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Despite significant advancements in automatic speech recognition (ASR) technology,

even the best performing ASR systems are inadequate for speakers with impaired

speech. This inadequacy may be, in part, due to the challenges associated with acquiring

a sufficiently diverse training sample of disordered speech. Speakers with dysarthria,

which refers to a group of divergent speech disorders secondary to neurologic injury,

exhibit highly variable speech patterns both within and across individuals. This diversity

is currently poorly characterized and, consequently, difficult to adequately represent in

disordered speech ASR corpora. In this article, we consider the variable expressions of

dysarthria within the context of established clinical taxonomies (e.g., Darley, Aronson,

and Brown dysarthria subtypes). We also briefly consider past and recent efforts to

capture this diversity quantitatively using speech analytics. Understanding dysarthria

diversity from the clinical perspective and how this diversity may impact ASR performance

could aid in (1) optimizing data collection strategies for minimizing bias; (2) ensuring

representative ASR training sets; and (3) improving generalization of ASR for difficult-

to-recognize speakers. Our overarching goal is to facilitate the development of robust

ASR systems for dysarthric speech using clinical knowledge.

Keywords: training corpora, dysarthric speech, automatic speech recognition, acoustic analysis of speech, clinical

framework, diversity and inclusion

INTRODUCTION

Dysarthria, or impaired speech due to motoric deficits, can have a detrimental impact on
functional communication, often leading to significantly reduced quality of life (Hartelius et al.,
2008). For individuals with speech impairments, automatic speech recognition (ASR) systems
can enhance accessibility and interpersonal communication. However, inadequate acoustic models
continue to impede the widespread success of ASR for disordered speech (Gupta et al., 2016;
Moore et al., 2018). The limits of disordered speech ASR may be, in part, a byproduct of
the significant variety of abnormal speech patterns across individuals (Duffy, 2013) and their
underrepresentation in training corpora (Gupta et al., 2016). Nevertheless, studies on ASR
for dysarthria have rarely considered this diversity (Blaney and Wilson, 2000; Benzeghiba
et al., 2007; Gupta et al., 2016; Keshet, 2018; Moore et al., 2018). In this perspective article,
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we examine how speech impairment diversity has been
characterized based on clinical models and how this diversitymay
impact ASR performance.

ASR can be broadly classified into (1) speaker-independent
(SI) systems, which are typically trained on large multispeaker
datasets, and (2) personalized systems, which can be trained
either by adapting an existing SI model to a target speaker
(i.e., speaker-adaptive [SA]) or by solely using the target
speaker’s speech data (i.e., speaker-dependent [SD]). Although
commercially developed SI ASR systems have demonstrated low
word error rates (WER) for healthy speakers, these systems
perform considerably worse with impaired speech (Moore et al.,
2018). An increasing amount of work has thus investigated
the use of personalized systems for speakers with speech
impairments, demonstrating significantly stronger performance
compared to that of SI systems (Mengistu and Rudzicz, 2011;
Kim et al., 2013; Mustafa et al., 2014; Xiong et al., 2019;
Takashima et al., 2020; Green et al., 2021). Green et al. (2021), for
example, recently demonstrated that the recognition accuracy of
short phrases using end-to-end (E2E) ASR models was 4.6% for
personalized models compared to 31% for SI models.

While personalized systems have promising utility for
recognizing impaired speech, they require training data from
the speaker, which may be impractical for some applications
and can be cumbersome for individuals with neurodegenerative
diseases who are prone to fatigue. Thus, a more efficient and
effective approach would be to improve the recognition accuracy
for existing SI systems for dysarthric speech. For example, prior
work has shown improvements in performance of SI systems
when training sets include dysarthric speakers, thereby providing
more variability on which to train (Mengistu and Rudzicz, 2011;
Mustafa et al., 2014). However, even the highest performing SI
ASR models are inadequate for impaired speakers.

