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Using the past for resolving the
future

Orna Kupferman*

School of Engineering and Computer Science, Hebrew University, Jerusalem, Israel

Nondeterminism models an ability to see the future: An automaton with an infinite

look ahead can successfully resolve its nondeterministic choices. An automaton is

history deterministic (HD) if it can successfully resolve its nondeterministic choices

in a way that only depends on the past. Formally, an HD automaton has a strategy

that maps each finite word to the transition to be taken after the word is read

and following this strategy results in accepting all the words in the language of

the automaton. Beyond being theoretically interesting and intriguing, HD automata

can replace deterministic automata in several applications, most notably reactive

synthesis, and they attract a lot of interest in the research community. The survey

describes the development of HD ω-regular automata, relates history determinism to

other types of bounded nondeterminism, studies the determinization of HD automata

and their succinctness with respect to deterministic ones, and discusses variants,

extensions, and open problems around HD automata.

KEYWORDS

automata, nondeterminism, infinite words (ω-languages), games, expressive power,
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1. Introduction

Automata are among the most studied computation models in theoretical computer science.

Their simple structure has made them a basic formalism for the study of fundamental notions.

One such notion is nondeterminism, introduced by Rabin and Scott (1959) “A nondeterministic

automaton has, at each stage of its operation, several choices of possible actions. This versatility

enables us to construct very powerful automata using only a small number of internal states" (Rabin

and Scott, 1959). Nondeterminism allows a computing machine to examine several possible

actions simultaneously, and some fundamental questions around it (most notably, P vs. NP)

are still open. In the setting of automata on finite words, nondeterminism enables the definition

of exponentially more succinct automata; however, it does not add to the expressive power of

deterministic automata (called “ordinary” in Rabin and Scott, 1959): “One might imagine at first

sight that these new machines are more general than the ordinary ones, but this is not the case.”

In 1962, Büchi introduced automata on infinite words (Büchi, 1962). Acceptance in such

automata is determined according to the set of states that are visited infinitely often along the

run. In particular, in Büchi automata (NBW and DBW, for nondeterministic and deterministic

Büchi word automata, respectively), the acceptance condition is a subset α of states, and a run

is accepted if it visits α infinitely often. The transition to infinite words significantly extends

the combinatorial richness of automata. In particular, in 1969, Landweber proved that NBWs

are strictly more expressive than DBWs (Landweber, 1969). That is, there exists a language of

infinite words that is recognizable by an NBW but cannot be recognized by a DBW. Today, the

gap between deterministic and nondeterministic Büchi word automata is well understood:While

NBWs can recognize all ω-regular languages, an ω-regular language L of infinite words can be

recognized by a DBW if there exists a regular language R of finite words such that L contains

exactly all words that have infinitely many prefixes in R (Landweber, 1969).
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Using NBWs, Büchi solved the decidability problem for monadic

second-order logic with one successor (S1S). Given an S1S formula ϕ,

Büchi constructed an NBW Aϕ that accepts exactly all the models

of ϕ, and thus reduced the satisfiability of ϕ to the nonemptiness of

Aϕ . The computer science community has become further interested

in automata on infinite objects thanks to their applications in

reasoning about reactive systems. By translating specifications to

automata, questions about specifications, verification, and synthesis

are reduced to questions about automata (Vardi and Wolper, 1994;

Kupferman, 2018). In particular, while the translation from S1S

formulas to automata is nonelementary, it is only exponential for

specification formalisms such as linear temporal logic (Pnueli, 1981).

In some applications, such as verification, algorithms can be based

on nondeterministic automata, whereas in other applications, such

as synthesis and control, algorithms are based on deterministic

automata. The advantages of nondeterminism are lost, and the

algorithms involve a complicated determinization construction

(Safra, 1988) or acrobatics for circumventing determinization

(Kupferman and Vardi, 2005; Esparza et al., 2018).

To understand the difficulty of using nondeterministic automata

in synthesis, let us review the synthesis problem and its automata-

based solution (Grädel et al., 2002). Consider a language L of

infinite words over an alphabet 2I∪O, where I and O are sets of

input and output signals, respectively. The synthesis problem for

the specification L is to build a reactive system that receives from

its environment assignments to the signals in I (that is, letters in

2I), responds with assignments to the signals in O (that is, letters

in 2O), and does so in such a way that the generated computation

(an infinite word over the alphabet 2I∪O) is in L (Pnueli and Rosner,

1989). Algorithms for solving the problem are based on taking a

deterministic automaton D for L and conducting a two-player game

on top of it. The game is played between a player that models the

system and a player that models the environment. The positions of

the game are the states of D, and it starts in the initial state. In each

turn of the game, the environment first chooses the 2I component

of the next letter, the system responds with the 2O component, and

D moves to the corresponding successor state. Together, the players

generate an infinite word in (2I∪O)ω along with the run of D on it.

The system wins if this run is accepting. It can be shown that the

system has a winning strategy, namely a strategy to respond so that it

wins against every environment, if the language L can be synthesized.

Now, if one replaces D with a nondeterministic automaton A for L,

the system should also choose in each turn a transition to proceed

with. Then, it might be that L is synthesizable, and still the system has

no winning strategy. Indeed, the transition that the system chooses

should work for all possible futures of the game, whereas possibly

each nondeterministic choice of A works for a strict subset of the

possible futures.

Let us go back to the 1960s when the solution of the decidability

problem for S1S led to increasing efforts to solve also the decidability

problem for SnS, namely monadic second-order logic with multiple

successors. While S1S formulas describe linear structures and thus

correspond to infinite words, SnS formulas describe branching

structures and correspond to infinite trees. Accordingly, researchers

started to study automata on infinite trees, which define languages

of infinite trees. In particular, they searched for translations of SnS

formulas to nondeterministic Büchi tree automata (NBTs), aiming to

reduce satisfiability to their nonemptiness.

In 1969, Rabin solved the decidability problem for SnS (Rabin,

1969). The solution involved an introduction of a new type of

acceptance condition for automata on infinite objects, namely the

Rabin acceptance condition. The condition is more complex than

the Büchi acceptance condition and involves two types of constraints

on the set of states that are visited infinitely often in the run. Given

an SnS formula ϕ, Rabin constructed a nondeterministic Rabin tree

automaton (NRT) Aϕ that accepts exactly all the models of ϕ, and

thus reduced the satisfiability of ϕ to the nonemptiness of Aϕ .

Then, in 1970, Rabin proved that in fact SnS cannot be translated

to NBTs (Rabin, 1970). Specifically, NBTs can recognize only the

weak fragment of SnS—one in which the sets we quantify over are

finite. Thus, while nondeterministic Büchi and Rabin word automata

have the same expressive power, NRTs are strictly more expressive

than NBTs.

Proving that NBWs are strictly more expressive than DBWs,

Landweber showed that the language L1 = (0+ 1)∗ · 1ω (only finitely

many 0’s) is in NBW\DBW. The proof is simple and can be stated

in a few lines or using a two-state expressiveness refuter (Kupferman

and Sickert, 2021). Much harder is the proof that NRTs are strictly

more expressive than NBTs. In Rabin (1970), Rabin had to use a

complicated construction and a complicated inductive argument.

Interestingly, the language of trees that Rabin used in his proof is the

derived language of L1. That is, the set of all trees, all whose paths have

only finitely many 0’s.

In 1996, it turned out that Rabin’s choice of L1 was not arbitrary:

For every language L of infinite words, let L△ denote the derived

language of L, namely the language of trees all whose paths are in

L. In Kupferman et al. (1996, 2006), Kupferman, Safra, and Vardi

proved that for every language L of infinite words, we have that

L ∈ NBW \ DBW if L△ ∈ NRT \ NBT. The difficult part of the

proof is to show that if L△ can be recognized by an NBT, then L can

be recognized by aDBW. Intuitively, since the branches of a tree in L△

may contain any word in L, the nondeterministic choices that an NBT

performs when it recognizes L△ have to accommodate all possible

futures, whichmakes the usefulness of nondeterminism questionable.

The results in Kupferman et al. (1996, 2006) were generalized in

Niwinski and Walukiewicz (1998) to acceptance conditions that

are stronger than the Büchi condition. Niwinski and Walukiewicz

showed that if L△ can be recognized by a nondeterministic tree

automaton with some acceptance condition γ (e.g., γ may be parity

with index 5), then L can be recognized by a deterministic word

automaton with acceptance condition γ . The difficulty in defining

a nondeterministic tree automaton for a derived language is similar

to the difficulty of the system player in the synthesis game when

played on a nondeterministic automaton: Both have to resolve their

nondeterministic choices in a way that only depends on the past and

still accommodates all futures.

