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Introduction:Developments in Artificial Intelligence (AI) are adopted widely in

healthcare. However, the introduction and use of AI may come with biases and

disparities, resulting in concerns about healthcare access and outcomes for

underrepresented indigenous populations. In New Zealand, Māori experience

significant inequities in health compared to the non-Indigenous population.

This research explores equity concepts and fairness measures concerning AI

for healthcare in New Zealand.

Methods: This research considers data and model bias in NZ-based electronic

health records (EHRs). Two very distinct NZ datasets are used in this research,

one obtained fromone hospital and another frommultiple GP practices, where

clinicians obtain both datasets. To ensure research equality and fair inclusion of

Māori, we combine expertise in Artificial Intelligence (AI), New Zealand clinical

context, and te ao Māori. The mitigation of inequity needs to be addressed

in data collection, model development, and model deployment. In this paper,

we analyze data and algorithmic bias concerning data collection and model

development, training and testing using health data collected by experts. We

use fairness measures such as disparate impact scores, equal opportunities

and equalized odds to analyze tabular data. Furthermore, token frequencies,

statistical significance testing and fairness measures for word embeddings,

such as WEAT and WEFE frameworks, are used to analyze bias in free-form

medical text. The AImodel predictions are also explained using SHAP and LIME.

Results: This research analyzed fairnessmetrics for NZ EHRswhile considering

data and algorithmic bias. We show evidence of bias due to the changes

made in algorithmic design. Furthermore, we observe unintentional bias due to

the underlying pre-trained models used to represent text data. This research

addresses some vital issues while opening up the need and opportunity for

future research.

Discussions: This research takes early steps toward developing a model of

socially responsible and fair AI for New Zealand’s population. We provided

an overview of reproducible concepts that can be adopted toward any NZ

population data. Furthermore, we discuss the gaps and future research avenues

that will enable more focused development of fairness measures suitable for

the New Zealand population’s needs and social structure. One of the primary

focuses of this research was ensuring fair inclusions. As such, we combine

expertise in AI, clinical knowledge, and the representation of indigenous
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populations. This inclusion of experts will be vital moving forward, proving a

stepping stone toward the integration of AI for better outcomes in healthcare.
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Artificial Intelligence, bias, healthcare, New Zealand, Māori, equity

1. Introduction

There are abundant examples around the world where

indigenous and underrepresented populations experience

inequities in their exposure to the determinants of health.

This includes access to and through healthcare and receipt of

high-quality healthcare (Webster et al., 2022). In New Zealand,

Māori experience significant inequities in health compared to

the non-Indigenous population (Curtis et al., 2019; Webster

et al., 2022; Wilson et al., 2022). Although Māori experience a

high level of health care need, they receive less access to the full

spectrum of health care services and poorer care throughout,

from preventative to tertiary care (Curtis et al., 2019; Webster

et al., 2022). The need to address such health equity is reinforced

by the United Nations Declaration on the Rights of Indigenous

Peoples and Te Tiriti o Waitangi (The Treaty of Waitangi,

18401) in New Zealand.

Developments in Artificial Intelligence (AI) and data-driven

technology are used to make clinical diagnoses, decisions, and

treatment protocols. Although health inequalities can directly

reflect human biases, the introduction of and use of AI in

healthcare comes with its own biases and disparities. AI is

prone to reinforcing bias (Parikh et al., 2019; Feuerriegel et al.,

2020; Norori et al., 2021), triggering a need for legislative

improvements, including data governance, and reflected by

the recent modifications of the US HIPPA regulations and

GDPR in Europe. In New Zealand, the ongoing health system

reforms and the inclusion of a new Māori health authority are

expected to provide the opportunities and platform for health

equity (McCall, 2022). Furthermore, ongoing developments

of frameworks such as the IEEE Standards on Algorithmic

Bias Considerations (P7003) (Koene et al., 2018; Smith et al.,

2018) are examples of global initiatives to assist organizations

in understand and eliminate unintentional algorithmic bias.

Moreover, governments have introduced anti-discrimination

laws prohibiting unfair treatment based on sensitive attributes.