Although poor performance has largely been attributed to
the shortage of disordered speech training datasets, closing the
performance gap is likely to require not only more data but
also sufficiently diverse corpora. Indeed, solely adding speakers to
the training corpora in attempts to improve ASR performance
is inefficient, expensive, and possibly unachievable. Ensuring
dysarthric speech diversity requires conceptual schemes for
identifying salient atypical speech variables and their expressed
ranges across individuals. In this article, we consider several
conceptual schemes used by speech-language pathologists to
clinically characterize dysarthria diversity often for the purpose
of speech diagnosis. An improved understanding of the diversity
inherent to dysarthria and its potential impact on ASR
performance could lead to (1) optimized data collection strategies
for minimizing bias; (2) sufficiently representative ASR training
sets; and (3) more widespread generalization across ASR users
and, in turn, stronger performance for difficult-to recognize
speakers. We consider the following questions:

1. What types of diversity need to be represented in dysarthria
ASR training corpora?

2. What phonemic patterns are present in dysarthric speech and
therefore might impact dysarthria ASR performance?

3. What can be done to adequately represent the different
sources of variability in dysarthria ASR training corpora?

CHARACTERIZING DYSARTHRIA
DIVERSITY

What Types of Diversity Need to Be
Represented in Dysarthria ASR Training
Corpora?
Diversity in Speech Severity
To date, the most frequently used metric for distinguishing
variation in a dysarthria research cohort is overall speech
impairment severity (Duffy, 2013). Severity is a multidimensional
construct that refers to the speaker’s overall impairment
and includes a range of components, including naturalness,
intelligibility, and subsystem abnormalities (see section Diversity
in Speech Subsystems Impairment) (Duffy, 2013). Severity is
often indexed by trained listeners, such as speech-language
pathologists, who use adjectival descriptors (e.g., mild, moderate,
severe, and profound). Alternatively, severity can be assessed
using human transcription intelligibility, which indicates a
listener’s ability to understand the speaker based on the speech
signal alone (Yorkston et al., 2007). While a functional metric,
intelligibility is just one component of severity and does not
necessarily account for all the different fluctuations in speech that
are influenced by severity (e.g., changes in voice and resonance),
especially for more mild speech impairment (Rong et al., 2015).

Including the full range of speech severities in ASR training
sets is essential because good recognition accuracy for mild
speech is unlikely to generalize to more severely affected speech
(Moore et al., 2018). Thus, sufficient representation of speakers
with severe dysarthria, in addition to those with mild and
moderate impairments, in the training dataset could provide a
more sustainable approach for enabling models that generalize
to speakers across the severity continuum. Representing diversity
only with severity, however, fails to address the substantial variety
of aberrant speech features that characterize clinically distinct
dysarthria variants. Other sources of diversity in dysarthric
speech must, therefore, be considered to develop inclusive and
sufficiently representative datasets.

Diversity in Dysarthria Type
One of the most established clinical taxonomies for speech
motor disorders was developed over 50 years ago by Darley,
Aronson, and Brown (DAB) (Darley et al., 1969). The DAB
labeling system distinguishes 38 atypical speech features that
are rated on a 7-point scale and groups dysarthria types based
on speech feature profiles. For the development of the DAB
model, the authors stratified dysarthric speakers based on clusters
of speech features associated with lesions in specific regions of
the central and peripheral nervous systems. These clusters are
associated with at least five subtypes of dysarthria: flaccid, spastic,
ataxic, hypokinetic, and hyperkinetic (see Figure 1). In many
cases, patients exhibit a combination of the five subtypes (i.e.,
mixed dysarthria) (Darley et al., 1969). In addition to its clinical
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FIGURE 1 | Breakdown of dysarthria subtypes within a widely used taxonomy of speech motor disorders. ALS, amyotrophic lateral sclerosis; CP, cerebral palsy; AT,

ataxia; HD, Huntington’s disease; MS, multiple sclerosis; MSA, multiple systems atrophy; PD, Parkinson’s disease; PSP, progressive supranuclear palsy; TD, tardive

dyskinesia; ARTIC, articulation; PHON, phonation; PROS, prosody; RES, resonance; RESP, respiration.

and neurological implications, the DAB model can serve as a
basic heuristic in developing comprehensive and representative
ASR corpora.

One disadvantage of the taxonomy, however, is that it relies
entirely on subjective observations, which requires expert clinical
training and may be too coarse and unreliable for capturing
the range of diversity in dysarthria (Kent, 1996). To address
this limitation, researchers have been exploring the diagnostic
utility of a wide variety of speech analytic approaches for
identifying variants of disordered speech (Rusz et al., 2018;
Rowe et al., 2020)—an effort referred to as quantitative or
digital phenotyping.