In Henzinger and Piterman (2006), Henzinger and Piterman

introduced history deterministic (HD) automata, which capture

this difficulty in a very clean way. Essentially, a nondeterministic

automaton is HD if it has a strategy to resolve its nondeterministic

choices that only depends on the past. The notion used in Henzinger

and Piterman (2006) is good for games (GFG) automata, as they

address the difficulty described earlier, of playing games on top

of a nondeterministic automaton. As it turns out, the property of

being good for games varies in different settings and HD is good

for applications beyond games (see more in Section 5). Therefore,
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following Boker and Lehtinen (2023), we use the term history

determinism, introduced by Colcombet in the setting of quantitative

automata with cost functions (Colcombet, 2009).

Formally, a nondeterministic automaton A over an alphabet 6

is HD if there is a strategy f that maps each finite word u ∈ 6∗ to

the transition to be taken after u is read, and following f results in

accepting all the words in the language of A. Note that a state q of

A may be reachable via different words, and f may suggest different

transitions from q after different words are read. Still, the choices

of f only depend on the past, namely on the word read so far, and

have to address all possible futures, namely all possible suffixes. As

formalized in Boker et al. (2013), the strategy f of an HD automaton

for L is similar to a run of a tree automaton for L△ on a tree that

includes all words in L.1 As their original “good for games" name

suggests, HD automata can be used in the reduction of synthesis

to game solving. Indeed, if one tries to replace the deterministic

automaton D discussed earlier by an HD automaton A, the system

should still choose in each turn a transition to proceed with, but

now it is guaranteed that there is a transition that would work for

all possible futures.

Obviously, there exist HD automata: deterministic ones or

nondeterministic ones, that are determinizable by pruning (DBP);

that is, ones that just add transitions on top of a deterministic

automaton. In fact, the HD automata constructed in Henzinger

and Piterman (2006) are DBP.2 Beyond the theoretical interest in

DBP automata, they are used for modeling online algorithms: By

relating the “unbounded look ahead” of optimal offline algorithms

with nondeterminism, and relating the “no look ahead” of online

algorithms with determinism, it is possible to reduce questions about

the competitive ratio of online algorithms and the memory they

require to questions about DBPness (Aminof et al., 2010, 2011). As

it turns out, HD automata on infinite words need not be DBP, and

they constitute an interesting and intriguing class of automata, many

of whose properties are still unknown.

This survey presents selected results about HD automata. We

focus on Büchi auotmata, and their dual co-Büchi automata, denoted

on DCW and NCW, for the deterministic and nondeterministic

classes. Section 3 studies determinization by pruning. It shows that

HD nondeterministic automaton on finite words are always DBP.

Moreover, a deterministic equivalent automaton that is embodied in

every HD automaton can be found in polynomial time. In contrast,

once we move to automata on infinite words, HD-NBWs and HD-

NCWs need not be DBP, and deciding their DBPness is NP-complete.

Section 4 studies determinization of HD-NBWs and HD-NCWs.

It shows that their determinization is simpler than that of NBWs

and NCWs and that HD affects Büchi and co-Büchi automata

in a different and surprising way: Recall that nondeterminism is

more significant for Büchi than for co-Büchi automata: NBWs are

strictly more expressive than DBWs (Landweber, 1969), and the

determinization of NBWs is very complicated and involves, beyond

1 Note that such a tree exists only when L is fusion closed; in the general

case, the relation between a tree automaton for L△ and an HD automaton for L

is formalized by a tree that includes all the words in 6ω (Boker et al., 2013).

2 As explained in Henzinger and Piterman (2006), the fact that the HD

automata constructed there are DBP does not contradict their usefulness in

practice, as their transition relation is simpler than the one of the embodied

deterministic automaton, and it can be defined symbolically.

using a richer acceptance condition, also a 2O(n log n) blowup (Safra,

1988). NCWs, in contrast, are as expressive as DCWs, and their

determinization only involves a 2O(n) blowup (Miyano and Hayashi,

1984). One could then expect that HD nondeterminism would also

be more significant for Büchi than co-Büchi automata. As shown in

Section 4, this is not the case: While HD-NCWs are exponentially

more succinct than DCWs, every HD-NBWs can be determinized

to be a DBW with a quadratic blowup, and, in fact, no matching

lower bound is known. The section also relates the determinization

and complementation of HD automata. Finally, Section 5 discusses

variants, extensions, and open problems.

2. Preliminaries

For a finite nonempty alphabet 6, an infinite word w = σ1 ·

σ2 · · · ∈ 6ω is an infinite sequence of letters from 6. A language

L ⊆ 6ω is a set of infinite words. For i, j ≥ 0, we use w[1, i] to denote

the (possibly empty) prefix σ1 · σ2 · · · σi of w, use w[i+ 1, j] to denote

the (possibly empty) infix σi+1 ·σi+2 · · · σj ofw, and usew[i+1,∞] to

denote its suffix σi+1 · σi+2 · · · . We sometimes refer also to languages

of finite words, namely subsets of 6∗. We denote the empty word

by ǫ.

A nondeterministic automaton over infinite words is A =

〈6,Q, q0, δ,α〉, where 6 is an alphabet, Q is a finite set of states,

q0 ∈ Q is an initial state, δ :Q× 6 → 2Q \ ∅ is a transition function,

and α is an acceptance condition, to be defined later. For states q and

s and a letter σ ∈ 6, we say that s is a σ -successor of q if s ∈ δ(q, σ ).

Note that A is total, in the sense that it has at least one successor for

each state and letter. If |δ(q, σ )| = 1 for every state q ∈ Q and letter

σ ∈ 6, thenA is deterministic.

When A runs on an input word, it starts in the initial state

and proceeds according to the transition function. Formally, a run

of A on w = σ1 · σ2 · · · ∈ 6ω is an infinite sequence of states

r = r0, r1, r2, . . . ∈ Qω , such that r0 = q0, and for all i ≥ 0, we have

that ri+1 ∈ δ(ri, σi+1). We extend δ to sets of states and finite words

in an expected way. Thus, δ(S, u) is the set of states thatAmay reach

when it reads the word u ∈ 6∗ from some state in S ∈ 2Q. Formally,

δ : 2Q × 6∗ → 2Q is such that for every S ∈ 2Q, finite word u ∈ 6∗,

and letter σ ∈ 6, we have that δ(S, ǫ) = S, δ(S, σ ) =
⋃

s∈S δ(s, σ ),

and δ(S, u · σ ) = δ(δ(S, u), σ ). The transition function δ induces a

transition relation1 ⊆ Q×6×Q, where for every two states q, s ∈ Q

and letter σ ∈ 6, we have that 〈q, σ , s〉 ∈ 1 if s ∈ δ(q, σ ). For a state

q ∈ Q of A, we define Aq to be the automaton obtained from A by

setting the initial state to be q. Thus,Aq = 〈6,Q, q, δ,α〉.

The acceptance condition α determines which runs are “good.”

We consider here the Büchi and co-Büchi acceptance conditions, in

both a state-based and a transition-based setting. In the traditional

state-based setting, we have that α ⊆ Q is a subset of states. For a

run r, let inf (r) ⊆ Q be the set of states that r visits infinitely often.

Thus, inf (r) = {q ∈ Q : q = ri for infinitely many i’s}. A run r of a

Büchi automaton is accepting if it visits states in α infinitely often,

thus inf (r) ∩ α 6= ∅. Dually, a run r of a co-Büchi automaton is

accepting if it visits states in α only finitely often, thus inf (r)∩α = ∅.

In the transition-based setting, we have that α ⊆ 1 is a set of

transitions, inf (r) is defined as the set of transitions that are traversed

infinitely often in r, and the definition of acceptance is similar. Thus,

in Büchi automata, a run is accepting if it traverses infinitely many

transitions in α, and in co-Büchi automata, a run is accepting if it
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traverses only finitely many transitions in α. In both the state-based

and transition-based settings, a run that is not accepting is rejecting.

AsA is nondeterministic, it may have several runs on a word w. The

word w is accepted by A if there is an accepting run of A on w. The

language ofA, denoted L(A), is the set of words thatA accepts. Two

automata are equivalent if their languages are equivalent.

Consider a nondeterministic automatonA = 〈6,Q, q0, δ,α〉, we

say thatA is semantically deterministic, if its nondeterministic choices

lead to states with the same language. Formally, for every state q ∈ Q

and letter σ ∈ 6, all the σ -successors of q have the same language.

Then, we say thatA is history deterministic (HD, for short) if there

is a strategy f :6∗ → Q that resolves the nondeterminism in A in a

way that only depends on the past and leads to the acceptance of all

words in L(A). Formally, the following hold:

• Strategy f is compatible with δ. That is, for all u ∈ 6∗ and

σ ∈ 6, we have that f (u · σ ) ∈ δ(f (u), σ ).

• Following f guarantees the acceptance of all the words in L(A).

That is, for all words σ1 · σ2 · σ3 · · · ∈ L(A), the sequence

f (ǫ), f (σ1), f (σ1 · σ2), f (σ1 · σ2 · σ3), . . . satisfies the acceptance

condition α.

