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Cognitive agents that act independently and solve problems in their environment on

behalf of a user are referred to as autonomous. In order to increase the degree of

autonomy, advanced cognitive architectures also contain higher-level psychological

modules with which needs and motives of the agent are also taken into account and with

which the behavior of the agent can be controlled. Regardless of the level of autonomy,

successful behavior is based on interacting with the environment and being able to

communicate with other agents or users. The agent can use these skills to learn a

truthful knowledge model of the environment and thus predict the consequences of its

own actions. For this purpose, the symbolic information received during the interaction

and communication must be converted into representational data structures so that

they can be stored in the knowledge model, processed logically and retrieved from

there. Here, we firstly outline a grammar-based transformation mechanism that unifies

the description of physical interaction and linguistic communication and on which the

language acquisition is based. Specifically, we use minimalist grammar (MG) for this

aim, which is a recent computational implementation of generative linguistics. In order

to develop proper cognitive information and communication technologies, we are using

utterance meaning transducers (UMT) that are based on semantic parsers and a mental

lexicon, comprising syntactic and semantic features of the language under consideration.

This lexicon must be acquired by a cognitive agent during interaction with its users.

To this aim we outline a reinforcement learning algorithm for the acquisition of syntax

and semantics of English utterances. English declarative sentences are presented to

the agent by a teacher in form of utterance meaning pairs (UMP) where the meanings

are encoded as formulas of predicate logic. Since MG codifies universal linguistic

competence through inference rules, thereby separating innate linguistic knowledge

from the contingently acquired lexicon, our approach unifies generative grammar and

reinforcement learning, hence potentially resolving the still pending Chomsky-Skinner

controversy.

Keywords: cognitive agents, cognitive architectures, artificial intelligence, reinforcement learning, interaction and

communication, minimalist grammars, semantic representations, utterance meaning transducer
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1. INTRODUCTION

Traditionally, the technical replication of cognitive systems is
based on cognitive architectures with which the most important
principles of human cognition are captured. The best known
traditional architectures are SOAR and ACT (Funke, 2006). Such
architectures serve to integrate psychological findings in a formal
model that is as economical as possible and capable of being
simulated. It assumes that all cognitive processes can be traced
back to a few basic principles. According to Eliasmith (2013), this
means that cognitive architectures have suitable representational
data structures, that they support the composition-, adaptation-
and classification principle and that they are autonomously
capable to gain knowledge by logical reasoning and learning.
Further criteria are productivity, robustness, scalability and
compactness. In psychological research, these architectures are
available as computer programs, which are used to empirically
test psychological theories. In contrast, the utility of cognitive
architectures in artificial intelligence (AI) research lies primarily
in the construction of intelligent machines and the ability to
explain their behavior.

Explainability of intelligent machines is closely tied to the
idea of a physical symbol system (PSS) (Newell and Simon,
1976). A PSS takes physical symbols from its sensory equipment,
composing them into symbolic structures (expressions) and
transforms them to new expressions (Vera and Simon, 1993).
For our approach it is crucial that the symbols or the symbol
structures, respectively, can be assigned a meaning and that
the transformation of these symbol structures leads to logically
processable knowledge on which problem solving is based. In
order to build meaningful symbols, the agent must be embedded
in a perception-action-cycle (PAC) and it must be taken into
account that the truthfulness or veridicality of the translation of
sensory information into symbolic structures is not necessarily
guaranteed due to deceptions or dysfunctions (Bischof, 2009).
To overcome these difficulties, more sophisticated agents are
able to build a dynamic model of their environment that can
be simulated. In this case, the agent has to distinguish between
redundancy expectations (model-based prior knowledge) and
sensory data (observations), so that information from two
sources has to be processed. To achieve veridicality, both pieces
of information must be combined in a suitable manner (e.g.,
through a Bayesian model). The structure required for this kind
of information processing is depicted by the inner cognitive loop
in Figure 1 and is denoted as interaction1. This picture illustrates
that autonomous behavior can arise if the interaction process
is based on truthful information processing that is controlled
by higher-level psychological modules. This includes necessities,
motives and acquired authorizations that support well-being. In
addition to the associated autonomous interaction scenarios,
human-machine communication is another area of application
for cognitive agents. In this case, the tool or service character
of cognitive agents plays a prominent role. This property allows
the user to solve certain tasks or problems through the agent.

1Based on the terms used in control theory, we represent the cyclical flow of
information in a circular form and denote the cyclical flow as a loop.

For this purpose, linguistic descriptions must be articulated,
understood and exchanged. This results in the requirement for a
speech-enabled agent and an additional outer cognitive loop (see
Figure 1) which is denoted as communication2.

In our application scenario, the communications between
cognitive agents and human users are related to a common
physical environment that is modeled through a network of
objects that are in static or dynamic relationships with one
another. Such objects can be described and distinguished by a
set of attributes and its admissible values. Objects, attributes and
relationships between objects are the information of interest to
which both nonverbal interaction and verbal communication
refer. However, in order to ensure veridical behavior, the
representational data structures of the environment model must
be compared with those that have resulted from communication
and interaction. Only by using an appropriate comparison
mechanism the agent can understand what is actually going
on in reality and what the respective observations mean. It
largely depends on this ability whether the right actions are
selected to achieve the agent’s goals. In case of interaction, the
comparison must be made between the representational data of
the sensor information and the content of the agents knowledge
base. In communication, on the other hand, it is necessary
that the representational data structures of the user’s utterances
(semantics) are referenced to the shared environmental context
(Hausser, 2014). The agent can receive this information using
the interaction loop. Note that this comparison may result in an
adaptation of the knowledge base.

Research in computational linguistics has demonstrated that
quite different grammar formalisms, such as tree-adjoining
grammar (Joshi et al., 1975), multiple context-free grammar
(Seki et al., 1991), range concatenation grammar (Boullier,
2005), and minimalist grammar (Stabler, 1997; Stabler and
Keenan, 2003) converge toward universal description models
(Joshi et al., 1990; Michaelis, 2001; Stabler, 2011a; Kuhlmann
et al., 2015). Minimalist grammar has been developed by Stabler
(1997) to mathematically codify Chomsky’s Minimalist Program
(Chomsky, 1995) in the generative grammar framework. A
minimalist grammar consists of a mental lexicon storing
linguistic signs as arrays of syntactic, phonetic and semantic
features, on the one hand, and of two structure-building
functions, called “merge” and “move,” on the other hand.
Furthermore, syntax and compositional semantics can be
combined via the lambda calculus (Niyogi, 2001; Kobele,
2009), while MG parsing can be straightforwardly implemented
through bottom-up (Harkema, 2001), top-down (Harkema, 2001;
Mainguy, 2010; Stabler, 2011b), and in the meantime also by
left-corner automata (Stanojević and Stabler, 2018).

One important property of MG is their effective learnability
in the sense of Gold’s formal learning theory (Gold, 1967).
Specifically, MG can be acquired by positive examples (Bonato
and Retoré, 2001; Kobele et al., 2002; Stabler et al., 2003)
from linguistic dependence graphs (Nivre, 2003; Klein and
Manning, 2004; Boston et al., 2010), which is consistent with

2Note, that the opposite point of view is also of interest, in which the agent learns
user behavior by analyzing dialogs.
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FIGURE 1 | Double cognitive loop using an embedded relational data model. The inner cognitive loop corresponds to the interaction between the agent and the

environment (nonverbal information exchange). The outer cognitive loop is used for the communication between a speech-enabled agent and any other cognitive

agent or natural language user (verbal information exchange). The flow of information between the behavioral control and the relational data model is embedded in a

simulation loop and enables the simulation of actions as well as the prediction of effects. Since the simulation loop is not linked to the environment through perception

and action, this loop is not referred to as a PAC. The exchange of information between two systems with different cognitive abilities (e.g., between humans and

cognitive agents) is denoted as Inter-Cognitive Communication (Baranyi et al., 2015).

psycholinguistic findings on early-child language acquisition
(Gee, 1994; Pinker, 1995; Ellis, 2006; Tomasello, 2006; Diessel,
2013). However, learning through positive examples only, could
easily lead to overgeneralization. According to Pinker (1995) this
could substantially be avoided through reinforcement learning
(Skinner, 2015; Sutton and Barto, 2018). Although there is only
little psycholinguistic evidence for reinforcement learning in
human language acquisition (Moerk, 1983; Sundberg et al., 1996),
we outline a machine learning algorithm for the acquisition
of an MG mental lexicon (beim Graben et al., 2020) of the
syntax and semantics for English declarative sentences through
reinforcement learning in this article. Our approach chosen
here is inspired by similar work on linguistic reinforcement
learning (Zettlemoyer and Collins, 2005; Kwiatkowski et al.,
2012; Artzi and Zettlemoyer, 2013). Instead of looking at pure
syntactic dependencies as Bonato and Retoré (2001), Kobele et al.
(2002), and Stabler et al. (2003), our approach directly uses
their underlying semantic dependencies for the simultaneous
segmentation of syntax and semantics, in some analogy to van
Zaanen (2001).

With this work we are pursuing two main goals. The first
goal is to represent the received or released information about
the properties of objects or the relationships between objects
in the form of relational expressions and to store it in a
knowledge model so that these expressions can be used for
knowledge processing for the purpose of behavior control or

problem solving. In order to assign a meaning and a context
to the symbolic structures (symbol grounding problem), the
comparability between the expressions of the knowledge model
and the expressions of the two cognitive loops (interaction and
communication) must be guaranteed. We fulfill this requirement
by uniformly describing the information transformation in both
loops using the formalism of minimalist grammar and thus
with linguistic means. To solve the symbol grounding problem,
the relationship between the symbol structures and the actual
facts is established through a model of the agent’s environment.
Such a model can be acquired on the principle of reinforcement
learning. Since the information transformation is also based on a
model—here in the form of the mental lexicon—the second aim
of this work is to acquire the mental lexicon of an MG based on
this learning principle.

The paper is organized as follows: First, we address
the problem statement and the experimental environment.
Subsequently, we summarize the necessary mathematical basics
and the notations used. Then we come to the first focus of
this work and describe the unified information transformation
for interaction and communication using minimalist grammar
and lambda calculus. We start with the simple case of
interaction and explain the transformation mechanism using
formal linguistic means and the assumption that the agent
has already aquired a minimalist lexicon. Subsequently, the
more demanding case of communication is discussed, where
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the transformation mechanism has to convert natural language
utterances into predicate logical expressions. In both cases
we discuss language production (articulation) and language
understanding (interpretation). The integration of the acquired
representational data structures into the agent’s knowledge base
concludes the first main focus. The following section covers the
second main focus and deals with the acquisition of minimalist
lexicons through the method of reinforcement learning. The
paper concludes with a summary and a discussion of the
achieved results.