Diversity in Speech Subsystems Impairment
Regardless of dysarthria subtype, disordered speech is the
byproduct of impairments in neural control over one or more
of the five speech subsystems (i.e., respiration, phonation,
resonance, prosody, and articulation) (see Figure 1). Objective
characterizations of dysarthria through quantitative and digital
phenotyping have allowed for more precise measures of speech,
which has further illuminated the diversity in subsystem
functioning. Indeed, deficits in each subsystem can engender
specific aberrant speech features, many of which can be detected
in the acoustic signal. For example, respiratory deficits in ataxic
dysarthria can lead to excessive loudness variations, quantified
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acoustically using amplitude modulation (MacDonald et al.,
2021); similarly, phonatory deficits in flaccid dysarthria can lead
to a breathy vocal quality, quantified acoustically using cepstral
peak prominence (Heman-Ackah et al., 2002).

While phonatory, resonatory, respiratory, and prosodic
deficits can significantly limit communicative capacity,
articulatory subsystem impairments have the greatest impact on
speech intelligibility (Lee et al., 2014; Rong et al., 2015). Given the
strong association between intelligibility and ASR performance
(McHenry and LaConte, 2010; Tu et al., 2016; Jacks et al., 2019),
it is possible that (1) articulatory motor impairments may be
a major contributor to degraded ASR performance and (2)
representing the range of articulatory motor impairments seen
in dysarthria may maximize ASR accuracy and generalizability.

Considering the potential value of articulatory features and
the need for objective and reliable measures of speech function,
our group conducted a scoping review of the dysarthria
literature to summarize the variety of acoustic techniques used
to characterize articulatory impairments in neurodegenerative
diseases (Rowe et al., under review). Across the 89 articles that
met our inclusion criteria, we identified 24 different articulatory
impairment features. To summarize the findings, we stratified the
acoustic features into five aspects of articulatory motor control:
Coordination, Consistency, Speed, Precision, and Rate (Rowe and
Green, 2019). The findings demonstrated variable manifestation
of articulatory impairments (1) across diseases [e.g., speakers
with ataxia (AT) exhibited greater impairments in features
associated with Rate than did speakers with Parkinson’s disease
(PD)] and (2) across articulatory components within each disease
[e.g., speakers with Huntington’s disease (HD) demonstrated
greater impairments in Consistency than in Rate] (see Figure 2)
(Rowe et al., under review).

Within-Speaker Variability Due to Motor Disease

Type, Disease Progression, Fatigue, and Medication

Use
Our discussion thus far has focused on between-speaker
differences in severity, dysarthria type, and subsystem
involvement. However, there is also a significant amount of
within-speaker variability that should be considered in ASR
corpora development. For example, some dysarthria types,
such as ataxic dysarthria, exhibit inconsistent motor patterns
of limb and speech muscles (Darley et al., 1969), which can
result in significant variability even across repetitions of the
same utterance. Furthermore, across all dysarthria types,
changes in disease progression, fatigue, and medication use
can lead to rapid and transitory fluctuations in speech. Indeed,
progressive diseases, such as ALS or PD, can result in declines in
speech performance over several months or even weeks. Daily
fluctuations in speech patterns can occur in patient populations
who are prone to fatigue (Abraham and Drory, 2012). Lastly,
medication use can result in dramatic changes—both positive
and negative—in speech output. For example, levodopa has
been related to improvements in voice quality, pitch variation,
and articulatory function in patients with PD (Wolfe et al.,
1975), while antipsychotic medication has been related to
excess word stress and increased timing deficits in patients with

HD (Rusz et al., 2014). To mitigate the detrimental effects of
within-speaker variability on ASR performance, training datasets
may need to include multiple instances of the same utterances
recorded at different timepoints in individuals experiencing
frequent speech changes (due to motor disease type, disease
progression, fatigue, and/or medication use).