Finally, A is determinizable by pruning (DBP, for short) if it

embodies an equivalent deterministic automaton; thus, it can be

determinized to an equivalent automaton by removing some of

its transitions.

It is easy to see that every DBP automaton is HD. Indeed, a

witness strategy f can follow the unpruned transitions. In addition,

every HD automaton can be pruned in polynomial time to a

semantically deterministic automaton (Kuperberg and Skrzypczak,

2015). Indeed, the fact the automaton is HD implies that for every

state q ∈ Q, we can prune transitions to σ -successors of q whose

language does not contain the language of another σ -successor of

q. Indeed, these transitions are never taken by an HD strategy.

Since language containment for HD automata can be checked in

polynomial time, such pruning can be done in polynomial time.

We denote the different classes of automata by three-letter

acronyms in {D, N} × {F, B, C} × {W}. The first letter stands

for the branching mode of the automaton (deterministic or

nondeterministic); the second for the acceptance condition type

(finite, Büchi, or co-Büchi); and the third indicates that we consider

automata on words. For example, NBWs are nondeterministic Büchi

word automata. When the acceptance condition is transition-based,

we add “t” before the acronym, and when the automata are HD,

we indicate it too. For example, HD-tNCWs are HD-NCWs with a

transition-based acceptance condition.

3. Determinization by pruning

The fact nondeterminism leads to exponential succinctness

implies that not all nondeterministic automata are DBP. In this

section, we study DBPness for HD automata. Recall that the strategy

f that witnesses the HDness of an automaton A directs runs of A

how to resolve nondeterministic choices based on the prefix of the

word read so far and may proceed with different nondeterministic

choices in different visits to the same state. We can view the question

of DBPness in HD automata as the question of whether the HD

strategy really needs to make these different choices, namely whether

the choices depend on the past. Indeed, an HD automaton is DBP if

the past does not really play a role in the resolving of nondeterminism

and the same choice can be taken whenever nondeterminism has to

be resolved. As we shall see, the answer is positive for automata on

finite words and negative for Büchi and co-Büchi automata.

3.1. The case of finite words

In this section, we prove that for automata on finite words, all

HD-NFWs are DBP. For this, we describe a sufficient condition for

NFWs to be DBP and argue that all HD-NFWs satisfy the condition.

The condition is a simplification of a fixed-point characterization of

NFWs that are DBPs introduced in Aminof et al. (2010), where it is

used in order to decide whether a given NFW is a DBP.

Consider an NFW A = 〈6,Q,Q0, δ,α〉. For a relation H ⊆

Q × Q, a set S ⊆ Q, and a states q′ ∈ Q, we write H(S, q′) to

indicate that H(q, q′) for all q ∈ S. We inductively define a sequence

H0,H1, . . . ⊆ Q× Q of relations as follows.

• H0 = (α × α) ∪ ((Q \ α)× Q). That is, H0 = {{〈q, q′〉 : If q ∈ α,

then q′ ∈ α}.

• For i ≥ 0, we have Hi+1 = Hi ∩ {〈q, q′〉 : For all σ ∈ 6 there is

v′ ∈ δ(q′, σ ) such that Hi(δ(q, σ ), v
′)}.

Intuitively, Hi(q, q
′) means that A can be pruned to a DFW A′

such that all the words of length at most i accepted from q in A are

also accepted from q′ inA′.

Since H0 ⊆ Q × Q and H0 ⊇ H1 ⊇ H2 ⊇ . . ., the sequence

of relations eventually reaches a fixed-point, which we denote by H.

Intuitively,H(q, q′) if there is a DFW embodied inAq′ that accepts all

words in L(Aq).

The relation H induces an NFW AH = 〈6,Q,QH
0 , δ

H ,α〉

embodied inA, where

• QH
0 = {v : v ∈ Q0 and H(Q0, v)}.

• For all q ∈ Q and σ ∈ 6, we have that δH(q, σ ) = {v : v ∈ δ(q, σ )

and H(δ(q, σ ), v)}.

Note that the set QH
0 may be empty and that for some state q ∈ Q

and letter σ ∈ 6, it may be that δH(q, σ ) = ∅. We prove that the

nonemptiness of QH
0 is a sufficient condition forA to be DBP.

Lemma 3.1. Consider an NFW A, its relation H, and the induced

NFWAH . If QH
0 6= ∅, thenA is DBP.

Proof. Assume that QH
0 is not empty. We prove that every DFW that

is embodied in AH is equivalent to A. Let A′ = 〈6,Q, q′0, δ
′,α〉 be

such a DFW. Thus, q′0 ∈ QH
0 and for all states q ∈ Q and letters

σ ∈ 6, we have δ′(q, σ ) ∈ δH(q, σ ). Note that if δH(q, σ ) = ∅, then

δ′(q, σ ) is not defined. As we shall prove, however, the fact QH
0 is not

empty implies that δH(q, σ ) 6= ∅ for all letters σ ∈ 6 states q ∈ Q

that are reachable inA′.

We prove that L(A′) = L(A). SinceA′ is embodied inAH , which

in turn is embodied in A, it is clear that L(A′) ⊆ L(A). In order to

prove that L(A) ⊆ L(A′), consider a word w = w1w2 . . .wn ∈ L(A).

We prove that A′ does not get stuck on w and that for every run

r = r0r1 . . . rn of A on w, the run s = s0s1 . . . sn of A′ on w is such

that for all 0 ≤ j ≤ n, we have that H(rj, sj). Since H ⊆ H0, the latter
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implies that membership of rn in α implies membership of sn in α.

Thus, if there is an accepting run ofA on w, then the run ofA′ on w

is also accepting.

The proof proceeds by induction on j. For j = 0, the definition of

A′ implies that s0 = q′0 ∈ QH
0 . Therefore, by the definition of QH

0 , we

have that H(Q0, s0). In particular, as r0 ∈ Q0, we have that H(r0, s0).

For the induction step, assume that the induction hypothesis

holds for j ≥ 0, thus H(rj, sj). We prove that the run s does

not get stuck in the j-th transition and that the state sj+1 satisfies

H(rj+1, sj+1). By the induction hypothesis, we have that H(rj, sj).

Hence, by the definition of H, for every letter σ ∈ 6, there exists

a state v ∈ δ(sj, σ ) such that H(δ(rj, σ ), v). Hence, if δ(rj, σ ) is not

empty, so is δH(sj, σ ). In particular, as δ(rj,wj+1) includes rj+1, we

have that δH(sj,wj+1) 6= ∅, and so A′ does not get stuck on w in the

j-th transition. In addition, by the definition of δH , the fact sj+1 ∈

δH(sj,wj+1) implies that H(δ(rj,wj+1), sj+1). Since rj+1 ∈ δ(rj,wj+1),

it follows that H(rj+1, sj+1), and we are done.

We continue and prove that all HD-NFWs are DBP. Given an

HD-NFW A as earlier, and a function f :6∗ → Q that witnesses its

HDness consider the relation Gf ⊆ Q× Q where for all q, q′ ∈ Q, we

have that G(q, q′) if there is a word w ∈ 6∗ such that q ∈ δ(Q0,w)

and f (w) = q′. Intuitively, Gf (q, q
′) if there is a word w ∈ 6∗ such

that the HD strategy f is guaranteed to accept from q′ all suffixes that

extend w to a word in L(A) and are accepted from q.

Lemma 3.2. If A is an HD-NFW and f witnesses its HDness, then

Gf ⊆ H and f (ǫ) ∈ QH
0 .

Proof. Consider an HD-NFW A and a function f :6∗ → Q that

witnesses its HDness. We first prove that Gf ⊆ Hi for all i ≥ 0, thus

Gf ⊆ H. The proof proceeds by induction on i.

For the induction base, consider two states q, q′ ∈ Q such that

Gf (q, q
′). Let w ∈ 6∗ be such that q ∈ δ(Q0,w) and f (w) = q′.

By the definition of Gf , such a word w exists. Assume that q ∈ α.

Then, w ∈ L(A), and so, as f witnesses the HDness ofA, we have that

f (w) ∈ α too. Thus, q ∈ α implies that q′ ∈ α, and so H0(q, q
′), and

we are done.

For the induction step, consider again two states q, q′ ∈ Q such

thatGf (q, q
′), and letw ∈ 6∗ be such that q ∈ δ(Q0,w) and f (w) = q′.

First, by the induction hypothesis, we have that Hi(q, q
′). Now, by

definition,Hi+1(q, q
′) ifHi(q, q

′) and for all letters σ ∈ 6 there is v′ ∈

δ(q′, σ ) such that Hi(δ(q, σ ), v
′). For a letter σ ∈ 6, let v′ = f (w · σ ).