This research takes early steps toward developing a fair

and unbiased AI in healthcare for New Zealand’s population.

Ensuring equity requires identifying and mitigating fairness

problems in data collection, data storage, data availability,

model development, and model deployment (Mehrabi et al.,

2021; Paleyes et al., 2022). In this paper, we analyze data

and algorithmic bias concerning data collection and model

1 https://waitangitribunal.govt.nz/treaty-of-waitangi/

development, training and testing using health data collected

by experts. We consider the existing fairness measures in both

the data and algorithmic development stages. We also analyze

the use of fairness measures developed predominantly for the

US population in New Zealand settings (Mehrabi et al., 2021).

We use health data collected from New Zealand’s population

while working closely with healthcare experts to analyze fairness

measures. This research provides a pathway to reproducible

concepts that can be adopted with respect to any NZ population

data, not just electronic health records (EHRs). We use data

collected by health experts and analyze unintended data bias.

We consider algorithmic bias at two stages. The first is analyzing

the effects of using machine learning models for a given

classification task, and the second is at algorithmic design (i.e.,

the design of a specific task or research question). In this paper

we use machine learning models such as logistic regression

and XGBoost. The choice of the machine learning algorithms,

including the above mentioned, is made based on examples

in the literature of other similar studies, such as Hotzy et al.

(2018), Tong et al. (2020), Yao et al. (2020), Peng et al. (2021),

Wu et al. (2022), Barak-Corren et al. (2021), Luo et al. (2019),

and Snider et al. (2021). The protected groups chosen for this

study are “Gender” and “Ethnicity,” where the male population

is considered privileged over the female population and NZ

Europeans are considered privileged over Māori and Pacific

populations. The analysis of fairness measures for tabular and

text data from the NZ population is presented, representing text

data as bag-of-words or embeddings.

This paper includes the following sections. Section 2

provides an overview of the concepts addressed in this paper,

including references to the literature where required. This is

followed by Section 3 where an outline of data and experimental

metrics, methodology and setup is provided. Section 4 provides

details of the results and analysis. Finally, conclusions and future

work are presented in Section 5.

2. Background

2.1. AI model development and
deployment

There are two significant stages for integrating AI into any

task, development and deployment. Figure 1 shows the general

process, including the various sub-tasks required for each step.

The first and arguably most crucial step is obtaining the relevant
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data for the project. The data can drive the entire development

cycle as factors such as the type and quantity of data will

determine which machine learning models are appropriate for

the task. Data quality is also is important, although that is a

much larger topic (Gudivada et al., 2017). The data is typically

partitioned into two, with one part used for training the chosen

AI model to perform the desired task. The rest of the data is

used to test the trained model to see how effective the model is

when exposed to new data. There may be some cycling between

training and testing the model, with different iterations of the

model selection occurring based on the test results.

Once development is completed, the model is deployed

for real-world use. This stage generally consists of waiting

and observing the model’s performance (i.e., accuracy) in

its intended tasks. A well-developed model with appropriate

training data will generalize to real-world tasks, resulting in

an adequate performance for the intended task. In this case,

appropriate training data comes from a distribution that is the

same or at least highly similar to the real-world task distribution.

Even if the model generalizes well, there is still a need to

periodically monitor the model’s performance as the real-world

distribution changes. These distribution changes are known

as “concept drift” (Widmer and Kubat, 1996). In healthcare,

concept drift could occur gradually due to factors such as shifts

in the population’s demographic composition or suddenly due

to factors such as a global pandemic. The impact of concept

drift can be moderated using multiple methods (Žliobaitė et al.,

2016). A simple method is to treat the entire development and

deployment process as iterative, with feedback from deployment

being used as training data for a new development stage.

2.2. Bias

Bias in AI can occur at all stages, from data collection to

algorithmic development and deployment (see Figure 1). Such

bias is far more problematic with underrepresented populations.

For instance, models fed relatively homogeneous data during

training suffer from a lack of diversity in terms of underlying

patient populations. They can severely limit the generalizability

of results and yield biased AI-based decisions (Celi et al., 2022).