2. PROBLEM STATEMENT AND
EXPERIMENTAL SETUP

We consider the well-known mouse-maze problem (Shannon,
1953; Wolff et al., 2015, 2018), where an artificial mouse lives in a
simple N×M maze world that is given by a certain configuration
of walls. For the mouse to survive, one ore more target objects
are located at some places in the maze. In our setup we are
using the target object types cheese/carrot (C) and water (W) to
satisfy the primary needs hunger and thirst. These object types
are defined symbolically by the set O = {C,W,NOB} where
NOB refers to no object at all. The agent is able to move around
the maze and to perceive information about its environment via
physical interaction. This is organized by the inner perception-
action-cycle (interaction-loop) of Figure 1 that allows the agent
to navigate to these target objects. To this end, the agent needs
to measure its current position (x, y) by two sensors, where
x ∈ X = {1, ..,N} and y ∈ Y = {1, ..,M} apply. It also has
to determine the presence or absence of target objects by an
object classifier, which we consider as a single complex sensor.
Then the current situation can be described on the basis of the
measurement result for the current position and the result of
object classification. Subsequently, the measurement information
needs to be encoded as a string of symbols and has to be translated
into a representational data structure saved in a knowledge
base. This kind of knowledge (“situations”) should be stored as
the result of an exploration phase if no logical contradictions
occure. A further kind of knowledge is the set of movements in
the maze. These “movements” are based on permissible actions
a ∈ A, which initially correspond to the four geographic
directions, north (N), south (S), west (W), and east (E), that are
defined symbolically by the set A = {N, S,W,E,NOP} (NOP
denoting no operation here). Each action starts at a position
z = (x, y) and ends at a position z′ = (x′, y′). For this purpose,
the actuators associated to the x- or y- direction, respectively,
can be incremented or decremented by one step. Hence, to
establish the parameterization of the four geographic directions
we define the sets 1X = 1Y = {−1, 0, 1}. Thus, the south
action is parameterized, for example, by the ordered pair (0,−1).
Note that with the knowledge about “movements” the agents
behavior can be described in the sense of “causality.” From a
technical point of view, the relationship between a cause [z =
((x, y), a)] and an effect [z′ = (x′, y′)] can be expressed, for
example, by the transition equation of a finite state automaton.
To implement “movement” instructions the reverse flow of the
sensory information must be realized. That is, in order to be

able to control the agent’s actuators, actions must be described
as representative data structures and converted into a string of
symbols. It follows, that physical interaction requires both, the
agent’s capability to interpret a linearly ordered time series of
symbolizedmeasurement results as a (partially ordered) semantic
representations and to transform semantic representations into a
linear sequence of actuator instructions during articulation.

The ability to communicate with natural language users
is another demand that a cognitive agent should meet. To
this end, the agent should first of all be speech-enabled.
Communication is organized by the outer perception-action-
cycle (communication-loop) shown in Figure 1 which is mainly
characterized by the articulation and interpretation of speech
signals. Therefore, we essentially need the very same capabilities
for the transformation of linearly ordered symbolic messages
(the “scores” of communication) into partially ordered semantic
representations. For this reason, we devise a bidirectional
utterancemeaning transducer to encode and decode themeaning
of symbolic messages. The encoded meaning corresponds to the
representational data structure of utterances and can be saved in
the agent’s knowledge base.

In order to avoid logical conflicts between the results of the
interaction- and communication loop, it is also necessary that
the representational data structures generated by these loops
must be comparable. Hence, in our approach non-verbal physical
interaction and verbal communication are uniformly modeled
using linguistic description means. This approach can be also
supported by two salient arguments borrowed from Hausser
(2014) that have already been presented by Römer et al. (2019):
(1) “Without a carefully built physical grounding any symbolic
representation will be mismatched to the sensors and actuators.
These groundings provide the constraints on symbols necessary
for them to be truly useful.” (2) “The analysis of nonverbal
cognition is needed in order to be able to plausibly explain
the phylogenetic and ontogenetic development of language from
earlier stages of evolution without language.” Further, according
to the “Physical Symbol SystemsHypothesis” (PSSH) all cognitive
processes can be described as the transformation of symbol
structures (Newell and Simon, 1976). This transformation
process obeys the composition principle (“infinite use of finite
means”) and aims to recast incoming sensor information into
logically processable knowledge, which is saved in a knowledge
model. Notably, we assume that the transformation from
signal to symbol space can be solved by a transduction stage,
proposed by Wolff et al. (2013). According to the PSSH, this
low-level transduction stage is the crucial processing step for
recognition, designation and arrangement of the observed sensor
events through symbol sequences in terms of a formal or
natural language.

The use of linguistic description means includes the use of a
suitable grammar formalism that is based on a mental lexicon
as part of the agent’s knowledge base and on transformation
rules for how to arrange symbols into linear sequences. It is the
second aim of the present study, to suggest minimalist grammar
and logical lambda calculus as a unifying framework to this end.
While the user can be assumed to already have the linguistic
resources, the agent must acquire them through learning. Thus,
a further aim of our work is the description of an algorithm with
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which a mental lexicon can be learned and dynamically updated
through reinforcement learning. Starting point of our algorithm
are utterance meaning pairs (Kwiatkowski et al., 2012; Wirsching
and Lorenz, 2013; beim Graben et al., 2019b).

u = 〈e, σ 〉, (1)

where e ∈ E is the spoken or written utterance while σ ∈

6 is a logical term, expressed by means of predicate logic
and the (untyped) lambda calculus (Church, 1936) denoting
the semantics of the utterance. We assume that UMPs are
continuously delivered by a “teacher” to the agent during
language acquisition.

As an example, consider the simple UMP

u = 〈the mouse eats cheese,eat(cheese)(mouse)〉.
(2)

In the sequel we use typewriter font to emphasize that
utterances are regarded plainly as symbolic tokens without
any intended meaning in the first place. This applies even to
the “semantic” representation in terms of first order predicate
logic where we use the Schönfinkel-Curry (Schönfinkel, 1924;
Lohnstein, 2011) notation here. Therefore, the expression above
eat(cheese)(mouse) indicates that eat is a binary predicate,
fetching first its direct object cheese to form a unary predicate,
eat(cheese), that then takes its subject mouse in the second
step to build the proposition of the utterance (2).

3. PRELIMINARIES

In this section we summarize some fundamental concepts
needed for system modeling and information transformation:
state space representation and formal languages. We also
briefly refer to the set-theoretical connection between simple
predicate logic expressions (without quantifiers) and semantic
representations based on relational schemes. Subsequently, we
explain the concept of minimalist grammar and its suitability for
a transformationmechanism that can be used tomediate between
linearly ordered symbolic perception/action sequences and semi-
or disordered semantic representations. The expressiveness and
flexibility of natural language is mainly due to the compositional
principle, according to which new semantic terms can be formed
from a few elementary terms. In order to anchor this principle
in the transformation mechanism, we need the approach of the
lambda calculus and the representation of n-ary functions using
the Schönfinkel-Curry notation.

3.1. Basic Concepts
State Space Representation. To describe the system behavior in
terms of cause and effect, we distinguish states z ∈ Z , actions
a ∈ A and outputs3 o ∈ O. A behavioral relation is then given by

RV ⊆ Z ×A× Z ×O, (3)

3To avoid confusion in terms of the set O, we would like to point out that the
outputs of the state space model in this work correspond to the specified object
types of the mouse-maze-application.

which determines the system dynamics. To decide, whether a
tuple (z, a, z′, o) belongs to this relation or not, the characteristic
function fRV : Z × A × Z × O → {0, 1} can be applied.
Further, this relation corresponds to a network of causal relations.
Due to causality, a recursive calculation rule divided into a
system equation and an output equation is given, which allows
forecasting the system’s behavior

z′ = G(z, a) with G : Z ×A→ Z ,

o = H(z, a) with H : Z ×A→ O.
(4)

Because in our setting the system response o ∈ O depends
exclusively on the current state z ∈ Z , we get a simplification
of the output equation o = H(z) that corresponds to the idea of
the Moore automaton.

Formal Language. In order to specify any technical
communication between source and sink, we have to arrange an
alphabet 6A = {a, b, . . .} and to establish a language L ⊆ 6A

∗

(the symbol ∗ is called Kleene star). Words or sentences are
then described by an ordered sequence s = (s1, s2, . . . , sk) ∈
L, where s ∈ 6A. To decide whether a word s belongs to
the language L we can devise a grammar G = (N , T ,P ,S).
It is specified by the sets N of nonterminals, T of terminals
and P of production rules as well as a start symbol S. The
grammatical rules determine the arrangement of the symbols
within a symbol sequence. Based on these rules permissible
sentences of a language can be produced or derived. In contrast
to sentence production, sentence analysis reveals the underlying
grammatical structure. This analysis method is known as parsing
and will be exploited below.

3.2. Predicate Logic Expressions
A linguistic expression that articulates the characteristics of
an object or a relation between objects is called a predicate
(Jungclaussen, 2001). It does not always have to be about definite
objects. In the case of indefinite objects, so-called individual
variables are used. Usually the letters P or Q are used as symbols
for predicate names. As arguments for predicates we use either
individual constants, individual variables or function values.
For the sake of simplicity, we limit ourselves to individual
constants and individual variables here. An n-ary predicate is
then denoted by the expression Q(a1, a2, . . . , an), where a are
values of the corresponding setA (e.g., admissible values from the
domain of an attribute A). According to set theory the predicate
Q(a1, a2, . . . , an) can be interpreted as relation RQ ⊆ A1 × A2 ×

. . . × An and can be understood as a binary classifier. In this
case the classification task refers to finding in the set of ordered
tuples of individuals or objects the class [[Q]] of those individuals
for which the predicate is true. This class is called the denotation
of Q. The following notation is used for this:

[[Q]] = {(a1, . . . , an) ∈ A1 × . . .×An | Q(a1, . . . , an)is true} (5)

The mathematical description of a predicate can also be done
using the corresponding characteristic function: f[[Q]] :A1 × A2 ×

. . .×An → {0, 1}. This is particularly required for the formalism
of composing semantic representations.

Frontiers in Computer Science | www.frontiersin.org 5 January 2022 | Volume 4 | Article 733596

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Römer et al. Unifying Interaction, Communication, and Language Acquisition

3.3. Semantic Representations
In semantics we distinguish between objects that are described
by attributes and relations between such objects (Chen, 1975). To
represent semantics we will focus on feature-value pairs (FVP),
which have a flat structure and correspond to tuples of database
relations. The notation used here was taken from Lausen (2005).
We start from a universe U = {A1,A2, . . . ,Am} which comprises
a finite set of attributes. Further, we have a set of domains D =
{D1,D2, . . . ,Dm} and amapping dom : U → D. The values of the
different attributes are elements of the associated domains. Based
on these definitions we can specify types of objects or relations
between objects by a set of attributes X = {A1,A2 . . . ,An} ⊂ U .
Objects are defined as mappings, which are called tuples:

τ : {A1,A2, . . . ,An} →

n
⋃

i=1

dom(Ai), n ≤ m. (6)

A set of such tuples corresponds to a set of distinguishable objects.
Note that in database notation the elements of tuples are not
ordered. This corresponds to the idea that the order of attributes
is not relevant for describing the type of any object (Lausen,
2005). An object or relation type is defined by a relation scheme:

R(X ) = (A1 : dom(A1),A2 : dom(A2), . . . ,An : dom(An)). (7)

In database representations a scheme is associated to the head of
a relational data table. The entries of a table correspond to a set
of tuples. This set of tuples corresponds to a relation, which is
given by:

RX ⊆ Tup(X): = {τ |τ : X→ dom(X )}, (8)

where Tup(X ) is the set of all possible tuples of a relation scheme
R(X ). The set of all relations over this scheme is denoted as
Rel(X ).

