as well as a means of unfolding the necessary processes to be
considered in developing a reliable emotion recognition system.
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