Note that by the definition of HD witness functions, the state v′ is in

δ(q′, σ ). Consider a state v ∈ δ(q, σ ). Note that v ∈ δ(Q0,w·σ ), and so

Gf (v, v
′). Therefore, by the induction hypothesis, we have Hi(v, v

′). It

follows thatHi(δ(q, σ ), v
′). Since the earlier holds for all letters σ ∈ 6,

it follows that Hi+1(q, q
′), and are done.

It is left to prove that f (ǫ) ∈ QH
0 . Recall that for every state q ∈ Q,

we have that q ∈ QH
0 if q ∈ Q0 and H(Q0, q). Clearly, f (ǫ) ∈ Q0.

In addition, by the definition of Gf , as Q0 = δ(Q0, ǫ), we have that

Gf (Q0, f (ǫ)). Hence, as Gf ⊆ H, we have that H(Q0, f (ǫ)), and we

are done.

Lemmas 3.2 and 3.1 together imply that a function that witnesses

the HDness of an HD-NFW A also witnesses the nonemptiness of

QH
0 , and so we can conclude with the following.

Corollary 3.3. Every HD-NFW is DBP.

Remark 3.1. A language L ⊆ 6ω is a safety language if it states

that something “bad" never happens. Formally, for every infinite

word w ∈ 6ω , if w 6∈ L, then w has a prefix x ∈ 6∗ such that

x · y 6∈ L for all y ∈ 6ω . Safety languages play an important role

in verification and synthesis, as many natural specifications are safe.

It is not hard to prove that safety languages can be recognized by

looping automata, namely Büchi automata in which all states are in

α (or dually, co-Büchi automata in which no state is in α) (Sistla,

1994). It is also not hard to see that the considerations in our proof

earlier apply also to looping automata. Thus, all HD nondeterministic

looping automata are DBP. In fact, by Morgenstern (2003) and Boker

et al. (2017), the earlier also applies to weak automata, which are a

stronger special case of Büchi and co-Büchi, in which every strongly

connected component of the graph induced by the automaton is

either contained in α or disjoint from α.

3.2. The case of infinite words

We continue to automata on infinite words and show that here,

the past does play a role in resolving nondeterminism. Thus, HD

Büchi and co-Büchi automata need not be DBP. The result was

first proven, by examples, in Boker et al. (2013). In Kuperberg and

Majumdar (2018), the authors studied DBPness for general NCWs

and proved that deciding whether a given NCW is DBP is NP-hard.

In Abu Radi et al. (2021), the authors noted that the NCW used in

the proof is actually HD; thus, deciding DPNess is NP-hard already

for HD-NCWs, and proved similar results also for Büchi automata.

Clearly, in order for a problem to be NP-hard, the answer has to

be non-trivial. Thus, there are HD-NCWs and HD-NBWs that are

not DBP, and deciding whether a given HD-NCW or HD-NBW is

DBP is NP-hard. Here, we describe a variant of the example in Boker

et al. (2013) for the Büchi case and then describe the NP-hardness

proof for the co-Büchi case. We consider both state-based and

transition-based acceptance.

Theorem 3.4. Boker et al. (2013) there are HD-tNBWs and HD-

NBWs that are not DBP.

Proof. Consider the tNBW A appearing in Figure 1. We prove that

A is HD and is not DBP.

Note that A gets stuck (and rejects) when it reads words that are

not in (a0+ a1)ω . We claim that L(A) = L, for

L = {w ∈ (a0+ a1)ω :

w has infinitely many infixes of the form a0a0 or a1a1}.

In order to see that L(A) ⊆ L, note that if a word in (a0 + a1)ω

is not in L, and thus it has only finitely many infixes of the form

a0a0 or a1a1, then it has a suffix (a0a1)ω . Of note, when a run of

A traverses an α-transition when reading such a suffix, then after

taking the α-transition, it keeps looping at the q3, q5, q4, q6 cycle and

never traverses an α-transition again. In order to see that L ⊆ L(A),

note that after reading a prefix in (a0 + a1)∗, a run of A is in state

s, q3, or q4. If the run is in state s or q4 and reads a0a0, then it can

traverse an α-transition and return to s, and if it is in state q3 and

reads a0a0, then it reaches the state s. In addition, reading a1 from

s, a run can return to s. Thus, reading a0a0 infinitely often enables a

run to traverse α-transitions infinitely often, and similarly for a1a1.
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FIGURE 1

A HD-tNBW that is not DBP. Dashed transitions are in α.

We continue and prove that A is HD. We do so by describing

a strategy f that witnesses its HDness. Note that there is one

nondeterministic transition in A: reading a in state s, a run can

proceed to q1 or q2. We define f so that whenever A is in state s

and reads a, it directs the run to proceed as follows. If the run has

just started or s was reached from q6 or q2, then the run continues

to q1; if s was reached from q5 or q1, then the run continues to q2.

First, note that the earlier strategy can be described by means of a

function with domain {a, 0, 1}∗. For example, f (a) = q1, f (a0a) = q2,

and f (a1a1a) = q2. In addition, the strategy guarantees that all words

in the language are accepted. Indeed, reading a0a0 either leads to a

traversal of an α-transition or leads to s, where the next a0a0 or a1a1

leads to a traversal of an α-transition, and similarly for a1a1.

It is left to prove thatA is not DBP. Recall that there are two ways

to make A deterministic by pruning: either prune the a-transition

from s to q1 or the a-transition from s to q2. We show that both ways

result in a tDBW whose language is strictly contained in that of A.

First, if we prune the transition from s to q1, then the obtained tDBW

rejects the word (a1)ω , which is in L(A). Indeed, the single run on it

is (s, q2)
ω , which is rejecting. Dually, if we prune the transition from

s to q2, then the single run of the obtained tDBW on the word (a0)ω ,

which is in L(A), is (s, q1)
ω , which is rejecting.

Thus, A is an HD-tNBW that is not DBP. We continue

and obtain from A an HD-NBW A′ that is not DBP. For

this, we replace the letters 0 and 1 with the words 0# and 1#,

respectively; thus, consider the language L′ = {w ∈ (a0# +

a1#)ω :w has infinitely many infixes of the form a0#a0# or a1#a1#}.

We obtain A′ from A by adding an intermediate state inside each

0-transition (and similarly for 1-transitions). The state is reached

with 0 and continues with # to the destination of the original

transition. The new state is accepting if the transition that induces it

is accepting. By applying the same considerations detailed earlier for

A, it is easy to see that A′ accepts exactly all words in (a0# + a1#)ω

that have infinitely many infixes of the form a0#a0# or a1#a1#, is

HD, and is not DBP.

Theorem 3.5. Kuperberg and Majumdar (2018), Abu Radi et al.

(2021) deciding whether a given HD-tNCW or HD-NCW is DBP is

NP-complete.

Proof. Since pruning transitions can only decrease the language of an

automaton and checking the containment of the language of a tNCW

(or NCW) in the language of a tDCW (or a DCW) can be checked in

polynomial time, membership in NP is easy.

For the lower bound, we describe a reduction from the

Hamiltonian-cycle problem: Given a connected directed graph G =

〈V ,E〉, the problem is to decide whether G contains a cycle that visits

every vertex in V exactly once. We start with automata with state-

based acceptance. Consider a graph G = 〈V ,E〉. For simplicity, we

assume that V = {1, 2, . . . , |V|}. Given G, the reduction outputs an

NCWAG over the alphabetV∪{#} that is obtained fromG as follows

(see example in Figure 2). The automaton AG accepts only words in

(V · #)ω . Each vertex i ∈ V contributes three states to AG, denoted

vi, si, and ui. From states of form vi, the NCW reads only letters in V ,

and from states of the form si and ui, it reads only the letter #. When

in state vi, the subword i·# leads back to vi via si, and subwords j·#, for

j ∈ V\{i}, nondeterministically lead, via ui, to states vk, for successors

k of i in G. For example, in the graph G and its NCW appearing in

Figure 2, there are two #-transitions from state u1, leading to v2 and v4
– or the successors 2 and 4 of the vertex 1 in G. Accordingly, reading

1#, a run from v1 returns to v1, and reading 2#, 3#, or 4#, a run from

v1 can reach v2 or v4.

The co-Büchi condition α includes all states of the form ui, and

thus requires a run to eventually get stuck at some (vi, si)
ω cycle.

Accordingly, L(AG) = (V · {#})∗ ·
⋃

i∈V (i · #)
ω . Indeed, no matter

which state of the form vk is reached after reading some prefix in

(V · {#})∗, the fact G is connected guarantees that for every i ∈ V ,

the state vi can be reached from vk by reading a prefix of the (i · #)
ω

suffix after at most |V| visits in α, and then the run can stay forever in

the (vi, si)
ω cycle. Thus, ifw is accepted byAG, then the accepting run
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on it eventually loops in some (vi, si)
ω cycle, which is possible only if

w is in (V · #)ω and has an (i · #)ω suffix.