Obermeyer et al. (2019) provided an example of data bias where

the algorithm showed Black patients to be healthier than they

actually were, as the design of the algorithm used the cost of

health as a proxy for the needs of patients. Algorithmic designs

also result in biased algorithmic decisions. Another aspect of

bias is the data distribution encountered in the training and

validation of a model being site-specific (or country/region-

specific). In this case, the data distribution of the deployment

environment is significantly different (Howard et al., 2021). In

addition to changes in the population’s ethnicity, changes in

medical equipment, such as image capture and biometrics, can

also lead to bias.

2.3. Fairness

Uses of AI in real-world applications, including

healthcare, can produce unfair outcomes across demographic

groups (Fletcher et al., 2021; Forde et al., 2021; Leslie et al., 2021);

hence, there is need for quantitative assessments of fairness in

decision making. The fairness of a machine learning model is

usually judged against a set of legal or ethical principles. It can

vary depending on the local government and culture (Fletcher

et al., 2021); in this regard, the cultural and social requirements

of Aotearoa/New Zealand are also unique.

There is a need to mitigate equity problems in data

collection, model development, and model deployment to

ensure that AI can be used to improve healthcare outcomes

of underrepresented and indigenous populations. Choosing the

appropriate fairnessmeasurement based on the scenario can also

help mitigate bias. It is vital to point out that the emphasize

of equality, although appropriate in some situations, may not

necessarily reflect health equity. To achieve equity of health

outcomes some categories of patients will require substantially

more resources. As defined by NZ Ministry of Health2, based

on the World Health Organization, equality refers to treating

people in the same way, while equity refers to treating people

fairly, i.e., equity is about adapting to the needs of populations

to help people achieve the same outcomes. Fairness policies

related to healthcare can be grouped into those based on equal

performance and those based on equal allocation (Rajkomar

et al., 2018). Equal performance means that a model is

guaranteed to be equally accurate for patients from various

population groups. An excellent example of equal allocation

is the issue of vaccine distribution. When a machine learning

model considers only the overall optimal prevention strategy,

its allocation strategy can be detrimental to an underrepresented

group.

2.4. Explainability and interpretability

Ever since AI models have been applied to real-world

problems, there have been concerns about the models’

explainability and interpretability (Goebel et al., 2018).

Explainability refers to understanding how a model came to its

decision. In contrast, interpretability is being able to understand

the models’ output. Many of these models are black boxes by

nature; we know that data is input and decisions are output.

Most of what happens between input and output is not well

understood. It can be challenging to determine how the models

came to their decision. This can be particularly concerning

when the models are making decisions that directly affect the

lives of individuals. Why was Person X approved for something

2 https://www.health.govt.nz/about-ministry/what-we-do/work-

programme-2019-20/achieving-equity
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FIGURE 1

Overview describing the basic stages of AI model development and deployment. Examples of bias at various stages are outlined.

that Person Y was denied for? These decisions could be based

on sound reasoning or model biases, as discussed above. These

problems are such a concern that the European Union has

recently introduced regulations to enhance the explainability of

such models in their jurisdiction (Hamon et al., 2020). Research

also shows that users’ acceptance of AI models is significantly

impacted by their explainability (Shin, 2021).

Interpretability is often also an issue for non-black-box

models. In regressionmodels, it takes some statistical knowledge

to correctly interpret what the coefficients mean and how to

understand complex situations such as variable interactions,

polynomial terms and log axes (Nathans et al., 2012). On the

other hand, it is also important to point out the potential

trade off between interpretability, efficacy and equity (Rüping,

2006; Carvalho et al., 2019). Interpretability is a very subjective

concept, and depending on the domain and context the

extend of model interpretability varies and hence is hard to

formalize (Rüping, 2006; Rudin, 2018; Carvalho et al., 2019).

2.5. Incorporating socially responsible AI

A fundamental requirement for being socially responsible

is a trustworthy system. Understanding bias in data and model

developments, and the ability to reduce bias in developing and

deploying technologically advanced systems, are steps toward

being socially responsible. This includes not blindly trusting the

results generated by AI. To ensure safety, security and fairness,

AI systems need to be verified and validated in alignment with

the objectives for which the system was designed (Korteling

et al., 2021).