3.4. Minimalist Grammars
Minimalist grammars (MG) were introduced to describe natural
languages (Stabler, 1997). For nonverbal interaction it is crucial
that MG provide a translation mechanism between linearly
ordered perceptions/actions and semi- or disordered semantic
representations. Based on such a grammar, knowledge can be
formally represented and stored consistently in a relational data
model. Following Kracht (2003), we regard a linguistic sign as an
ordered triple

q = 〈e,t, σ 〉 (9)

with exponent e ∈ E, semantics σ ∈ 6 and a syntactic type
t ∈ T that we encode by means of MG in its chain representation
(Stabler and Keenan, 2003). The type controls the generation of
the syntactic and semantic structure of an utterance. An MG
consists of a data base, the mental lexicon, containing signs
as arrays of syntactic, phonetic and semantic features, and of
two structure-generating functions, called “merge” and “move.”
For our purposes, it is sufficient to point out some syntactic
features: Selectors (e.g., “=S”) are required to search for syntactic
types of the same category (e.g., “S”). Licensors (e.g., “+k”)
and licensees (e.g., “-k”) are required to control the symbol

order at the surface. The symbol “::” indicates simple, lexical
categories while “:” denotes complex, derived categories (“·” is
just a placeholder for one of these signs). A sequence of signs
“q” is called a minimalist expression. For further details we refer
to beim Graben et al. (2019b). We just repeat the two kinds
of structure-building rules here. The MG function “merge” is
defined through inference schemes

〈e1,::=f t, σ1〉 〈e2, ·f , σ2〉q

〈e1e2,:t, σ1σ2〉q
merge-1 ,

〈e1,:=f t, σ1〉q1 〈e2, ·f , σ2〉q2
〈e2e1,:t, σ1σ2〉q1q2

merge-2 ,

〈e1, ·=f t1, σ1〉q1 〈e2, ·f t2, σ2〉q2
〈e1,:t1, σ1〉q1〈e2,:t2, σ2〉q2

merge-3 .

(10)

Correspondingly, “move” is given through,

〈e1,:+f t, σ1〉q1〈e2,:-f , σ2〉q2
〈e2e1,:t, σ1σ2〉q1q2

move-1 ,

〈e1,:+f t1, σ1〉q1〈e2,:-f t2, σ2〉q2
〈e1,:t1, σ1〉q1〈e2,:t2, σ2〉q2

move-2 .

(11)

3.5. Schönfinkel-Curry Notation and
Lambda Calculus
Schönfinkel-Curry Notation. Let us consider a binary function

f : A× B→ Z, (12)

where its domain is defined by the cartesian product over two sets
A and B and its value range is given by the set Z. Such a binary
function can be decomposed into two unary functions, which are
calculated in two steps

F : A→ (B→ Z). (13)

First, with the assignment of the first argument a ∈ A, a mapping
F(a) : B → Z is selected. Secondly, the function value F(a)(b) =
f (a, b) = z is calculated when the second argument b ∈ B is
assigned. This principle can be generalized to n-ary functions

f : A1 × A2×, . . . ,×An → An+1. (14)

Whereby a one-to-one relationship between n-ary functions and
unary functions of n-th order is established

F : A1 → (A2 → (A3 . . . (An → An+1) . . .)). (15)

In computational linguistics this representation is used in terms
of the description of relations by their characteristic function.
In this case an n-tuple (a1, a2, . . . , an) ∈ A1 × A2×, . . . ,×An

is mapped to the elements of the binary set {0, 1}. However,
the representation in computational linguistics is in a slightly
modified form, because the arguments appear in the reverse order
F(an)(an−1) . . . (a1).

Lambda calculus is a mathematical formalism developed
by Church in the 1930s “to model the mathematical notion
of substitution of values for bound variables” according to
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Wegner (2003). Although the original application was in the area
of computability (cf. Church, 1936) the substitution of parts of a
term with other terms is often the central notion when lambda
calculus is used. This is also true in our case and we have to
clarify the concepts first; namely variable, bound and free, term,
and substitution.

To be applicable to any universe of discourse a prerequisite
of lambda calculus is “an enumerably infinite set of
symbols” (Church, 1936) which can be used as variables.
However, for usage in a specific domain, a finite set is sufficient.
Since we aim at terms from first order predicate logic, treating
them with the operations from lambda calculus, all their
predicates P and individuals I need to be in the set of variables.
Additionally, we will use the symbols IV : = {x,y, . . .} as
variables for individuals and TV : = {P,Q, . . .} as variables for
(parts of) logical terms. The set V: = P ∪ I ∪ IV ∪ TV is thus
used as the set of variables. Note, that the distinction made by
IV and TV is not on the level of lambda calculus but rather a
meta-theoretical clue for the reader.

The following definitions hold for lambda calculus in general
and hence we simply use “normal” typeface letters for variables.
The term algebra of lambda calculus is inductively defined as
follows. i) Every variable v ∈ V is a term and v is a free variable
in the term v; specifically, also every well-formed formula of
predicate logic is a term. ii) Given a term T and a variable
v ∈ V which is free in T, the expression λv.T is also a term
and the variable v is now bound in λv.T. Every other variable
in T different from v is free resp. bound in λv.T if it is free
resp. bound in T. iii) Given two terms T and U, the expression
T(U) is also a term and every variable which is free resp. bound
in T or U is free resp. bound in T(U). Such a term is often
referred to as operator-operand combination (Wegner, 2003) or
functional application (Lohnstein, 2011). For disambiguation we
also allow parentheses around terms. The introduced syntax
differs from the original one where additionally braces and
brackets are used to mark the different types of terms (cf.
Church, 1936). Sometimes, T(U) is also written as (TU) and
the dot between λ and the variable is left out (cf. Wegner,
2003).

For a given variable v ∈ V and two terms T and U the
operation of substitution is T[v← U] [originally written as SvUT
in Church (1936) and sometimes without the right bar, i. e. as
in Wegner (2003)] and stands for the result of substituting U for
all instances of v in T.

Church defined three conversions based on substitution.

• Renaming bound variables by replacing any part λv.T of a term
by λw.T[v ← w] when the variable w does not occur in the
term T.
• Lambda application by replacing any part λv.T(U) of a term

by T[v← U], when the bound variables in T are distinct both
from v and the free variables in U.
• Lambda abstraction by replacing any part T[v← U] of a term

by λv.T(U), when the bound variables in T are distinct both
from v and the free variables in U.

The first conversion simply states that names of bound variables
have no particular meaning on their own. The second and
third conversions are of special interest to our aims. Lambda

application allows the composition of logical terms out of
predicates, individuals and other logical terms while lambda
abstraction allows the creation of templates of logical terms.

Applied to our example (2), we have the sign

q = 〈the mouse eats cheese,:c,

eat(cheese)(mouse)〉 (16)

where the now appearing MG type :c indicates that the sign is
complex (not lexical) and a complementizer phrase of type c.
Its compositional semantics (Lohnstein, 2011) can be described
by the terms λP.λx.P(x) and λx.λP.P(x), the predicate
eat and the individuals cheese and mouse. Consider the
term λP.λx.P(x)(eat)(cheese). This is converted by two
successive lambda applications via λx.eat(x)(cheese) into
the logical term eat(cheese). It is also possible to rearrange
parts of the term in a different way. Consider now the term
λx.λP.P(x), the logical term eat(cheese) and the individual
mouse. Then the term λx.λP.P(x)(mouse)(eat(cheese))
is converted by two successive lambda applications into the
logical term eat(cheese)(mouse). Thus, logical terms can be
composed through lambda application.

Moreover, given the logical term eat(cheese)(mouse)
two successive lambda abstractions yield the term
λx.λy.eat(x)(y), leaving out the operand parts. In that
way, templates of logical terms are created where different
individuals can be inserted for term evaluation. Both processes
are crucial for our utterance-meaning transducer and machine
language acquisition algorithms below.

4. PHYSICAL INTERACTION

In order to explain the translation process for the interaction,
we first rely on a regular grammar, which only comprises two
rules: S → eS and S → e with e ∈ T and S ∈
N . To better understand the formalism we use the following
indexed derivation scheme: S0 → e0S1, S1 → e1S2, S2 →
e2S3, . . . ,Sn → enSn+1, Sn+1 → en+1. The inner words
e1,e2, . . . ,en correspond to the values of attributes that are
specified in a relational scheme R(X ). The embracing words e0
and en+1 correspond to the symbols <start> and <end>,
respectively, which indicate the beginning and the end of a
sentence. The database semantics is made up of sets, the elements
of which are assignments of values to attributes τ : A → e ∈
dom(A). To apply the translation formalism based on minimalist
grammars we substitute semantic terms σ with σ (e). Then we
define the semantic concatenation as a set operation: σ1σ2: =

σ (e1) ∪ σ (e2): = {σ (e1)} ∪ {σ (e2)}.
Minimalist lexicon. The MG formalism works with linguistic

signs that are saved in a minimalist lexicon. In case of interaction
three types of linguistic signs that are saved in a minimalist
lexicon (see Table 1) are required.

The semantics of these sign types are represented by λ-terms
using the set-theoretical union operator in the Schönfinkel-
Curry-notation ∪(σ (e2))(σ (e1)): = ∪(σ (e1), σ (e2)) = σ (e1) ∪
σ (e2). According to the following formalism in each iteration
step exactly one mapping is added to the semantic expression
generated so far. In λ-calculus the composition is achieved
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TABLE 1 | Minimalist lexicon for physical interaction.

〈<start>,::S0 k, (σ (e0)〉

〈<end>,::=Sn +k Sn+1, λa. ∪ (σ (en+1))(a)〉

〈ei ,::=Si−1 +k Si , λa. ∪ (σ (ei))(a)〉

The symbols <start> = e0 and <end> = en+1 encode the beginning and the end of a

sequence of symbols. The embedded entries ei correspond to sensory events. The index

i with 0 < i < n + 1 is related to the attribute of the relational scheme. The semantics of

ei is given by σ (ei ), whereby σ (e0 ) = σ (en+1 ) = ∅ is applied.

through consecutive λ-applications, where the position for the
argument a is alternately opened and closed. In this way,
mappings are added one after the other to a disordered set, which
results to the entries of a relational scheme.