In order to see thatAG is DBP if there is a Hamiltonian cycle inG,

note that the only nondeterminism in AG is in states of the form uk,

where the letter # forces each deterministic pruning ofAG to proceed

from the state vk upon reading a subword (V \ {i}) · #, to the same

state vj, for some successor vertex j of k. DBPing AG from Figure 2,

for example, leaves only one #-transition from u1, forcing 2#, 3#, or

4# to all reach v2 from v1, or all reach v4.

Now, if there is a Hamiltonian cycle in G, thenAG can be pruned

to a DCW by leaving, from each state uk, the #-transition to the

successor of vertex k in the cycle. Indeed, as the Hamiltonian cycle

visits all vertices of G, reading a suffix (i · #)ω of a word in L(AG), the

DCW can reach the (vi, si)
ω cycle and stay there forever. For the other

direction, a DCW that is obtained by pruning AG and recognizes

L(AG) must induce a Hamiltonian cycle, as otherwise, some vertices

are not reachable in the DCW, making its language a strict subset

of L(AG).

Finally, it is not hard to see that AG is HD for every graph

G. Indeed, an HD strategy can decide to which successor of vk to

proceed with a subword in (V \ {k}) · # by following a (not necessarily

Hamiltonian) cycle that traverses all the vertices of the graph G. Since

when we read (V \ {k}) · # we move to a state vj for a successor vertex

j of k, then by following the cycle when we read an (i · #)ω suffix of

a word in L(AG), we eventually reach the state vi, where we stay in

the (vi, si)
ω cycle, and accept. Thus, the Hamiltonian-cycle problem

is reduced to DBPness of an HD-NCW, and we are done.

As for HD-NCWs, the reduction is similar, except that we define

AG to be an HD-tNCW, for example, by defining α as the set of

transitions that leave states of the form ui.

4. Determinization of HD automata

Recall that HD automata are as expressive as deterministic ones.

For the case of finite words, this follows immediately from the fact

that HD automata are DBP. For the case of infinite words, where

HD automata need not be DBP, the result is more complicated. As

discussed in Section 1, the expressive power of HD automata was

first studied in the setting of derivable tree languages (Kupferman

et al., 1996; Niwinski and Walukiewicz, 1998). Then, Kuperberg and

Skrzypczak (2015) also studied the succinctness of HD automata

with respect to deterministic ones, namely the blowup involved in

determinizing a given HD automaton. In this section, we study

determinization and succinctness of HD automata. As we shall see,

the answers for Büchi and co-Büchi automata are different, and in a

surprising way: While nondeterminism is in general more significant

for Büchi than for co-Büchi automata, HD nondeterminism is more

significant for co-Büchi than for Büchi. Specifically, while HD-NBWs

can be determinized with a quadratic blowup, determinization of

HD-NCWs may involve an exponential blowup (Kuperberg and

Skrzypczak, 2015).

4.1. Subset-construction-based
determinization

We first show that both Büchi and co-Büchi HD automata can

be determinized with a construction that is similar to the subset

construction used for determinization of NFWs (Rabin and Scott,

1959). As noted earlier, for the Büchi case, this is a significant

improvement over determinization of general NBWs (Safra, 1988).

For the co-Büchi case, determinization of general NCWs involves a

“break-point construction,” which augments the subset construction

by a set that keeps track of visits to states in α, and involves

a 3n blowup (Miyano and Hayashi, 1984), which is tight (Boker

et al., 2010). Thus, also in the co-Büchi case, deterninization of HD

automata is simpler than determinization of general automata.

Theorem 4.1. Kupferman et al. (2006), Kuperberg and Skrzypczak

(2015) HD-NBWs (HD-NCWs) are as expressive as DBWs

(respectively, DCWs). Given an HD-NBW (HD-NCW) with

n states, we can construct an equivalent DBW (respectively,

DCW) with 2n states. Similar results hold for automata with

transition-based acceptance.

Proof. We start with Büchi automata. Consider an HD-NBW A =

〈6,Q, q0, δ,α〉. We assume thatA is semantically deterministic; thus,

its nondeterministic choices lead to states with the same language.

As detailed in Section 2, every HD automaton can be pruned in

polynomial time to a semantically deterministic automaton.

We define the DBW A′ = 〈6, 2Q, {q0}, δ
′,α′〉, where α′ = {S ∈

2Q : S ⊆ α}, and the transition function δ′ is defined for every state

S ∈ 2Q and letter σ ∈ 6 as follows. If δ(S, σ ) ∩ α = ∅, then

δ′(S, σ ) = δ(S, σ ). Otherwise, namely if δ(S, σ ) ∩ α 6= ∅, then

δ′(S, σ ) = δ(S, σ ) ∩ α. Thus, we proceed as in the standard subset

construction, except that whenever a constructed set contains a state

in α, we leave in the set only states in α.

The key observation about the correctness of the construction is

that whenA is semantically deterministic, then for all reachable states

S ofA′, and all states q, q′ ∈ S, we have thatAq andAq′ are equivalent.

Indeed, if A is semantically deterministic, then for every two states

q, q′ ∈ Q, letter σ ∈ 6, and states s ∈ δ(q, σ ) and s′ ∈ δ(q′, σ );

if q and q′ are equivalent, then so are s and s′. In addition, by the

definition of δ′, every reachable state S of A′ contains only states in

α or only states not in α. As we formally prove later, these properties

guarantee that indeed L(A′) = L(A).

We first prove that L(A′) ⊆ L(A). Let rA′ = S0, S1, S2, . . . be

an accepting run of A′ on a word w = σ1 · σ2 · · · . We construct an

accepting run of A on w. Since rA′ is accepting, there are infinitely

many positions j1, j2, . . . with Sji ∈ α′. Let j0 = 0, and consider the

DAG G = 〈V ,E〉, where

• V ⊆ Q× N is the union
⋃

i≥0(Sji × {i}).

• E ⊆
⋃

i≥0(Sji × {i})× (Sji+1 × {i+ 1}) is such that for all i ≥ 0,

it holds that E(〈s′, i〉, 〈s, i + 1〉) if there is a finite run from s′ to

s over w[ji + 1, ji+1]. Then, we label this edge by the run from

s′ to s.

By the definition ofA′, for every j ≥ 0 and state sj+1 ∈ Sj+1, there

is a state sj ∈ Sj such that sj+1 ∈ δ(sj, σj). Thus, it follows by induction

that for every i ≥ 0 and state si+1 ∈ Sji+1 , there is a state si ∈ Sji
such that there is a finite run from si to si+1 on w[ji + 1, ji+1]. Thus,

the DAG G has infinitely many reachable vertices from the vertex

〈q0, 0〉. In addition, as the nondeterminism degree of A is finite, so

is the branching degree of G. Thus, by König’s Lemma, G includes an

infinite path, and the labels along the edges of this path define a run

ofA on w. Since for all i ≥ 1, the state Sji is in α′, and so all the states

in Sji are in α, this run is accepting, and we are done.
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FIGURE 2

Reduction from the Hamiltonian-cycle problem.

For the other direction, assume that w = σ1 · σ2 · · · ∈ L(A), and

let r = r0, r1, . . . be an accepting run ofA on w. Let r′ = S0, S1, S2 . . .

be the run ofA′ on w, and assume, by way of contradiction, that r′ is

not accepting; thus, there is a position j ≥ 0 such that Sl 6∈ α′, for all

l ≥ j. Consider a state S of A′ and a letter σ ∈ 6. By the definition

ofA′, if S′ = δ′(S, σ ) and S′ /∈ α′, then all the σ -successors of a state

s ∈ S are in not in α. Applying the earlier observation iteratively, we

get that all the runs of a state sj ∈ Sj on the suffix w[j + 1,∞] never

visit an α state. Thus, for all sj ∈ Sj, we have thatA
sj does not accept

w[j + 1]. We claim that rj is equivalent (in A) to all the states in Sj,

which is a contradiction, asArj does accept s[j+ 1,∞].

Consider states q ∈ Q, a letter σ ∈ 6, and a state q′ ∈ δ(q, σ ).

SinceA is semantically deterministic, the definition ofA′ implies that

if q is equivalent (inA) to all the states in some set S ∈ 2Q, then q′ is

equivalent (in A) to all the states in δ′(S, σ ). Now, since r0 = q0 and

S0 = {q0}, an iterative application of the earlier observation implies

that indeed rj is equivalent to all the states in Sj, and we are done.

We continue to the co-Büchi automata, where the construction is

similar, except that in A′, we try to proceed to states that are not in

α. Formally, A′ = 〈6, 2Q, {q0}, δ
′,α′〉, where α′ = {S ∈ 2Q : S ⊆ α}

is as in the Büchi case, and the transition function δ′ is defined for

every state S ∈ 2Q and letter σ ∈ 6 as follows. If δ(S, σ ) ⊆ α, then

δ′(S, σ ) = δ(S, σ ). Otherwise, namely if δ(S, σ ) ∩ (Q \ α) 6= ∅, then

δ′(S, σ ) = δ(S, σ ) \ α. Thus, whenever a constructed set contains a

state not in α, we leave in the set only states not in α. The proof

is based on the semantic determinism of A and follows the same

considerations as in the Büchi case.