In New Zealand, given the long history of racism toward

Māori, the design and development of AI systems should feature

a high degree of control by Māori (Wilson et al., 2022). This

allows implementations to be fair and relevant to Māori, and

serves Māori aspirations. Understanding data and algorithmic

bias can further ensure AI models for healthcare (and other

fields) can perform well for Māori with the hope of at least an

equivalent capacity to benefit them.

Tackling algorithmic bias will require working with health

professionals, clinicians, representatives from underrepresented

populations and active participation in developing these

algorithms. This ensures a deep understanding of the

clinical context is incorporated while improving modeling,

acknowledging an acceptable tradeoff between the performance

of the algorithm and bias (Panch et al., 2019). Furthermore,

incorporating representatives from indigenous and minority

populations needs to go beyond just hearing Māori and

minority voices to ensure that society’s needs are met (McCall,

2022). There is a need to ensure that health algorithms do not

worsen health equity and indeed improve health outcomes for

those populations. As such, co-authors of this research include

clinical experts, machine learning experts, data scientists, and

researchers of New Zealand’s indigenous Māori population.

It is vital to understand that all patients are stakeholders as

their data are being used. Stakeholder engagement can improve

research appropriateness, acceptability, rigor, feasibility,

delivery, and dissemination (Maurer et al., 2022). Māori and

other minority groups are important stakeholders, so it is crucial

to handle such data with care (Hudson and Russell, 2009; Esmail

et al., 2015; Kalkman et al., 2022). We strongly believe that any

outcome of this research, either direct or indirect, should be

created for good of Māori and other minority groups. Moreover,

gender-diverse groups are central in this work as they are also at

risk of bias.

Furthermore, it is important to consider patient privacy

laws and the ethics of using patient data. Privacy laws in

many jurisdictions require accurate de-identification of medical

documents before they can be shared outside their originating

institutions or used in research. The ethics committee has
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FIGURE 2

Overview of research components.

approved the data used for this research and it is de-identified

to protect patient privacy.

3. Methodology

This research aims to take initial steps toward addressing

the need to develop socially responsible and fair AI in healthcare

for the New Zealand (NZ) population. As such, we focus

on using NZ data collected by clinicians to analyze the data

bias and model development bias using established techniques

and fairness metrics. Figure 2 provides an overview of various

aspects of this research.

This section presents an overview of the data, target

questions for algorithmic developments, an overview of fairness

metrics, and an outline of the experimental setup.

3.1. Data

For this research, we use two New Zealand data sources

collected by clinicians for various studies. The NZ-GP Harms

Dataset (Leitch et al., 2021) is a collection of electronic health

records (EHRs), in both tabular and text form, from New

Zealand General Practices (NZ-GP) with manual annotations

of experts identifying healthcare patient harms and whether the

identified harm is preventable. The NZ-GDF Dataset (Asrani

et al., 2021) is a collection of data, in tabular form, of

patients admitted to intensive care units (ICU) in New Zealand

hospitals for developing new scoring systems for gastrointestinal

dysfunction/failure (GDF).

3.1.1. The NZ-GP harms dataset

For experiments and development of AI models, New

Zealand General Practice (GP) EHRs data (referred to as NZ-GP

Harms data) from Leitch et al. (2021) is used. This data includes

3 years’ worth of medical records from 44 different GP practices

across NZ, collected using a stratified random sampling method

to minimize data collection bias. It includes data for over 9,000

patients of various ages, gender, ethnicity, and deprivation (i.e.,

economic) status. The GP practices were further categorized

by the size of the practice (i.e., small/medium/large) and if the

location of the practice is urban or rural. The data weremanually
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processed, annotated and verified by eight GP researchers. The

definition of “Patient Harm” used in this data is:

Physical or emotional negative consequences to

patients directly arising from health care, beyond the

usual consequences of care and not attributable ONLY to

the patient’s health condition. Includes: treatment delays,

inconvenience and additional financial costs.