4.1. Interpretation
During the interpretation process, a sequence of symbols is
converted into a set of mappings that describe a situation. Such

Start :
〈e1,::=S0+kS1-k, λa.

⋃

(σ (e1))(a)〉 〈e0,::S0-k, σ (e0)〉

〈e1,:+kS1-k, λa.
⋃

(σ (e1))(a)〉 〈e0,:-k, σ (e0)〉
merge-3

〈e1,:+kS1-k, λa.
⋃

(σ (e1))(a)〉 〈e0,:-k, σ (e0)〉

〈e0e1,:S1-k,
⋃

(σ (e1))(σ (e0))〉
move-1.

Iterations :

〈e2,::=S1+kS2-k, λa.
⋃

(σ (e2))(a)〉 〈e0e1,:S1-k,
1
⋃

i=0
σ (ei)〉

〈e2,:+kS2-k, λa.
⋃

(σ (e2))(a)〉 〈e0e1,:-k,
1
⋃

i=0
σ (ei)〉

merge-3

〈e2,:+kS2-k, λa.
⋃

(σ (e2))(a)〉 〈e0e1,:-k,
1
⋃

i=0
σ (ei)〉

〈e0e1e2,:S2-k,
⋃

(σ (e2))(
1
⋃

i=0
σ (ei))〉

move-1.

〈e3,::=S2+kS3-k, λa.
⋃

(σ (e3))(a)〉 〈e0e1e2,:S2-k,
2
⋃

i=0
σ (ei)〉

〈e3,:+kS3-k, λa.
⋃

(σ (e3))(a)〉 〈e0e1e2,:-k,
2
⋃

i=0
σ (ei)〉

merge-3

〈e3,:+kS3-k, λa.
⋃

(σ (e3))(a)〉 〈e0e1e2,:-k,
2
⋃

i=0
σ (ei)〉

〈e0e1e2e3,:S3-k,
⋃

(σ (e3))(
2
⋃

i=0
σ (ei))〉

move-1.

End :

〈e4,::=S3+kS4, λa.
⋃

(σ (e4))(a))〉 〈e0e1e2e3,:S3-k,
3
⋃

i=0
σ (ei)〉

〈e4,:+kS4, λa.
⋃

(σ (e4))(a))〉 〈e0e1e2e3,:-k,
3
⋃

i=0
σ (ei)〉

merge-3

〈e4,:+kS4, λa.
⋃

(σ (e4))(a)〉 〈e0e1e2e3,:-k,
3
⋃

i=0
σ (ei)〉

〈e0e1e2e3e4,:S4,
⋃

(σ (e4))(
3
⋃

i=0
σ (ei))〉

move-1.

situations are encoded in the form: s = (e0,e1,e2,e3,e4)
which corresponds in the mouse-maze scenario to messages
s = (<start>,x,y,o,<end>). That is, the exponents contain
the (x, y)-coordinates and the name of an object type o ∈ O.

Permissible sentences are elements of the observation language
Lobs. The configuration of these sentences is subject to a fixed
agreement. For this purpose we assign a role to every exponent
index and use a bijective mapping β : R→ X , which maps each
role r ∈ R to the attributes A ∈ X of the relational schemes
R(X ). The semantics of an exponent ei with 0 < i < n + 1
is then defined by σ (ei): = β(ri) 7→ ωi ∈ dom(β(ri)) and
σ (e0) = σ (en+1) = ∅. Based on this role-dependent semantics
we obtain with the MG formalism a linguistic structure in which
the syntactic and semantic structure are built up in parallel. At
its core, a key-lock principle is applied, in which a selector (e. g.
“=S”) always requests a syntactic type of the same category (e. g.
“S”) and licensors and licensees are used to control the order
of the symbols on the surface. Note that this principle is not
restricted to natural languages. Now we come to the description
of the formalism using the λ-calculus. First, the symbol sequence
s ∈ Lobs is converted into a sequence of linguistic signs (taken
from the minimalist lexicon), which the formalism processes step

by step. During processing, the formalism alternates between
the rules merge-3 and move-1. After processing the start type,
the iterative processing of the mapping types takes place until
the end type is reached. To calculate the semantics of s, the
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FIGURE 2 | Generative grammar analysis of example UMP (Equation 2). (A) Syntactic phrase structure tree. (B) Semantic tree from lambda calculus.

argument position for the new set element to be integrated is
opened and closed again by consecutive λ-applications after the
current feature-value pair has been added. Finally, the formalism
replies with a tuple τobs ∈ Tup(Situation).
The last compositional step generates the linguistic sign

〈e0e1e2e3e4, :S4,
4
⋃

i=0
σ (ei)〉. The associated semantics

corresponds to the structure of tuples, as defined for relational
schemes according to Equation (6). If this formalism is
applied to the relational scheme R(Situation) (for relation
scheme definitions see section 5.4) it results to the semantic
representation of the observed situation

τobs =

n+1
⋃

i=0

σ (ei) = {X→ x ∈ dom(X),Y → y ∈ dom(Y),

O→ o ∈ dom(O)}. (17)

The observation tuple τobs contains the set of disordered feature-
value-mappings, which corresponds to the translation result of
the interpretation. Based on this tuple the next action is selected
and a further perception-action-cycle is initiated.

4.2. Articulation
After the action decision by the behavior control (see Figure 1),
the MG formalism must be applied to a semantic representation
for the action in question. To this end, the formalism is fed with
an action tuple τact ∈ Tup(Action). Each action tuple is initially
given in the form.

τact = {1X→ 1x ∈ dom(1X),1Y → 1y ∈ dom(1Y)}.
(18)

In order to generate an actuator instruction a = (e0,e1,e2,e3)
or a = (<start>,1x,1y,<end>), respectively, the feature
value pairs of the relational scheme R(Action) must be mapped
to the associated linguistic signs. These signs are stored in
the linguistic lexicon of the articulation (analogous to the
interpretation). In this case too, the formalism alternately
switches between the rules merge-3 and move-1. The difference
to the interpretation is that the formalism is now fed with
a set of linguistic signs and responds with a sequence of
symbols. In our mouse-maze scenario this set comprises the

following elements: 〈e0,::S0-k,∅〉, 〈e3,::=S2+kS3,∅〉 as well
as 〈e1,::=S0+k S1-k, σ (e1)〉 and 〈e2,::=S1+kS2-k, σ (e2)〉.
Applying the production rules of a regular grammar, the
derivation would result to the following rule sequence: S0 →
e0S1, S1 → e1S2, S2 → e2S3 and S3 → e3. This results in
S0 → e0e1e2e3, in which the root of the derivation tree S0
comprises the whole action sequence.

The MG-formalism preserves this order through the selectors
of the associated exponents: After the formalism is starting
with the sign 〈e0,::S0-k,∅〉 the exponent e1 is required by
the selector “=S0” of the sign 〈e1,::=S0+kS1-k, σ (e1)〉. Next,
the exponent e2 is required by the selector “=S1” of the sign
〈e2,::=S1+kS2-k, σ (e2)〉. Finally, the exponent e3 is required
by the selector “=S2” of the remaining sign in the articulation
set 〈e3,::=S2+kS3,∅〉. The complete concatenated string a =

(e0,e1,e2,e3) = (<start>,1x,1y,<end>) is inferred then
by the last move-1 rule and corresponds to the action sequence
that is subsequently transmitted to the agent’s actuators.

5. LINGUISTIC COMMUNICATION

As in the case of physical interaction, we also describe linguistic
communication through a minimalist grammar. However, while
interaction suffices with a minimalist implementation of regular
grammars, exploiting only merge-3 and move-1 operations for
the processing of linear time series of observation and actuation,
natural language processing requires the full complexity of the
MG formalism.

5.1. Utterance-Meaning Transducer (UMT)
In this section we propose a bidirectional Utterance-Meaning-
Transducer (UMT) for both speech understanding and speech
production by means of MG. For further illustrating the rules
(10–11) and their applicability, let us stick with the example
UMP (2) given in Sect. 2. Its syntactic analysis in terms of
generative grammar (Haegeman, 1994) yields the (simplified)
phrase structure tree in Figure 2A4.

4For the sake of simplicity we refrain from presenting full-fledged X-bar
hierarchies (Haegeman, 1994).
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The syntactic categories in Figure 2A are the maximal
projections CP (complementizer phrase), IP (inflection phrase),
VP (verbal phrase), and DP (determiner phrase). Furthermore,
there are the intermediary node I′ and the heads I (inflection),
D (determiner), V (verb), and N (noun), corresponding to t, d, v,
and n inMG, respectively. Note that inflection is lexically realized
only by the present tense suffix -s. Moreover, the verb eat has
been moved out of its base-generated position leaving the empty
string ǫ there. Movement is indicated by co-indexing with i.

Correspondingly, we present a simple semantic analysis in
Figure 2B using the notation from Sect. 3.5 together with the
lambda calculus of the binary predicate in its Schönfinkel-Curry
notation (Schönfinkel, 1924; Lohnstein, 2011).

Guided by the linguistic analyses in Figure 2, an expert could
construe aminimalist lexicon as given inTable 2 by hand (Stabler
and Keenan, 2003).

〈the,::=n d -k, ǫ〉 〈mouse,::n,mouse〉

〈the mouse,:d -k,mouse〉
merge-1 (19-1)

〈eat,::=n v -f, λx.λy.eat(x)(y)〉 〈cheese,::n -k,cheese〉

〈eat,:v -f, λx.λy.eat(x)(y)〉〈cheese,:-k,cheese〉
merge-3 (19-2)

〈ǫ,::=v +k =d pred, λP.λQ.Q(P)〉 〈eat,:v -f, λx.λy.eat(x)(y)〉〈cheese,:-k,cheese〉

〈ǫ,:+k =d pred, λP.λQ.Q(P)〉〈eat,:-f, λx.λy.eat(x)(y)〉〈cheese,:-k,cheese〉
merge-3 (19-3)

〈ǫ,:+k =d pred, λP.λQ.Q(P)〉〈eat,:-f, λx.λy.eat(x)(y)〉〈cheese,:-k,cheese〉

〈cheese,:=d pred, (λP.λQ.Q(P))(cheese)〉〈eat,:-f, λx.λy.eat(x)(y)〉
move-1 (19-4)

〈cheese,:=d pred, (λP.λQ.Q(P))(cheese)〉〈eat,:-f, λx.λy.eat(x)(y)〉

〈cheese,:=d pred, λQ.Q(cheese)〉〈eat,:-f, λx.λy.eat(x)(y)〉
λ-app. (19-5)

〈cheese,:=d pred, λQ.Q(cheese)〉〈eat,:-f, λx.λy.eat(x)(y)〉 〈the mouse,:d -k,mouse〉

〈cheese,:pred, λQ.Q(cheese)〉〈eat,:-f, λx.λy.eat(x)(y)〉〈the mouse,:-k,mouse〉
merge-3 (19-6)