Finally, for automata with transition-based acceptance, the

constructions are also similar, except that we restrict the sets

according to the membership of transitions in α. For example, in the

case of HD-tNBW, consider a state S ∈ 2Q and a letter σ ∈ 6. If all

the σ -transitions inA from states in S are not in α, thenA′ proceeds

from S to the set of all the σ -successors of S in A, and the transition

is not in α′. If some σ -transitions from S are in α, then A′ proceeds

only with these transitions, and the transition is in α. Formally, for

S ∈ 2Q and σ ∈ σ , let

S′ = {s′ : there is s ∈ S such that 〈s, σ , s′〉 ∈ α}.

Now, if S′ = ∅, then δ′(S, σ ) = δ(S, σ ) and 〈S, σ , δ(S, σ )〉 6∈ α′, and if

S′ 6= ∅, then δ′(S, σ ) = S′ and 〈S, σ , S′〉 ∈ α′.

4.2. Determinization via complementation

For a language L ⊆ 6ω , the complement of L, denoted by ∘(L), is

the set of infinite words not in L, thus ∘(L) = 6ω \ L. In this section,

we show that the determinization of HD automata cannot induce an

exponential blowup for both a language and its complement. This is

different from the situation for general nondeterministic automata,

where a blowup may occur for both languages. For example, consider

the family of languages of finite words Lk = (a+ b)∗ · a · (a+ b)k−1.

While for all k ≥ 1, both Lk and {a, b}∗ \ L can be recognized

by nondeterministic automata with k + 1 states, a deterministic

automaton for Lk must have at least 2k states.

The earlier property of HD automata was proved in Boker et al.

(2013) for HD automata with the Rabin acceptance condition.3

In this study, we give a variant of the proof, focusing on Büchi

and co-Büchi automata.

Theorem 4.2. Consider a language L ⊆ 6ω . If there is an HD-NBW

for Lwith n states and an HD-NCW for ∘(L) withm states, then there

is a DBW for L with nm states.

3 We have not defined the Rabin acceptance condition in Section 2. The

condition consists of a set of pairs of sets of states (Rabin, 1969). Thus, when

the automaton is defined with respect to a set of states Q, it is of the form

{〈G1 ,B1〉, 〈G2 ,B2〉, . . . , 〈Gk ,Bk〉}, with Gi ,Bi ⊆ Q, and a run r is accepting if for some

1 ≤ i ≤ k, we have that inf (r) ∩ Gi 6= ∅ and inf (r) ∩ Bi = ∅.
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Proof. Let A1 = 〈6,Q1, q
0
1, δ1,α1〉 be an HD-NBW for L, and

A2 = 〈6,Q2, q
0
2, δ2,α2〉 be an HD-NCW for ∘(L). Consider the

nondeterministic automaton A obtained by taking the product of

A1 with A2. Thus, A = 〈6,Q1 × Q2, 〈q
0
1, q

0
2〉, δ,α〉, where for

every state 〈q1, q2〉 ∈ Q1 × Q2 and letter σ ∈ 6, we have that

δ(〈q1, q2〉, σ ) = δ1(q1, σ )× δ2(q2, σ ). It is easy to see that if we define

A as an NBW with α = α1 × Q2, we get that L(A) = L(A1) = L,

and if we define A as an NCW with α = Q1 × α2, we get that

L(A) = L(A2) = ∘(L). Notably, as every word in 6ω is either in L or

in ∘(L), if we defineAwith a Rabin condition α = {〈α1×Q2, ∅〉, 〈Q1×

Q2,Q1 × α2〉} with two pairs (for readers not familiar with the Rabin

acceptance condition, a run satisfies α if its projection on Q1 satisfies

the Büchi condition α1 or its projection on Q2 satisfies the co-Büchi

condition α2), we get that L(A) = 6ω . We argue that in all three

cases, A is DBP. Since the number of states in A is |Q1 × Q2|, the

theorem follows.

Consider the following game between Player ∃ and Player ∀.

The game is played on A and starts from position 〈q01, q
0
2〉. When

the game is in position 〈q1, q2〉 ∈ Q1 × Q2, Player ∀ chooses a

letter σ ∈ 6, and Player ∃ chooses a successor position 〈q′1, q
′
2〉 ∈

δ(〈q1, q2〉, σ ). The outcome of a play is an infinite run r =

〈q01, q
0
2〉, 〈q

1
1, q

1
2〉, 〈q

2
1, q

2
2〉, 〈q

3
1, q

3
2〉, . . . ofA. Note that r combines a run

r1 = q01, q
1
1, q

2
1, q

3
1, . . . of A1 with a run r2 = q02, q

1
2, q

2
2, q

3
2, . . . of

A2, both on the word w obtained by concatenating the letters chosen

by Player ∀.

The winning condition for a Player ∃ is that either r1 satisfies α1

or r2 satisfies α2. This winning condition can be specified by a Rabin

winning condition with two pairs: {〈α1×Q2, ∅〉, 〈Q1×Q2,Q1×α2〉}.

It is easy to see that following the HD strategies of both automata is a

winning strategy for the Player ∃. Indeed, this strategy guarantees that

if the word w is in L, the run r1 is accepting in A1 and thus satisfies

the Büchi condition α1, and if w ∈ ∘(L), then the run r2 is accepting

in A2 and thus satisfies the co-Büchi condition α2. Since every word

is either in L or in ∘(L), the winning condition for the Player ∃ is

always satisfied.

It is known that Rabin games admit memoryless strategies

(Klarlund, 1992; Jutla, 1997). Hence, the Player ∃ actually has a

memoryless winning strategy in the game. Such a strategy maps each

position 〈q1, q2〉 ∈ Q1×Q2 and letter σ ∈ 6 to a position 〈q′1, q
′
2〉, and

induces the required pruning ofA into a deterministic automatonA′.

Specifically,A′ with the Rabin condition {〈α1×Q2, ∅〉, 〈Q1×Q2,Q1×

α2〉} accepts all the words in 6ω , then A′ with the Büchi condition

α1 ×Q2 is a DBW for L, andA′ with a co-Büchi condition Q1 ×α2 is

a DCW for ∘(L).

In Section 4.3, we use Theorem 4.2 in order to obtain both upper

and lower bounds on the succinctness of HD automata with respect

to deterministic ones.

4.3. Succinctness

By Theorem 4.2, an upper bound on the complementation of

HD automata implies an upper bound also on their determinization.

Specifically, if f : IN → IN is a function such that complementing

an HD automaton A with n states results in an HD automaton

with at most f (n) states, then the determinization of A results in an

automaton with at most n · f (n) states. In Kuperberg and Skrzypczak

(2015), the authors describe a linear complementation construction

for HD-NBWs. Hence, HD-NBWs are at most quadratically more

succinct than DBWs, and the same holds for HD-tNBWs. For the

co-Büchi acceptance condition, Kuperberg and Skrzypczak proved

that HDness could lead to a significant succinctness. Their proof

makes use of Theorem 4.2 in the following way. Consider a language

L ⊆ 6ω , and assume that A is an HD automaton for L. By

Theorem 4.2, an HD automaton for ∘(L) can serve as a “memory

structure” that generates a strategy for A: Taking its product with

A, we obtain a deterministic automaton that inherits its acceptance

condition from A. Since every deterministic automaton is an HD

automaton, and deterministic automata can be complemented by

dualization, it follows that every deterministic automaton for L can

also serve as a memory structure for an HD automaton for L. As we

shall see now, this property is useful in the proof of the exponential

succinctness of HD-NCWs with respect to DCWs. We state the

theorem in the transition-based setting. Similar considerations hold

in the state-based setting.

Theorem 4.3. Kuperberg and Skrzypczak (2015) there is an infinite

family of languages L1, L2, L3, . . . such that for every n ≥ 1, the

following holds.

1. There is an HD-tNCW with 2n states that recognizes Ln.

2. Every tDCW that recognizes Ln needs at least
2n

2n states.

Proof. For n ≥ 1, let [n] = {0, 1, . . . , 2n−1}. We define the language

Ln over the alphabet 6 = {I,Z,X,H}. Each letter in 6 is a (possibly

partial) function σ :[n] → [n], as described in Figure 3.

The functions I,X, and Z are one-one and onto: For every x ∈ [n],

we have that I(x) = x, Z(x) = (x + 1) mod 2n − 1, and X agrees

with I, except for x ∈ {0, 1}, where X(0) = 1 and X(1) = 0. The

function H is partial; it agrees with I, except for x = 0, where H(0)

is undefined. Thus, the letters induce permutations on [n], with H

inducing a permutation only on [n] \ {0}.