The data includes various categories of free-text data,

including consultation notes, medical warnings, specialist care,

nutrition and other referral details, outcome summaries, and

immunisations. The presence and availability of data for each

category vary from patient to patient. This research considers the

category “Consults” as the free-text EHRs for experiments. The

free-form EHRs “Consults” includes notes from classifications,

patient history and consultation summaries. Figure 3 provides

an overview of the number of tokens in the free-form medical

text for NZ-GP data.

We use the NZ-GP Harms dataset for two tasks: prediction

of harm and prediction of preventable harm. The study

incorporates data in both tabular and free-form EHRs for

9,076 patients, where 1,505 patients experienced some level of

harm. From the 1,505 patients who experienced harm, experts

identified 362 patients with preventable harm. Table 1 provides

summary statistics of selected features of the NZ-GPHarms data

for both tasks.

3.1.2. The NZ-GDF dataset

The NZ-GDF Dataset consists of a collection of data,

in tabular form, for developing new scoring systems for

Gastrointestinal dysfunction/failure (GDF). The GDF study was

designed and conducted by healthcare experts at one of the

tertiary hospitals in New Zealand with a mixed surgical-medical

intensive care unit (ICU). Due to the specific eligibility criteria

of patients, this study includes data across several days for only

a hundred patients.

All consecutive patients in the period 2019 to 2020 admitted

to intensive care units were screened and recruited for the study

if they met the eligibility criteria. Inclusion criteria included:

• The patient’s age (> 18 years)

• Receiving enteral and parenteral nutrition

• The ability to screen within the first 24 h of admission to

ICU

• The likelihood of a stay in ICU for more than 72 h

Data were prospectively collected from the day of admission

to ICU (Day 0) until “the day of discharge” or “after 90 days,”

whichever occurred first. Patients were evaluated based on data

extracted from clinical notes, daily 24-h ICU observation charts

FIGURE 3

Sequence length (number of tokens) of free-form EHRs in
NZ-GP Harms data for the category “Consults.”

and nursing care plans. Patients were allocated with a non-

identifiable study number, and all collected data variables were

entered into a password-protected secure file for data coding and

statistical analysis.

Data extraction included baseline characteristics and

demographic data, ICU treatment data, gut dysfunction and

gastrointestinal scoring, and ICU and hospital outcome data.

Where variables were within the normal range, the variable

closest to the time of data collection was recorded. The variables

collected at multiple time points were calculated for an overall

mean or median value. For laboratory variables, the most

abnormal value was taken for each day. The gastrointestinal

scoring categories were evaluated individually and in a binary

fashion for a smaller sample size. Table 1 provides summary

statistics of selected features from this detailed study. For this

paper, we focus on predicting hospital mortality.

3.2. Classification tasks

The design of a task for which an AI model is developed

can also influence the introduction of bias. This research aims to

build AI models for the following tasks:

Task 1: Predicting patient harm from tabular and text data

Task 2: Predicting preventable harm from tabular and text

data

Task 3: Predicting hospital mortality from tabular data

Task 1: Total number of patients with EHRs is 9,076, and the

experts identified harm in 1,505 patients.

Task 2: Total number of patients with identified harm is 1,505,

where the experts identified preventable harm in 362 patients.

Task 3:Total number of patients used for this study is 100, where

patients with hospital mortality outcomes are 20.
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TABLE 1 Summary of NZ-GP Harms Data for Task 1 predicting patient harm; Task 2 predicting preventable harm among patients where harm is identified; and Summary of NZ-GDF Data for Task 3
predicting hospital mortality.