〈-s,::=pred +f +k t, ǫ〉 〈cheese,:pred, λQ.Q(cheese)〉〈eat,:-f, λx.λy.eat(x)(y)〉〈the mouse,:-k,mouse〉

〈-s cheese,:+f +k t, λQ.Q(cheese)〉〈eat,:-f, λx.λy.eat(x)(y)〉〈the mouse,:-k,mouse〉
merge-1 (19-7)

〈-s cheese,:+f +k t, λQ.Q(cheese)〉〈eat,:-f, λx.λy.eat(x)(y)〉〈the mouse,:-k,mouse〉

〈eat-s cheese,:+k t, (λQ.Q(cheese))(λx.λy.eat(x)(y))〉〈the mouse,:-k,mouse〉
move-1 (19-8)

〈eats cheese,:+k t, (λQ.Q(cheese))(λx.λy.eat(x)(y))〉〈the mouse,:-k,mouse〉

〈eats cheese,:+k t, (λx.λy.eat(x)(y))(cheese)〉〈the mouse,:-k,mouse〉
λ-app. (19-9)

〈eats cheese,:+k t, (λx.λy.eat(x)(y))(cheese)〉〈the mouse,:-k,mouse〉

〈eats cheese,:+k t, λy.eat(cheese)(y)〉〈the mouse,:-k,mouse〉
λ-app. (19-10)

〈eats cheese,:+k t, λy.eat(cheese)(y)〉〈the mouse,:-k,mouse〉

〈the mouse eats cheese,:t, (λy.eat(cheese)(y))(mouse)〉
move-1 (19-11)

〈the mouse eats cheese,: t, (λy.eat(cheese)(y))(mouse)〉

〈the mouse eats cheese,:t,eat(cheese)(mouse)〉
λ-app. (19-12)

〈ǫ,::=t c, ǫ〉 〈the mouse eats cheese,:t,eat(cheese)(mouse)〉

〈the mouse eats cheese,:c,eat(cheese)(mouse)〉
merge-1 . (19-13)

We adopt a shallow semantic model, where the universe
of discourse only contains two individuals, the mouse and a
piece of cheese5. Then, the lexicon (Table 2) is interpreted as
follows. Since all entries are contained in the MG lexicon, they
are of category “::.” There are two nouns (n), mouse and
cheese with their respective semantics as individual constants,
mouse and cheese. In contrast to mouse, the latter possesses a
licensee -k for case marking. The same holds for the determiner
the selecting a noun (=n) as its complement to form a
determiner phrase d which also requires case assignment (-k)
afterwards. The verb (v) eat selects a noun as a complement
and has to be moved for inflection -f. Its compositional

5Moreover, we abstract our analysis from temporal and numeral semantics and
also from the intricacies of the semantics of noun phrases in the present exposition.

semantics is given by the binary predicate eat(x)(y) whose
argument variables are bound by two lambda expressions λx.λy.
Moreover, we have an inflection suffix -s for present tense in
third person singular, taking a predicate (pred) as complement,
then triggering firstly inflection movement +f and secondly
case assignment +k, whose type is tense (t). Finally, there are
two entries that are phonetically not realized. The first one
selects a verbal phrase =v and assigns case +k afterwards; then,
it selects a determiner phrase =d as subject and has its own
type predicate pred; additionally, we prescribe an intertwiner
of two abstract lambda expressions Q,P as its semantics. The
last entry provides a simple type conversion from tense t to
complementizer c in order to arrive at a well-formed sentence
with start symbol c.

Using the lexicon (Table 2), the sign (16) is obtained by the
minimalist derivation (19).

In the first step, (19-1), the determiner the takes the noun
mouse as its complement to form a determiner phrase d that
requires licensing through case marking afterwards. In step 2,
the finite verb eat selects the noun cheese as direct object,
thus forming a verbal phrase v. As there remain unchecked
features, only merge-3 applies yielding a minimalist expression,
i. e. a sequence of signs. In step 3, the phonetically empty
predicate pred merges with the formerly built verbal phrase.
Since pred assigns accusative case, the direct object is moved
in (19-4) toward the first position through case marking by
simultaneously concatenating the respective lambda terms. Thus,
lambda application entails the expression in step 5. Then, in
step 6, the predicate selects its subject, the formerly construed
determiner phrase. In the seventh step, (19-7), the present-
tense suffix unifies with the predicate, entailing an inflection
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TABLE 2 | UMT minimalist lexicon for example grammar (Figure 2).

〈mouse,::n,mouse〉 〈cheese,::n -k,cheese〉

〈the,::=n d -k, ǫ〉 〈eat,::=n v -f, λx.λy.eat(x)(y)〉

〈-s,::=pred +f +k t, ǫ〉 〈ǫ,::=v +k =d pred, λP.λQ.Q(P)〉

〈ǫ,::=t c, ǫ〉

phrase pred, whose verb is moved into the first position in
step 8, thereby yielding the inflected verb eat-s. In steps 9
and 10 two lambda applications result into the correct semantics,
already displayed in Figure 2B. Step 11 assigns nominative
case to the subject through movement into specifier position.
A further lambda application in step 12 yields the intended
interpretation of predicate logics. Finally, in step 13, the syntactic
type t is converted into c to obtain the proper start symbol of
the grammar.

Derivations such as (19) are essential for MG. However, their
computation is neither incremental nor predictive. Therefore,
they are not suitable for natural language processing in their
present form of data-driven bottom-up processing. A number
of different parsing architectures have been suggested in the
literature to remedy this problem (Harkema, 2001; Mainguy,
2010; Stabler, 2011b; Stanojević and Stabler, 2018). From a
psycholinguistic point of view, predictive parsing appears most
plausible, because a cognitive agent should be able to make
informed guesses about a speaker’s intents as early as possible,
without waiting for the end of an utterance (Hale, 2011).
This makes either an hypothesis-driven top-down parser, or
a mixed-strategy left-corner parser desirable also for language
engineering applications. In this section, we briefly describe
a bidirectional utterance-meaning transducer (UMT) for MG
that is based upon Stabler (2011b)’s top-down recognizer as
outlined earlier by beim Graben et al. (2019a). Its generalization
toward the recent left-corner parser (Stanojević and Stabler,
2018) is straightforward.

The central object for MG language processing is the
derivation tree obtained from a bottom-up derivation as
in (19). Figure 3 depicts this derivation tree, where we
present a comma-separated sequence of exponents for the
sake of simplicity. Additionally, every node is addressed
by an index tuple that is computed according to Stabler
(2011b)’s algorithm.

Pursuing the tree paths in Figure 3 from the bottom to the top,
provides exactly the derivation (19). However, reading it from
the top toward the bottom allows for an interpretation in terms
of multiple context-free grammars (Seki et al., 1991; Michaelis,
2001) (MCFG) where categories are n-ary predicates over string
exponents. Like in context-free grammars, every branching in the
derivation tree (Figure 3) leads to one phrase structure rule in
the MCFG. Thus, the MCFG enumerated in (20) codifies the MG
(Table 2).

〈:c〉(e0e1)← 〈::=t c〉(e0) 〈:t〉(e1) (20-1)

〈:t〉(e1e0)← 〈:+k t, -k〉(e0, e1) (20-2)

〈:+k t, -k〉(e1e0, e2)← 〈:+f +k t, -f, -k〉(e0, e1, e2) (20-3)

〈:+f +k t, -f, -k〉(e0e1, e2, e3)← 〈::=pred +f +k t〉(e0)

〈:pred, -f, -k〉(e1, e2, e3) (20-4)

〈:pred, -f, -k〉(e0, e1, e2)← 〈:=d pred, -f〉(e0, e1) 〈:d -k〉(e2)
(20-5)

〈:=d pred, -f〉(e2e0, e1)← 〈:+k =d pred, -f, -k〉(e0, e1, e2)
(20-6)

〈:+k =d pred, -f, -k〉(e0, e1, e2)← 〈::=v +k =d pred〉(e0)

〈:v -f, -k〉(e1, e2) (20-7)

〈:v -f, -k〉(e0, e1)← 〈::=n v -f〉(e0) 〈::n -k〉(e1) (20-8)

〈:d -k〉(e0e1)← 〈::=n d -k〉(e0) 〈::n〉(e1) (20-9)

〈::n〉(mouse) (20-10)

〈::n -k〉(cheese) (20-11)

〈::=n d -k〉(the) (20-12)

〈::=n v -f〉(eat) (20-13)

〈::=pred +f +k t〉(-s) (20-14)

〈::=v +k =d pred〉(ǫ) (20-15)

〈::=t c〉(ǫ) (20-16)

In (20), the angular brackets enclose the MCFG categories
that are obviously formed by tuples of MG categories and
syntactic types. These categories have the same number of string
arguments ek as prescribed in the type tuples. Because MCFG
serve only for syntactic parsing in our UMT, we deliberately omit
the semantic terms here; they are reintroduced below. TheMCFG
rules (20-1–20-9) are directly obtained from the derivation
tree (Figure 3) by reverting the merge and move operations
of (19) through their “unmerge” and “unmove” counterparts
(Harkema, 2001). The MCFG axioms, i. e. the lexical rules (20-
10 – 20-16), are reformulations of the entries in the MG lexicon
(Table 2).

The UMT’s language production module finds a semantic
representation of an intended utterance in form of a Schönfinkel-
Curry (Schönfinkel, 1924; Lohnstein, 2011) formula of predicate
logic, such as eat(cheese)(mouse), for instance. According
to Figure 2B this is a hierarchical data structure that can
control the MG derivation (19). Thus, the cognitive agent
accesses its mental lexicon, either through Table 2 or its MCFG
twin (20) in order to retrieve the linguistic signs for the
denotations eat, cheese, and mouse. Then, the semantic tree
(Figure 2B) governs the correct derivation (19) up to lexicon
entries that are phonetically empty. These must occasionally
be queried from the data base whenever required. At the end
of the derivation the computed exponent the mouse eats
cheese is uttered.

The language understanding module of our UMT, by contrast,
comprises three memory tapes: the input sequence, a syntactic
priority queue, and also a semantic priority queue. Input tape
and syntactic priority queue together constitute Stabler (2011b)’s
priority queue top-down parser. Yet, in order to compute
the meaning of an utterance in the semantic priority queue,
we slightly depart from the original proposal by omitting
the simplifying trim function. Table 3 presents the temporal
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FIGURE 3 | Simplified derivation tree of Equation (19). Exponents of different signs are separated by commas. Nodes are also addressed by index tuples.

evolution of the top-down recognizer’s configurations while
processing the utterance the mouse eats cheese.