What Phonemic Patterns Are Present in
Dysarthric Speech and Therefore Might
Impact ASR Performance?
The influence of dysarthria diversity on phonemes is complex
and not fully understood, as phoneme production involves
intricate interactions between speech subsystems. Nevertheless,
while modern E2E ASR systems often operate at the word
or subword level (Kochenderfer, 2015) and employ a strong
language model, sound-level distortions may still have a
substantial negative impact on the recognition accuracy. In
these cases, it may be necessary to compensate for acoustic
distortions by increasing their representation in the training
data or adjusting the encoder. Previous research has used
methods such as phoneme confusion matrices to identify
phonetic error patterns and create pronunciation models.
For instance, Caballero-Morales and Trujillo-Romero (2014)
examined substitution errors made by an ASR system1 for a
speaker with severe dysarthria. They noted that phonemes /r/, /s/,
/sh/, and /th/ and phonemes /k/, /m/, and /p/ were consistently
substituted by /f/ and /t/, respectively. The authors suggested that
an improved system could use these error patterns to estimate
/k/, /m/, or /p/ from a recognized /t/ (Caballero-Morales and
Trujillo-Romero, 2014). However, most of the dysarthria ASR
literature is based on datasets that combine subtypes of dysarthria
and, therefore, do not specify which phonemes aremisrecognized
for each subtype. We propose that a heterogeneous corpus of
disordered speech based on known error patterns may improve
phoneme recognition. Below, we describe a subset of such
error patterns in individuals with dysarthria. A more detailed
and extensive list of these patterns can be found in Duffy
(2013).

Few studies, to our knowledge, have examined the association
between dysarthria subtype and ASR phonemic error patterns.
Shor et al. (2019) examined the WER of an ASR model
fine-tuned to speakers with ALS, a neurodegenerative disease
characterized by mixed flaccid-spastic dysarthria. The study
found that (1) /p/, /k/, /f/, and /zh/ were among five phonemes
that accounted for the highest likelihood of deletion and
(2) /m/ and /n/ accounted for 17% of substitution/insertion
errors in the ASR response (Shor et al., 2019). The authors’
first finding is consistent with the muscular weakness and
low muscle tone characteristic of flaccid dysarthria, which
frequently leads to deficits in sounds that require a buildup
of pressure (i.e., pressure consonants) (Darley et al., 1969).
Furthermore, flaccidity may lead to hypernasality due to air
escape from the nasal cavity (i.e., velopharyngeal insufficiency).

1Note that the adapted ASR system did not employ an e2e deep learning model.

Thus, because the system did not possess a strong language model, phoneme

confusion could be measured in a meaningful way.

Frontiers in Computer Science | www.frontiersin.org 4 April 2022 | Volume 4 | Article 770210

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Rowe et al. Characterizing Dysarthria Diversity for ASR

FIGURE 2 | Meta-analysis of the mean effect size (disease group compared to healthy controls) for all acoustic features within each articulatory component. ALS,

amyotrophic lateral sclerosis; AT, ataxia; HD, Huntington’s disease; MS, multiple sclerosis; MSA, multiple systems atrophy; PD, Parkinson’s disease; PSP, progressive

supranuclear palsy.

As a result, speakers often incorrectly insert nasal consonants
such as /m/ and /n/ during speech (Duffy, 2013), which is
consistent with Shor et al. (2019)’s latter finding. Increased
severity in speakers with ALS also affects phonetic features,
including stop-nasal (e.g., “no” for “toe”) and glottal-null (e.g.,
“high” for “eye”) contrasts (Kent et al., 1989). Additionally,
abnormal lingual displacement and coupling in ALS has been
associated with reduced vowel distinctiveness (Rong et al.,
2021).

Spastic dysarthria is characterized by muscle stiffness
and rigidity (Darley et al., 1969). Prior work on speakers
with cerebral palsy (CP), who often exhibit pure
spastic dysarthria, demonstrated that the predominant
phonemic errors occurred on fricatives (Platt et al., 1980),
suggesting that spasticity impairs oral constriction. A more
recent study corroborated this finding by highlighting
abnormalities in the fricative /s/ in speakers with CP
(Chen and Stevens, 2001). Another etiology of spastic
dysarthria—traumatic brain injury—can result in phonetic
contrast errors between glottal-null (e.g., “hall”/“all”),
voiced-voiceless (e.g., “bit”/“pit”), alveolar-palatal (e.g.,

“shy”/“sigh”), and nasal-stop (e.g., “meat”/“beat”) sounds
(Roy et al., 2001).

Ataxic dysarthria is characterized by muscle weakness and
incoordination (Darley et al., 1969). Seminal acoustic work has
described the impact of voice onset time (VOT) disturbances
on voicing contrasts (Ackermann and Hertrich, 1997). Later
research revealed similar findings, demonstrating that VOT
abnormalities in speakers with Friedreich’s ataxia (FA) resulted
in voicing contrast errors (e.g., /d/ vs. /t/ or /s/ vs. /z/) (Blaney
and Hewlett, 2007).