We view a finite word w as the partial function w :[n] → [n]

obtained by composing its letters. Thus, if w = σ1 · σ2 · · · σl, then for

all i ∈ [n], we have that w(i) = σl(· · · σ2(σ1(i))). It is convenient to

associate with each word w ∈ 6∗ a grid of dimensions (|w|+1)×2n,

and lines that start in “floors" in [n] and traverse the floors along the

grid according to the permutations induced by the letters in w. As

H(0) is undefined, a line that reaches floor 0 before H is read has

a “hole" in the corresponding position in the grid. Figure 4 describes

the grid associated with the word IXHZZXHZ when n = 2 and n = 3.

An infinite word u ∈ 6ω corresponds to an infinite sequence of

compositions of its letters, and thus the horizontal dimension of the

grid associated with it is infinite. We define Ln as the set of words in

6ω whose grid contains an infinite line; that is, a line that has only

finitely many holes. For example, back to Figure 4, it is not hard to

see that the infinite word u = wω , for w = IXHZZXHZ is in L2.

Indeed, when n = 2, we have that w(0) = 0 and w(2) = 2, and so

the lines starting at floors 0 and 2 are never cut. In contrast, u 6∈ L3.

Indeed, when n = 3, we have that w(0) = 4, w(2) = 5, w(3) = 0,

w(4) = 2, whereas w(1) and w(5) are undefined. Accordingly, w5(i)

is undefined for all i ∈ [3], implying that lines from all floors are cut

whenever w5 is read. Therefore, the grid of u contains no infinite line,

and so u 6∈ L3.

We first prove that there is an HD-tNCW with 2n states that

recognizes Ln. It is easy to see that Ln can be recognized by a tNCW

with 2n states. Indeed, a tNCW can simply guess a line to follow and

initiate its guess whenever the line it follows is cut. Specifically (see
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FIGURE 3

Permutations induced by the letters I, X, Z, and H.

FIGURE 4

Grid induced by the word IXHZZXHZ when n = 2 (top) and n = 3 (bottom).

A2 in Figure 5), the tNCW An has state space {q0, . . . , q2n−1} and

for all i ∈ [n], it visits qi when the line it follows is in floor i. The

initial state of An is arbitrarily set to q0, and the transition function

updates the floor according to the letter it reads. For example, when

An is in state qi and reads I, it stays in qi, when it reads X, if stays in

qi for i ∈ {2, . . . , 2n− 1}, moves to q1 from q0, and moves to q0 from

q1. Nondeterminism is required when An reads the letter H in state

q0; thus, when it follows a line that is in floor 0 and the line is cut.

Then,An guesses a new floor to follow. Since all floors are candidates

for hosting an infinite line, An can nondeterministically move from

q0 with H to all states. Since the input word is in the language, if it

contains an infinite line; thus, if it is possible to eventually follow

a line that is never cut, we want an accepting run to take only

finitely many H-transitions from the state q0; thus, α is the set of

these transitions.

It is less easy to see that the tNCWAn is in fact HD. In order to see

this, consider the following HD strategy g :6∗ → Q. First, g(ǫ) = q0;

thus, all runs start in state q0, which is the only initial state of An.

Whenever a run is in state q0 after reading a prefix u, and it readsH, it

proceeds to the state qi such that the line that is now in the floor i is the

longest among all lines in the graph. Formally, for all words u ∈ 6∗

and floors i ∈ [n], let seniority(u, i) be the length of the longest suffix

u′ of u such that there is j ∈ [n] with u′(j) = i. Then, if u ∈ 6∗ is

such that g(u) = q0, then g(u · H) = qi, for the minimal i ∈ [n]

that maximizes seniority(u, i). Note that the choice of the minimal i

is arbitrary, and it is required in order to decide between lines with

the same seniority. Note also that it is possible to implement the HD

strategy g by maintaining the order of seniority among the different

floors during the run; thus, it indeed depends only on the history

of the run. Finally, as an infinite line would eventually obtain the

maximal seniority, it is guaranteed that following the strategy g leads

to accepting all words in the language: In all of them, the run that

follows g eventually follows an infinite line.

It is left to prove that a tDCW for Ln needs at least 2
n − 1 states.

The full proof, in Kuperberg and Skrzypczak (2015), is based on

the following arguments: The first argument refers to the ability to
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FIGURE 5

HD-tNCW A2 that recognizes L2.

generate with finite words over {I,Z,X} every permutation on [n].

The proof in Kuperberg and Skrzypczak (2015) focuses on pair-based

permutations, namely permutations that map each floor i ∈ [n] to

floor 2⌊ i
2 ⌋ or 2⌊ i

2 ⌋ + 1. That is, for every j ∈ {0, . . . , n − 1}, the

permutation map {2j, 2j + 1} onto itself. Note that there are 2n pair-

based permutations and that each pair-based permutation could be

generated by a word in ((I+X)·ZZ))n. Indeed, the word that generates

a pair-based permutationπ is σ0·ZZ·σn−2·ZZ·σn−1·ZZ·σ2·ZZ·σ1·ZZ,

where for all j ∈ {0, . . . , n − 1}, we have that σj = I if π does not

switch 2j and 2j + 1 and σj = X if π switches 2j and 2j + 1. For

example (see Figure 6), when n = 3, the word IZZXZZXZZ induces

the permutation 〈013254〉; thus, it switches {2, 3} and {4, 5}. It is easy

to see that in a similar manner, we can generate with finite words over

{I,Z,X} every permutation on [n], and not only pair-based ones.

The second argument is that when we discuss potential tDCWs

for Ln, we can restrict attention to tDCWs that are obtained by

taking the product of An with a deterministic memory structure.

The argument proceeds as follows. Given a tDCW with f (n) states

for Ln, we can dualize it and obtain a tDBW for ∘(Ln), which is

also an HD-tNBW for ∘(Ln). Then, as specified in the proof of

Theorem 4.2, we can take the product of this HD-tNBW with the

HD-tNCW An described earlier for Ln and obtain a tDCW with

2n · f (n) states for L whose acceptance condition is induced by

An. Thus, its α-transitions are H-transitions that leave states of the

form 〈q0, s〉 for a state s of the claimed tDCW. Note that in this

process, we start with a tDCW with f (n) states for Ln and obtain an

equivalent tDCW with 2n · f (n) states, which may seem a bad idea

in the context of proving a lower bound. The information, however,

that we gain about the structure of the obtained tDCW makes this

“2n penalty” worthwhile.

The third, and most complicated argument is that a tDCW that

attempts to recognize Ln is obtained by taking the product of An

with a deterministic memory structure, and has <2n states, must err.

Essentially, the argument proceeds as follows. Consider a tDCW Dn

as earlier. SinceDn is obtained by taking the product ofAn with some

memory structure, it accepts only words in the language, and so the

error we highlight is that it rejects a word in Ln. The word along with

the run rejecting it are constructed as follows. The run starts from

some state of the form 〈q0, s0〉. SinceDn has <2n states, there are two

different pair-based permutations π1 and π ′
1 that lead from 〈q0, s0〉 to

the same state 〈qi1 , s1〉. Since π1 6= π ′
1, there is j ∈ {0, . . . , n− 1} such

that π1(2j) 6= π ′
1(2j). Thus, {π1(2j),π

′
1(2j)} = {2j, 2j+1}. This implies

that the size of the set F = {π1(1),π1(3), . . . ,π1(2n − 1),π ′
1(2j)} is

n + 1. Therefore, there is a permutation τ1 that behaves as follows:

First, it maps i1 (that is, the floor that Dn now follows, as its An

component is in state qi1 ) to 0. In addition, if i1 ∈ F, then the other

n elements in F are mapped to {1, 3, . . . , 2n − 1}, and if i1 6∈ F,

then n elements in F are mapped to {1, 3, . . . , 2n − 1}, and one

element is mapped arbitrarily. Note that since Dn is based on An,

its run on τ1 from the state 〈qi1 , s1〉, reaches a state of the form

〈q0, s
′
1〉. Indeed, the operation of An on τ1 is deterministic, and it

follows the states that correspond to the floors visited along the

execution to the permutation τ1, which maps i1 to 0. Thus, when

Dn reads either π1 · τ1 · H or π ′
1 · τ1 · H, the transition has taken

when the last letter H is read, is an α-transition. In contrast, the

grid induced by at least one of these words includes a line that

is not cut and reaches one of the floors in {1, 3, . . . , 2n − 1}. Let

〈qi′1 , s
′′
1〉 be the H-successor of 〈q0, s

′
1〉 in Dn. We can now continue

the generation of the run by considering two different pair-based

permutations π2 and π ′
2 that lead from 〈qi′1 , s

′′
1〉 to the same state

〈qi2 , s2〉 and a permutation τ2 whose composition with π2 and π ′
2

maps i2 to 0 and guarantees that the line to at least one floor in

{1, 3, . . . , 2n − 1} is not cut. Continuing in this manner, it can be

shown that while the runs on all the words in (π1 + π ′
1) · τ1 · H ·

(π2 + π ′
2) · τ2 · H · · · are rejecting, at least one of these words

is in Ln.