The parser is initialized with the input string to be processed
and the MCFG start symbol 〈:c〉(ǫ)—corresponding to the MG
start symbol c—at the top of the priority queue. For each rule
of the MCFG (20), the algorithm replaces its string variables
by an index tuple that addresses the corresponding nodes in
the derivation tree (Figure 3) (Stabler, 2011b). These indices
allow for an ordering relation where shorter indices are smaller
than longer ones, while indices of equal length are ordered
lexicographically. As a consequence, the MCFG axioms in (20)
become ordered according to their temporal appearance in the
utterance. Using the notation of the derivation tree (Figure 3),
we get

the(100) < mouse(101) < eat(110) < -s(1110)

< cheese(11110) .

Hence, index sorting ensures incremental parsing.
Besides the occasional sorting of the syntactic priority queue,

the automaton behaves as a conventional context-free top-down
parser. When the first item in the queue is an MCFG category
appearing at the left hand side of an MCFG rule, this item is
expanded into the right hand side of that rule. When the first
item in the queue is a predicted MCFG axiom whose exponent
also appears on top of the input tape, this item is scanned
from the input and thereby removed from queue and input
simultaneously. Finally, if queue and input both contain only the
empty word, the utterance has been successfully recognized and
the parser terminates in the accepting state.

Interestingly, the index formalism leads to a straightforward
implementation of the UMT’s semantic parser as well. The
derivation tree (Figure 3) reveals that the index length correlates
with the tree depth. In our example, the items 〈::n -k〉(11110)
and 〈::=v +k =d pred〉(11111) in the priority queue have
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TABLE 3 | MG top-down parse of the mouse eats cheese.

Step Input Syntactic queue Operation

1. the mouse eats cheese 〈:c〉(ǫ) expand (20-1)

2. the mouse eats cheese 〈::=t c〉(0)〈:t〉(1) scan (20-16)

3. the mouse eats cheese 〈:t〉(1) expand (20-2)

4. the mouse eats cheese 〈:+k t, -k〉(11, 10) expand (20-3)

5. the mouse eats cheese 〈:+f +k t, -f, -k〉(111, 110, 10) expand (20-4)

6. the mouse eats cheese 〈::=pred +f +k t〉(1110)〈:pred, -f, -k〉(1111, 110, 10) sort

7. the mouse eats cheese 〈:pred, -f, -k〉(1111, 110, 10)〈::=pred +f +k t〉(1110) expand (20-5)

8. the mouse eats cheese 〈:=d pred, -f〉(1111, 110)〈:d -k〉(10)〈::=pred +f +k t〉(1110) sort

9. the mouse eats cheese 〈:d -k〉(10)〈:=d pred, -f〉(1111, 110)〈::=pred +f +k t〉(1110) expand (20-9)

10. the mouse eats cheese 〈::=n d -k〉(100)〈::n〉(101)〈:=d pred, -f〉(1111, 110)〈::=pred +f +k t〉(1110) scan (20-12)

11. mouse eats cheese 〈::n〉(101)〈:=d pred, -f〉(1111, 110)〈::=pred +f +k t〉(1110) scan (20-10)

12. eats cheese 〈:=d pred, -f〉(1111, 110)〈::=pred +f +k t〉(1110) expand (20-6)

13. eats cheese 〈:+k =d pred, -f, -k〉(11111, 110, 11110)〈::=pred +f +k t〉(1110) expand (20-7)

14. eats cheese 〈::=v +k =d pred〉(11111)〈:v -f, -k〉(110, 11110)〈::=pred +f +k t〉(1110) sort

15. eats cheese 〈:v -f, -k〉(110, 11110)〈::=pred +f +k t〉(1110)〈::=v +k =d pred〉(11111) expand (20-8)

16. eats cheese 〈::=n v -f〉(110)〈::n -k〉(11110)〈::=pred +f +k t〉(1110)〈::=v +k =d pred〉(11111) sort

17. eats cheese 〈::=n v -f〉(110)〈::=pred +f +k t〉(1110)〈::n -k〉(11110)〈::=v +k =d pred〉(11111) scan (20-13)

18. -s cheese 〈::=pred +f +k t〉(1110)〈::n -k〉(11110)〈::=v +k =d pred〉(11111) scan (20-14)

19. cheese 〈::n -k〉(11110)〈::=v +k =d pred〉(11111) scan (20-11)

20. ǫ 〈::=v +k =d pred〉(11111) scan (20-15)

21. ǫ ǫ accept

TABLE 4 | Semantic processing of the mouse eats cheese.

Step Input Semantic queue Operation

1. the mouse eats cheese ǫ scan (20-16)

2. the mouse eats cheese 〈ǫ〉(0) apply

3. the mouse eats cheese ǫ scan (20-12)

4. mouse eats cheese 〈ǫ〉(100) apply

5. mouse eats cheese ǫ scan (20-10)

6. eats cheese 〈mouse〉(101) scan (20-13)

7. -s cheese 〈mouse〉(101)〈λx.λy.eat(x)(y)〉(110) scan (20-14)

8. cheese 〈mouse〉(101)〈λx.λy.eat(x)(y)〉(110)〈ǫ〉(1110) apply

9. cheese 〈mouse〉(101)〈λx.λy.eat(x)(y)〉(110) scan (20-11)

10. ǫ 〈mouse〉(101)〈λx.λy.eat(x)(y)〉(110)〈cheese〉(11110) scan (20-15)

11. ǫ 〈mouse〉(101)〈λx.λy.eat(x)(y)〉(110)〈cheese〉(11110)〈λP.λQ.Q(P)〉(11111) sort

11. ǫ 〈λP.λQ.Q(P)〉(11111)〈cheese〉(11110)〈λx.λy.eat(x)(y)〉(110)〈mouse〉(101) apply

12. ǫ 〈λQ.Q(cheese)〉(1111)〈λx.λy.eat(x)(y)〉(110)〈mouse〉(101) apply

13. ǫ 〈(λx.λy.eat(x)(y))(cheese)〉(111)〈mouse〉(101) apply

14. ǫ 〈λy.eat(cheese)(y)〉(111)〈mouse〉(101) apply

15. ǫ 〈eat(cheese)(mouse)〉(11) understand

the longest indices. These correspond precisely to the lambda
terms cheese and λP.λQ.Q(P), respectively, that are unified
by lambda application in derivation step (19-5). Moreover, also
the semantic analysis in Figure 2B illustrates that the deepest
nodes are semantically unified first.

Every time, when the syntactic parser scans a correctly
predicted item from the input tape, this item is removed from
both input tape and syntactic priority queue. Simultaneously, the
semantic content of its sign is pushed on top of the semantic

priority queue, yet preserving its index. When some or all
semantic items are stored in the queue, they are sorted in reversed
index order to get highest semantic priority on top of the queue.
Table 4 illustrates the semantic parsing for the given example.

In analogy to the syntactic recognizer, the semantic parser
operates in similar modes. Both processors share their common
scan operation. In contrast to the syntactic parser which sorts
indices in ascending order, the semantic module sorts them
in descending order for operating on the deepest nodes in
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TABLE 5 | Minimalist lexicon–communication.

〈contains,::=n =n v,

λq.λp.contain(q)(p)〉

〈cheese,::n,cheese〉

〈lies,::=p =n v, λq.λp.lie(q)(p)〉 〈field,::n,field〉

〈(x,y),::p -f, (x,y)〉 〈ǫ,::=n =p m -g, λP.λp.P(p)〉

〈ǫ,::=m +f +g n, λP.λQ.QP〉 〈in,::=n p, ǫ〉

the derivation tree first. Most of the time, it attempts lambda
application (apply) which is always preferred for ǫ-items on the
queue. When apply has been sufficiently performed upon a term,
the last index number is removed from its index (sometimes
it might also be necessary to exchange two items for lambda
application). Finally, the semantic parser terminates in the
understanding state.

5.2. Interpretation
After preparing the UMT, we come back to our particular mouse-
maze example. As previously explained, the agent could find
its target objects by physically exploring its state space through
interaction. Yet, another possibility is linguistic communication
where an operator may inform the agent about the correct
position of a target. For this case, we present another MG in
Table 5. It contains the linguistic signs that can be used to
compose the meaning of a message.

Our “communication” lexicon comprises two verbs,
contains and lies, of the basic type v, which we want
to consider here as the start symbol of the MG. The verb
contains is transitive and therefore corresponds to a

〈contains,::=n =n v, λq.λp.contain(q)(p)〉 〈cheese,::n,cheese〉

〈contains cheese,:=n v, (λq.λp.contain(q)(p))(cheese)〉
merge-1

〈ǫ,::=n =p m -g, λP.λp.P(p)〉 〈field,::n,field〉

〈field,:=p m -g, (λP.λp.P(p))(field)〉
merge-1

〈field,::=p m -g, λp.field(p)〉 〈(x,y),:p -f, (x,y)〉

〈field,:m -g, λp.field(p)〉〈(x,y),:-f, (x,y)〉
merge-3

〈ǫ,::=m +f +g n, λP.λQ.QP〉 〈field,:m -g, λp.field(p)〉〈(x,y),:-f, (x,y)〉

〈ǫ,:+f +g n, λP.λQ.QP〉〈field,:-g, λp.field(p)〉〈(x,y),:-f, (x,y)〉
merge-3

〈ǫ,:+f +g n, λP.λQ.QP〉〈field,:-g, λp.field(p)〉〈(x,y),:-f, (x,y)〉

〈(x,y),:+g n, (λP.λQ.QP)((x,y))〉〈field,:-g, λp.field(p)〉
move-1

〈(x,y),:+g n, λQ.Q((x,y))〉〈field,:-g, λp.field(p)〉

〈field (x,y),:n, (λQ.Q((x,y)))(λp.Feld(p))〉
move-1

〈contains cheese,:=n v, λp.contain(cheese)(p)〉 〈field (x,y),:n,field((x,y))〉

〈field (x,y) contains cheese,:v, (λp.contain(cheese)(p))(field((x,y)))〉
merge-2

binary predicate, as indicated above by the lambda term in
the Schönfinkel representation (Lohnstein, 2011). Syntactically,
this binary predicate is expressed by two selectors =n, whereas
in linguistics we have to take into account, that a transitive verb
first selects a direct object and subsequently its subject (both
nouns of the type n “noun”). The verb lies is intransitive, but
can be modified by a prepositional phrase through a selector
(=p). There are two nouns in the lexicon: field and cheese,
their semantics are the corresponding individual names. The
field coordinates (x, y) in the labyrinth are expressed by the
exponent (x,y), whose syntactic function is an adjunct of
the basic type p (prepositional phrase). This must be moved
once in the course of the structure development, for which the
licensee -f is intended. The adjunction itself is triggered by a
phonetically empty entry of the basic type m (modifier). This has
two selectors: =n selects the noun phrase to be modified, while
=p selects the adjoint prepositional phrase. Then -g licenses a
movement. The semantics of the adjunction here expressed in a
simplified manner as the predication λP.λp.P(p). That is, there
is an object p which has the property P. Another phonetically
empty expression selects a modified noun phrase (=m), then
licenses two movements (+f +g) and generates itself a noun
phrase of the base type n. Semantically, an argument movement
is canceled again by the exchange operator λP.λQ.QP. Finally,
there is a preposition in of the basic type p, which also selects
a noun phrase for adjunction (=n). Instead of formalizing their
locative semantics in concrete terms, we simplify them with an
empty lambda expression ǫ. In order to reduce the effort for the
exploration phase, we can send the following message “field
(x,y) contains cheese” to the mouse. This utterance
can be processed by our UMT above, for which we present the
minimalist bottom-up derivation as follows.
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Thereby, the utterance “field (x,y) contains
cheese” is recognized in the exponent, so that
its semantics can be interpreted in terms of model
theory as a predicate logic formula after a last lambda
application (λp.contain(cheese)(p))(field((x,y))) =
contain(cheese)(field((x,y))). The denotation of this
predicate assignment results to

[[contain(cheese)(field((x,y)))]] = ([[cheese]],

[[field((x,y))]]) ∈ [[contain]], (21)

This corresponds to a representational data structure which can
be inserted in an associated relational scheme.