Hypokinetic dysarthria is characterized by reduced range and
speed of movement (Darley et al., 1969). Acoustically, speakers
with hypokinetic dysarthria secondary to PD tend to replace
a stop gap with low-intensity noise due to incomplete plosive
closure, a process known as spirantization, which often occurs
on voiceless phonemes, such as /p/, /t/, or /k/ (Canter, 1965).
Reduced range of motion characteristic of hypokinesia also leads
to articulatory undershoot and is reflected in features such as
reduced second formant (F2) slope and restricted vowel space
(Kim et al., 2009), which can lead to vowel centralization (e.g.,
/uh/ for /i/).
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Lastly, hyperkinetic dysarthria, which is characterized by
excess movement, encompasses a diverse range of speech
characteristics (Darley et al., 1969). The phonemic errors
in speakers with hyperkinesia are often influenced by the
associated movement disorder. For example, hyperkinesia
associated with HD may lead to variability in VOT and
incomplete closure of pressure consonants, which could
result in voicing substitutions (e.g., /t/ for /d/) and manner
substitutions (e.g., /z/ for /d/), respectively (Hertrich and
Ackermann, 1994). However, hyperkinesia associated with
tardive dyskinesia, an antipsychotic medication side effect, may
lead to excessive formant fluctuations and distorted vowels
during sustained phonation (e.g., sustained /ah/) (Gerratt et al.,
1984).

Overall, understanding the phonemic patterns specific to
different dysarthria types can provide insight into which words
or subwords (e.g., those that include pressure consonants or nasal
sounds) may need to be disproportionately represented in the
training data.

CONSIDERATIONS FOR IMPROVING ASR
CORPORA

What Can Be Done to Adequately
Represent the Different Sources of
Diversity in Dysarthria ASR Training
Corpora?
Deploying E2E machine learning models may preclude the need
to understand the underlying pathophysiological phenomena
given a sufficiently diverse training set. However, the current
ineffectiveness of ASR approaches for dysarthric speech suggests
that the limits of E2E models are presently defined by the
lack of training sample diversity, which in this case is the
wide variety and variability of dysarthric speech patterns both
between and within speakers. Attempting to capture this
diversity solely by adding more speakers is a costly endeavor
that would likely be insufficient. The domain knowledge that
we have discussed in this article is likely to help optimize
participant selection strategies in large cohort studies on speech
disordered ASR.

We propose that developing diverse corpora may involve a

principled method of creating datasets for highly heterogeneous
data, which may best be achieved through a three-pronged

approach: (1) clinical phenotyping (i.e., characterizations
of speech based on perceptual features); (2) quantitative

phenotyping (i.e., characterizations of speech based on objective
features); and (3) data-driven clustering (unsupervised groupings

of speakers). Clinical phenotyping will require domain experts,

such as speech-language pathologists, to guide the inclusion
criteria for ensuring adequate representation of atypical speech
characteristics (e.g., speech severity, articulatory deficits, etc.).
Ultimately, with large datasets and validated quantitative
measures of speech, data-driven clustering of dysarthric speech

characteristics may become feasible. Upon the development
of larger and more diverse datasets, quantifying heterogeneity
with a diversity metric may be the next step toward ensuring
that the training samples are sufficiently diverse. Such a metric
will only be possible with a deeper understanding of the
potential variables to consider in dysarthria and their impact on
speech changes.

Of course, all these approaches will need to be
supported by large-scale data collection efforts that will
require partnerships with speech-language pathology
clinics, private foundations, and medical institutions
(MacDonald et al., 2021). This effort will be greatly
facilitated by the development of secure but accessible
electronic medical record systems and mHealth
platforms (i.e., the use of mobile technologies that
improve health outcomes), which will, in turn, aid
in identifying and collecting speech recordings from
individuals with diverse etiologies and speech impairments
(Ramanarayanan et al., 2022).

CONCLUSIONS

Improving ASR accuracy for dysarthric speech may have

significant implications for communication and quality of life.
This article outlined the sources of diversity inherent to speech
motor disorders, their potential impact on ASR performance,
and the importance of their representation in training sets.

Representing dysarthric speech variability in ASR corpora may
be an important step for improving disordered speech ASR

and is consistent with the call to action in the artificial
intelligence community to reduce bias in the training data
by increasing diversity.
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