5. Variants, extensions, and open
problems

Since their introduction, history-deterministic automata have

attracted a lot of interest in the research community. Indeed,

beyond their practical usefulness, history determinism is theoretically

interesting and intriguing, relevant to computation models beyond

nondeterministic automata on infinite words, and many natural

questions around it are still open. This survey focuses on some key

results about HD nondeterministic Büchi and co-Büchi automata on

infinite words. Due to the lack of space, several clear results, such as

the linear complementation and quadratic determinization of HD-

NBWs (Kuperberg and Skrzypczak, 2015), algorithms for deciding

HDness (Kuperberg and Skrzypczak, 2015; Bagnol and Kuperberg,

2018), relations to other types of bounded nondeterminism (Boker

et al., 2017; Abu Radi et al., 2021), and results on HD automata with

richer acceptance conditions (Boker et al., 2017, 2020; Casares et al.,

2022) are not included.

History determinism has also been studied for alternating,

pushdown, and quantitative automata. We briefly describe these

models here. For an excellent recent survey, see Boker and Lehtinen

(2023). An alternating automaton has both nondeterministic and

universal transitions. While a nondeterministic transition stands

for an existential choice; thus, a run may choose a successor

state to proceed to. In a universal transition the run should

proceed to all successors (Chandra et al., 1981). Thus, universality

actually involves no choices that have to be resolved, and one

could have defined HD alternating automata as ones in which

the nondeterministic choices can be resolved in a way that only

depends on the past. One of the main features, however, of
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FIGURE 6

Word IZZXZZXZZ generates the pair-based permutation 〈013254〉.

alternating automata is the duality between the nondeterministic

and universal choices. In particular, an alternating automaton A

can be complemented (that is, turned into an automaton Ã for

the complementing language) by dualizing its transition function

(that is, making all nondeterministic branches universal and all

universal branches nondeterministic) and acceptance condition

(that is, switching between Büchi and co-Büchi). With this

duality in mind, Colcombet defined HD alternating automata

with cost functions as automata that have two strategies—

one for resolving nondeterministic choices in A and one for

resolving nondeterministic choices in Ã (Colcombet, 2013). HD

alternating automata for ω-regular languages are further studied in

Boker and Lehtinen (2019).

History-deterministic ω-pushdown automata were studied in

Guha et al. (2021) and Lehtinen and Zimmermann (2022). Their

definition is similar to the definition of HD ω-regular automata,

except that now, the nondeterminism that the strategy resolves

corresponds to the different choices in the transition function of

pushdown automata; thus, the strategy maps the history to both the

next state of the automaton and the operations on the stack.

Quantitative automata define weighted languages, namely

mappings from words to values. In these automata, nondeterminism

essentially amounts to letting the automaton choose a run that leads

to the best value. For example, if the value of a run is the limit

average of values of transitions taken along the run, and the setting

corresponds to a maximization question, then the value of a word is

the supremum value of all the runs on it. Recall that a strategy of an

HD Boolean automaton has to generate a run that accepts all words

in the language of the automaton. In the quantitative setting, we want

the strategy to generate a run that attains the supremum value (or,

in a minimization setting, the infimum value) (Boker and Lehtinen,

2021). The quantitative setting calls for variants in which we seek

strategies that approximate the optimal value or attain values above

or below some threshold. In fact, the very first work of Colcombet

on HD automata studied strategies that approximate regular cost

functions (Colcombet, 2009), and the analysis of the competitive

ratio of online algorithms in Aminof et al. (2010, 2011) studied

approximating HD quantitative automata.

An orthogonal extension of HD automata is motivated by

their use in the synthesis problem. Recall that the problem can

be reduced to solving a game on top of an HD automaton

for the specification. HD automata are defined for general

alphabets, whereas in the synthesis problem, the specification

is over an alphabet 2I∪O, for sets I and O of input and

output signals, respectively. In Faran and Kupferman (2020), the

authors introduced (I/O)-aware HD automata, which distinguish

between nondeterminism due to I and O: Both should be

resolved in a way that depends only on the past; but while

nondeterminism in I is hostile, and all I-futures should be accepted,

nondeterminism in O is cooperative, and a single O-future may

be accepted. It is shown in Faran and Kupferman (2020) that

(I/O)-aware HD automata can be used for synthesis and that

they are unboundedly more succinct than deterministic and even

HD automata.

Related variants of HD automata have to do with their

applications. As discussed in Section 1, HD automata are good

for trees, in the sense that an HD word automaton for L can be

expanded to a tree automaton for L△, and are good for games,

in the sense that synthesis can be reduced to playing a game

on top of an HD automaton for the specification. As it turns

out, these “goodness" properties need not characterize history

determinism in all settings. For example, in the quantitative setting,

an automaton may be good for games without being HD (Boker

and Lehtinen, 2021). Moreover, even in the Boolean setting, HD

may imply, yet not be characterized by, other useful properties.

For example, every HD automaton is good for MDPs; thus, its

product with Markov decision processes maintains the probability of

acceptance and can therefore replace deterministic automata when

reasoning about stochastic behaviors (Hahn et al., 2020; Schewe et al.,

2022).

Some basic problems around history determinism are still open.

Most notable is the succinctness of HD-NBWs with respect to DBWs.

Recall that, by Kuperberg and Skrzypczak (2015), HD-NBWs can be

determinized with a quadratic blowup. Yet, while we know that not

all HD-NBWs are DBP, there is no matching quadratic lower bound,

and, in fact, we still do not have even an example of a language L

such that an HD-NBW for L is strictly smaller than a DBW for L. In

particular, while the HD-tNBW A appearing in Figure 1 is not DBP,

the tDBW obtained by merging the states q1 and q2 of A recognizes

L(A) and is smaller thanA.

Additional open problems refer to decision problems around

history determinism. One such question is the complexity of deciding

whether a given language is HD-helpful, namely whether an HD

automaton for it is smaller than a deterministic automaton for it.

Note that the definition is parameterized by the acceptance condition.

For example, as discussed earlier, possibly there are no languages
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that are HD-Büchi-helpful (i.e., languages L such that an HD-

NBW for L is strictly smaller than a DBW for L), and the same

for Büchi automata with transition-based acceptance. For co-Büchi

automata, we do know that HD-co-Büchi-helpful languages exist.

We also know that there are languages that are HD-co-Büchi-helpful

only in automata with transition-based acceptance, but no clean

characterization of the tight complexity of the corresponding decision

problems is known.

The problem of HD helpfulness is related to the fundamental

problem ofminimization: the generation of an equivalent automaton

with a minimal number of states. For automata on finite words,

the picture is well understood: For nondeterministic automata,

minimization is PSPACE-complete (Jiang and Ravikumar, 1993),

whereas for deterministic automata, a minimization algorithm,

based on the Myhill-Nerode right congruence (Myhill, 1957;

Nerode, 1958), generates in polynomial time a canonical minimal

deterministic automaton (Hopcroft, 1971). Essentially, the canonical

automaton, a.k.a., the quotient automaton, is obtained by merging

equivalent states. For automata on infinite words, merging of

equivalent states fails, and the minimization of DBWs (and

hence, also DCWs, as the two dualize each other) is NP

complete (Schewe, 2010). In Abu Radi and Kupferman (2019),

Abu-Radi and Kupferman described a polynominal minimization

algorithm for HD-tNCW. Considering HD-tNCWs rather than

DCWs involves two modifications: considering HD rather than

deterministic automata and considering transition-based rather than

state-based acceptance. A natural question that arises is whether both

modifications are crucial for efficiency. In Schewe (2020), Schewe

proved that his NP-hardness result of DCW minimization could

be generalized to HD-NCWs. This suggests that the consideration

of transition-based acceptance is crucial and makes the study

of tDBWs and tDCWs minimization, which is still open, very

interesting. Moreover, for the richer acceptance condition of Rabin,

Casares proved that minimization is NP-hard for HD automata

with transition-based acceptance (Casares, 2022), and for automata

with state-based acceptance, Abu Radi and Kupferman (2022) shows

that minimization is NP-hard already for automata that recognize

fragments of ω-regular languages, in particular for automata that

recognize liveness languages. The minimization algorithm of Abu

Radi and Kupferman (2019) also implies canonicity for HD-tNCWs:

All minimal automata have isomorphic safe components (namely,

components obtained by restricting the transitions to these not in

α), and once we saturate the automata with α-transitions, we get full

isomorphism. This is in contrast to DCW, where no canonicity exists

(Abu Radi and Kupferman, 2020).
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