5.3. Articulation
For speech production, we start from the fact “field (x,y)
contains cheese” and show the possibility of stylistic
creativity. First, we note that the denotation of contain
is coextensive with that of lie, i. e. [[contain]] = [[lie]]
applies. Based on this capability an agent is able to express
what it has understood in its own words. In this way,
the adjustment of common ideas or concepts required for
successful communication can take place. If the agent wants
to articulate such an utterance, it must first translate the
facts into a predicate logic formula and has to consider,
that the order of arguments of the subject and the direct
object must be swapped: lie(field((x,y)))(cheese). A
query in the minimalist lexicon then leads to the following
derivation, whereby we reuse the previously derived
expression 〈field (x,y),:n,field((x,y))〉 in the sense of
dynamic programming.

〈in,::=n p, ǫ〉 〈field (x,y),:n,field((x,y))〉

〈in field (x,y),:p,field((x,y))〉
merge-1

〈lies,::=p =n v, λq.λp.lie(q)(p)〉 〈in field (x,y),:p,field((x,y))〉

〈lies in field (x,y),:=n v, (λq.λp.lie(q)(p))(field((x,y)))〉
merge-1

〈lies in field (x,y),:=n v, λp.lie(field((x,y)))(p)〉 〈cheese,::n,cheese〉

〈cheese lies in field (x,y),:v, (λp.lie(field((x,y)))(p))(cheese)〉
merge-2

The present derivation finally comprises after a
final lambda application the intended semantics
(λp.lie(field((x,y)))(p))(cheese) = lie(field((x,y)))
(cheese) and leads also to the synonymous utterance “cheese
lies in field (x,y).”

5.4. Knowledge Integration
In the previous sections we described how the information of
symbolic sequences can be transformed into logically processable
knowledge and vice versa by interaction or communication,
respectively. In order to process knowledge, it has to be saved and
retrieved again. These operations are essential characteristics of
a universal algorithmic system with which calculation rules can
be implemented. Based on such a knowledge processing system
a cognitive agent is able to pursue goals, understand situations,
select cost optimal actions and to predict its consequences.
Further, the agent should be able to learn behavioral relations
and to adapt to changing environmental conditions. These
requirements can be satisfied more efficiently if the required

knowledge is structured and available as a (dynamic)model of the
external world. To this end, we apply the state space model, with
which we can describe the relations RSituation ⊆ States × O and
RMovement ⊆ States×A× States, where the set States corresponds
to the set Z of the state space model. Based on these relations
predictions about the next state and the associated observations
can be made. Prediction errors can either be used to recognize
changes in the environmental conditions or in the realization of
the selected actions, which can initiate an adaptation or diagnosis
process. The states z ∈ Z correspond to the maze fields and have
a finer inner structure based on ordered pairs z = (x, y) ∈ X×Y ,
which are associated with the two-dimensional coordinates of
the maze. They can be measured by sensors. The same applies
to the elements a ∈ A, where the finer structure is given by
a = (1x,1y) ∈ 1X×1Y . The elements o ∈ O correspond to the
target object types, which can be identified by an object classifier.

In order to build a dynamic model, the agent must
have the ability to analyze experimentally. In the course of
this experimentation process (exploration), knowledge about
“situations” and “movements” is stored in relational schemes as
long as no contradictions occur. Such an exploration process
results—mathematically speaking—in a relation RX ∈ Rel(X ),
whereby the identified relation RX can be expressed by its
characteristic function (e.g., fRSituation : X × Y × O → {0, 1}),
which assigns exactly one truth value to each tuple τ ∈ Tup(X ).
After completion of the exploration phase, the evaluation of the
characteristic functions can be used to answer questions like
“What is the case?” or “What does this observation mean?” in a
truth-functional sense and therefore leads to a veridical model.
Such a model enables the agent to gain knowledge through
simulation or inference, which in turn can then be transfered to

reality. To this end, the agent has to compare the representational
data structure of the perception (e. g. τobs = {X → x ∈
dom(X),Y → y ∈ dom(Y),→ o ∈ dom(O)}) with some
of the learned representational data structures of the associated
relational scheme:

fRX (τ ) =

{

True, ifτ ∈ RX ,

False, if τ /∈ RX .

If matches are found, the agent understands the incoming
information. In semiotics, this process is called denotation and
can be realized by a logical compound system (see Figure 4). If no
matches are found, an adaptation or coping process is triggered
(Wolff et al., 2015).

In order to apply the dynamic model to the mouse-maze-
application properly, we have to specify all attributes and
relation schemes of states, situations, actions and movements as
well as the corresponding relations that are required: States =
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FIGURE 4 | Left: A logical compound system compares measurement information and model knowledge, subsequently a strategy based action is selected. Right:

Merging of sensory information (interaction) and language information (communication) based on a double cognitive loop.

{X,Y} ⊂ U , R(States) = (X : dom(X),Y : dom(Y)), RStates ⊆
Tup(States), Situation = {States,O} ⊂ U , R(Situation) =
(X : dom(X),Y : dom(Y),O : dom(O)) and RSituation ⊆

Tup(Situation). Action = {1X,1Y} ⊂ U , R(Action) =
(1X : dom(1X),1Y : dom(1Y)) and RAction ⊆ Tup(Action).
Movement = {States,Action} ⊂ U , R(Movement) =

(States : dom(States),Action : dom(Action), States′ : dom(States))
and RMovement ⊆ Tup(Movement).

With these definitions suitable representational data
structures are provided that are needed for the transformation
and integration processes. However, despite the uniform
description of the two cognitive loops using linguistic means,
there is an essential difference between interaction and
communication. Verbal communication operates primarily
with object types and refers to predicate symbols as well. In
contrast, the perceptive part of interaction is based on sensors
and classifiers only, so that no relations between any object
types can be directly encoded (Hausser, 2014). Hence, such
relations have to be learned by the agent (Wolff et al., 2018). Yet,
in a shared environment these different kinds of information
can be used to solve the context problem. For this end, we
consider the following example, in which the linguistic message
“field(x,y) contains cheese” is translated into the
binary predicate contain(field(x,y),cheese). In order
to obtain the truth value of this statement, it must be checked
whether an instance of the object type “cheese” is located
at the specified position z = (x, y). That means the agent has
to move to this position and take measurements. Then, the
corresponding symbol sequence must be transformed into the
tuple τobs = {X → x ∈ dom(X),Y → y ∈ dom(Y),O →
o ∈ dom(O)} ∈ RSituation, which can now be compared with
the entries of the relation Rcontain ⊆ ×X × Y × O. Please note

that this relation is associated to the translated predicate and
that an interpretation of the sensor values appropriate to the
context is only possible if the proper scheme has been selected
(Figure 4). Since both relations are designated by different
names, it must be ensured that their denotation is identical, i. e.
[[contain]] = [[Situation]] must apply.

6. LANGUAGE ACQUISITION

So far we discussed how a cognitive agent, being either human or
an intelligent machine, could produce and understand utterances
that are described in terms of minimalist grammar. An MG is
given by a mental lexicon as in example (Table 2), encoding a
large amount of linguistic expert knowledge. Therefore, it seems
unlikely that speech-controlled user interfaces could be build and
sold by engineering companies for little expenses.

Yet, it has been shown that MG are effectively learnable in
the sense of Gold’s formal learning theory (Gold, 1967). The
studies of Bonato and Retoré (2001), Kobele et al. (2002), and
Stabler et al. (2003) demonstrated how MG can be acquired
by positive examples from linguistic dependence graphs (Nivre,
2003; Boston et al., 2010). The required dependency structures
can be extracted from linguistic corpora by means of big
data machine learning techniques, such as the expectation
maximization (EM) algorithm (Klein and Manning, 2004).

In our terminology, such statistical learning methods only
reveal correlations at the exponent level of linguistic signs. By
contrast, in the present study we propose an alternative training
algorithm that simultaneously analyzes similarities between
exponents and semantic terms. Moreover, we exploit both
positive and negative examples to obtain a better performance
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TABLE 6 | Learned minimalist lexicon X1 at time t = 1.

〈the mouse eats cheese,:c,eat(cheese)(mouse)〉

through reinforcement learning (Skinner, 2015; Sutton and
Barto, 2018).

The language learner is a cognitive agent L in a state Xt , to
be identified with L’s mental lexicon at training time t. At time
t = 0, X0 is initialized as a tabula rasa with the empty lexicon

X0 ← ∅ (22)

and exposed to UMPs produced by a teacher T. Note that
we assume T presenting already complete UMPs and not
singular utterances to L. Thus, we circumvent the symbol
grounding problem of firstly assigning meanings σ to uttered
exponents e (Harnad, 1990), which will be addressed in future
research. Moreover, we assume that L is instructed to reproduce
T’s utterances based on its own semantic understanding.
This provides a feedback loop and therefore applicability of
reinforcement learning (Skinner, 2015; Sutton and Barto, 2018).
For our introductory example, we adopt the simple semantic
model from Sect. 5. In each iteration, the teacher utters an UMP
that should be learned by the learner.

6.1. First Iteration
Let the teacher Tmake the first utterance (2)

u1 = 〈the mouse eats cheese,eat(cheese)(mouse)〉.

As long as L is not able to detect patterns or common similarities
in T’s UMPs, it simply adds new entries directly to its mental
lexicon, assuming that all utterances are complex “:” and
possessing base type c, i. e. the MG start symbol. Hence, L’s state
Xt evolves according to the update rule

Xt ← Xt−1 ∪ {〈et ,:c, σt〉} , (23)

when ut = 〈et , σt〉 is the UMP presented at time t by T.
In this way, the mental lexicon X1 shown in Table 6 has been

acquired at time t = 1.

6.2. Second Iteration
Next, let the teacher be uttering another proposition

u2 = 〈the rat eats cheese,eat(cheese)(rat)〉 .
(24)

Looking at u1, u2 together, the agent’s pattern matching module
(cf. van Zaanen, 2001) is able to find similarities between
exponents and semantics, underlined in Equation (25).

u1 = 〈the mouse eats cheese,eat(cheese)(mouse)〉

(25-1)

u2 = 〈the rat eats cheese,eat(cheese)(rat)〉 .

(25-2)

TABLE 7 | Learned minimalist lexicon X2 at time t = 2.

〈the mouse,:d,mouse〉 〈the rat,:d,rat〉

〈eats cheese,:=d c, λy.eat(cheese)(y)〉

TABLE 8 | Revised minimalist lexicon X21.

〈the,::=n d, ǫ〉 〈mouse,::n,mouse〉

〈rat,::n,rat〉 〈eats cheese,:=d c, λy.eat(cheese)(y)〉

TABLE 9 | Learned minimalist lexicon X3 at time t = 3.

〈the,::=n d, ǫ〉 〈mouse,::n,mouse〉

〈rat,::n,rat〉 〈cheese,::n,cheese〉

〈carrot,::n,carrot〉 〈eats,::=n =d c, λx.λy.eat(x)(y)〉

Thus, L creates two distinct items for the mouse and the
rat, respectively, and carries out lambda abstraction to obtain
the updated lexicon X2 in Table 7.

Note that the induced variable symbol y and syntactic types
d, c are completely arbitrary and do not have any particular
meaning to the agent.

As indicated by underlines in Table 7, the exponents the
mouse and the rat, could be further segmented through
pattern matching, that is not reflected by their semantic
counterparts, though. Therefore, a revised lexicon X21, displayed
in Table 8 can be devised.

For closing the reinforcement cycle, L is supposed to produce
utterances upon its own understanding. Thus, we assume
that L wants to express the proposition eat(cheese)(rat).
According to our discussion in Sect. 5, the corresponding signs
are retrieved from the lexicon X21 and processed through a valid
derivation leading to the correct utterance the rat eats
cheese, that is subsequently endorsed by T.

6.3. Third Iteration
In the third training session, the teacher’s utterance might be

u3 = 〈the mouse eats carrot,eat(carrot)(mouse)〉.
(26)

Now we have to compare u3 with the lexicon entry for eats
cheese in (27).

〈the mouse eats carrot,eat(carrot)(mouse)〉
(27-1)

〈eats cheese,:c, λy.eat(cheese)(y)〉 . (27-2)

Another lambda abstraction entails the lexicon X3 in Table 9.
Here, the learner assumes that eats is a simple, lexical

category without having further evidence as in Sect. 5.
Since L is instructed to produce well-formed utterances, it

could now generate a novel semantic representation, such as
eat(carrot)(rat). This leads through data base query from
the mental lexicon X3 to the correct derivation (28) that is
rewarded by T.
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TABLE 10 | Learned minimalist lexicon X4 at time t = 4.

〈the,::=n d, ǫ〉 〈mouse,::n,mouse〉

〈rat,::n,rat〉 〈rats,::n,rats〉

〈cheese,::n,cheese〉 〈carrot,::n,carrot〉

〈eats,::=n =d c, λx.λy.eat(x)(y)〉 〈eat,::=n =d c, λx.λy.eat(x)(y)〉

〈the,::=n d, ǫ〉 〈rat,::n,rat〉

〈the rat,:d,rat〉
merge-1 (28-1)

〈eats,::=n =d c, λx.λy.eat(x)(y)〉 〈carrot,::n,carrot〉

〈eats carrot,:=d c, (λx.λy.eat(x)(y))(carrot)〉
merge-1 (28-2)

〈eats carrot,:=d c, (λx.λy.eat(x)(y))(carrot)〉

〈eats carrot,:=d c, λy.eat(carrot)(y)〉
λ-appl. (28-3)

〈eats carrot,:=d c, λy.eat(carrot)(y)〉 〈the rat,:d,rat〉

〈the rat eats carrot,:c, (λy.eat(carrot)(y))(rat)〉
merge-2 (28-4)

〈the rat eats carrot,:c, (λy.eat(carrot)(y))(rat)〉

〈the rat eats carrot,:c,eat(carrot)(rat)〉
λ-appl. (28-5)

6.4. Fourth Iteration
In the fourth iteration, we suppose that T utters

u4 = 〈the rats eat cheese,eat(cheese)(rats)〉
(29)

that is unified with the previous lexicon X3 through our pattern
matching algorithm to yield X4 in Table 10 in the first place.

Underlined are again common strings in exponents or
semantics that could entail further revisions of the MG lexicon.

Next, let us assume that L would express the meaning
eat(carrot)(rats). It could then attempt the following
derivation (30).

〈the,::=n d, ǫ〉 〈rats,::n,rats〉

〈the rats,:d,rats〉
merge-1 (30-1)

〈eats,::=n =d c, λx.λy.eat(x)(y)〉 〈carrot,::n,carrot〉

〈eats carrot,:=d c, (λx.λy.eat(x)(y))(carrot)〉
merge-1 (30-2)

〈eats carrot,:=d c, (λx.λy.eat(x)(y))(carrot)〉

〈eats carrot,:=d c, λy.eat(carrot)(y)〉
λ-appl. (30-3)

〈eats carrot,:=d c, λy.eat(carrot)(y)〉 〈the rats,:d,rats〉

〈the rats eats carrot,:c, (λy.eat(carrot)(y))(rats)〉
merge-2

(30-4)
〈the rats eats carrot,:c, (λy.eat(carrot)(y))(rats)〉

〈the rats eats carrot,:c,eat(carrot)(rats)〉
λ-appl. (30-5)

However, uttering the rats eats carrot will probably
be rejected by the teacher T because of the grammatical
number agreement error, thus causing punishment by T. As a
consequence, L has to find a suitable revision of its lexicon X4

that is guided by the underlined matches in Table 10.
To this aim, the agent first modifies X4 as given in Table 11.
InTable 11 the entries for mouse and rat have been updated

by a number licensee -a (for Anzahl). Moreover, the entry for
the now selects a number type =num instead of a noun. Even
more crucially, two novel entries of number type num have
been added: a phonetically empty item 〈ǫ,::=n +a num, ǫ〉
selecting a noun =n and licensing number movement +a, and an
item for the plural suffix 〈-s,::=n +a num, ǫ〉 with the same
feature sequence.

TABLE 11 | Revised minimalist lexicon X41.

〈the,::=num d, ǫ〉 〈mouse,::n -a,mouse〉

〈rat,::n -a,rat〉 〈ǫ,::=n +a num, ǫ〉

〈-s,::=n +a num, ǫ〉 〈cheese,::n,cheese〉

〈carrot,::n,carrot〉 〈eats,::=n =d c, λx.λy.eat(x)(y)〉

〈eat,::=n =d c, λx.λy.eat(x)(y)〉

Upon the latter revision, the agent may successfully derive
rat,rats, andmouse, but alsomouses, which will be rejected
by the teacher. In order to avoid punishment, the learner had
to wait for the well-formed item mice once to be uttered by
T. Yet, the current evidence prevents the agent from correctly
segmenting eats, because our shallow semantic model does
not sufficiently constrain any further pattern matching. This
could possibly be remedied in case of sophisticated numeral
and temporal semantic models. At the end of the day, we
would expect something alike the hand-crafted lexicon (Table 2)
above. For now, however, we leave this important problem for
future research.

7. DISCUSSION

With the present study we have continued our work on language
aquisition and on the unified description of physical interaction
and linguistic communication of cognitive agents (Römer et al.,
2019; beim Graben et al., 2020). The requirements for a
unified description are primarily given by cognitive architectures.
That includes the availability of suitable representational data
structures, the satisfiability of the composition-, adaptation-
and classification principles as well as the capability for logical
reasoning and learning. Such an architecture will be particularly
useful if it can explain the behavior of cognitive agents as
well as the phylogenetic and ontogenetic development of
language from earlier stages of evolution without language.
Hence, the agent should be based on a physical symbol
system (PSS) (Newell and Simon, 1976), that takes physical
symbols from its sensory equipment, composing them into
symbolic structures (expressions) and transforms them to
new expressions that can generate goal directed actions. For
this purpose we devised a grammar-based transformation
mechanism that unifies physical interaction and linguistic
communication using minimalist grammars (MG) and lambda
calculus. To explain how the mechanism works, we have
selected some example scenarios of the well known mouse-
maze problem (Shannon, 1953). With this mechanism, the
incoming sensory information from both cognitive loops can be
brought together and transformed into meaningful information
that can be saved now in a knowledge base and processed
logically. The truth-functional approach that is required for
the acquisition of a veridical model of a shared environment
is dependent on this mechanism. Further, based on the
uniform linguistic processing of interaction and communication
the communication participants are able to exchange and
synchronize their ideas about a common environment. The
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use of the information arising from both cognitive loops is
also useful here, since linguistic ambiguities can be resolved in
this way.

Additionally, we have outlined an algorithm for effectively
learning the syntax and semantics of English declarative
sentences. Such sentences are presented to a cognitive agent
by a teacher in form of utterance meaning pairs (UMP)
where the meanings are encoded as formulas of first order
predicate logic. This representation allows for the application
of compositional semantics via lambda calculus (Church,
1936). For the description of syntactic categories we use
Stabler’s minimalist grammar (Stabler, 1997; Stabler and Keenan,
2003), (MG) a powerful computational implementation of
Chomsky’s recent Minimalist Program for generative linguistics
(Chomsky, 1995). Despite the controversy between Chomsky
and Skinner (Chomsky, 1995), we exploit reinforcement
learning (Skinner, 2015; Sutton and Barto, 2018) as training
paradigm. Since MG codifies universal linguistic competence
through the five inference rules (10–11), thereby separating
innate linguistic knowledge from the contingently acquired
lexicon, our approach could potentially unify generative
grammar and reinforcement learning, hence resolving the
abovementioned dispute.

Minimalist grammar can be learned from linguistic
dependency structures (Kobele et al., 2002; Stabler et al.,
2003; Klein and Manning, 2004; Boston et al., 2010) by positive
examples, which is supported by psycholinguistic findings on
early human language acquisition (Pinker, 1995; Ellis, 2006;
Tomasello, 2006). However, as Pinker (1995) has emphasized,
learning through positive examples alone, could lead to undesired
overgeneralization. Therefore, reinforcement learning that might
play a role in children language acquisition as well (Moerk, 1983;
Sundberg et al., 1996), could effectively avoid such problems.
The required dependency structures are directly provided by
the semantics in the training UMPs. Thus, our approach is
explicitly semantically driven, in contrast to the algorithm of

Klein and Manning (2004) that regards dependencies as latent
variables for EM training.

As a proof-of-concept we suggested an algorithm for simple
English declarative sentences. We also have evidence that it
works for German and French as well and hopefully for other
languages also. Our approachwill open up an entirely new avenue
for the further development of speech-controlled cognitive user
interfaces (Young, 2010; Baranyi et al., 2015).
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