NZ-GP harms data NZ-GDF data

Task 1 (Harm) Task 2
(Preventable)

Task 3 (Hos.
Mortality)

Labels Yes/Total 1,505/9,076 362/1,505 Labels Yes/Total 20/100

No/Total 7,571/9,076 1,143/1,505 No/Total 80/100

Gender
Male 47.4% 42.0%

Gender
Male 60.6%

Female 52.6% 58.0% Female 39.4%

Ethnicity

NZ European 75.9% 81.1%

Ethnicity

NZ European 39.4%

Māori 14.6% 12.1% Māori 23.4%

Pacific 3.5% 2.6% Pacific 12.8%

Others 6.0% 4.2% Others 24.5%

Location
Urban 50.0% 48.8%

Surgery
Yes 69.1%

Rural 50.0% 51.2% No 30.9%

GP Practice Size

Medium 33.9% 37.3%

Admission Type

Traumatic head injury 8%

Large 33.1% 34.8% Abdominal surgery 5%

Small 33.1% 27.9% Cardiac Surgery 23%

Deprivation (NZ13)
Least 21.7% 20.93% Medical 22%

Most 14.3% 15.08% Others 42%

Age distribution Age distribution
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Table 1 provides a summary of a selection of variables for

each tasks. Tasks 1 and 2 use the same NZ-GP Harms data, with

different algorithmic designs where the number of patients will

be 9,076 and 1,505, respectively. Task 3 uses the NZ-GDF dataset

with a much smaller instance of 100 patients.

3.3. Fairness measures

Many countries worldwide have anti-discrimination laws

that prohibit unfair treatment of people based on specific

attributes, also called sensitive attributes, such as gender or

race (Zafar et al., 2017). These laws evaluate the fairness

of a decision-making process by disparate treatment and

disparate impact. The process suffers from disparate treatment

if a decision is based on sensitive attributes. Automated

decision-making systems, such as AI-based systems, are often

trained on historical data. Hence, if a group with a specific

sensitive attribute value was unfairly treated in the past, this

unfairness may persist in future predictions through indirect

discrimination, leading to disparate impact (Feldman et al.,

2015; Zafar et al., 2017).

Fairness measurements can help identify and mitigate the

biases (Rajkomar et al., 2018). In this research, we focus on group

fairness instead of individual fairness, where both privileged and

unprivileged groups are defined based on sensitive attributes.

In general, the unprivileged group are defined based on the

evidence of historical injustice in the past and is the group

that will most likely face unfair decisions from a biased model.

As such, for our research, we define “NZ Europeans” as

the privileged group and “Māori” as the unprivileged group.

For evaluating gender bias, we consider “Females” as the

unprivileged group as defined by other literature (Zafar et al.,

2017).

3.3.1. Disparate impact scores

Disparate impact (DI), a notion introduced in the US

legislation in 19713, is simply the ratio of rates at which the

outcomes occur for one group of patients over the rest (Feldman

et al., 2015; Zafar et al., 2017; Besse et al., 2022). The defined

tasks in this research (see Section 3.2) are binary classification

problems with sensitive attributes defined for gender and race.

We use the notations as per Besse (Besse et al., 2022) where:

• The predicted variable is Y , where Y = 1 is a positive/true

outcome (i.e., patient experience harm) and Y = 0 is a

negative/false outcome.

• g(X) = Ŷ is the algorithmic prediction.

3 https://www.govinfo.gov/content/pkg/CFR-2017-title29-vol4/xml/

CFR-2017-title29-vol4-part1607.xml

• S is considered the sensitive variable that should not

influence the decisions but could lead to discriminatory

decisions. S = 0 indicates minority could be discriminated

against, and S = 1 represents the majority.

Data bias is measured using:

DI(Y , S) =
Pr(Y = 1|S = 0)

Pr(Y = 1|S = 1)
(1)

Algorithmic bias is measured using:

DI(g,X, S) =
Pr(g(X) = 1|S = 0)

Pr(g(X) = 1|S = 1)
(2)

The US legislation introduced a 4
5 rule where the threshold

for DI(g,X, S) > τ was set at τ = 0.8. The acceptable range for

DI ratio is generally between 0.8 and 1.25.

Although we use DI for data bias and algorithmic bias

measures in our research, it is essential to point out that the DI

metric shows disparities in outcomes without accounting for any

other factors. This assumes that we should strive for equality in

the distribution of outcomes, given that all people are “created

equal,” which may involve looking outside the scope of a given

healthcare system alone.

3.3.2. Equal opportunity

In the binary case, if we consider Y= 1 as the “advantaged”

outcome, the equal opportunity requires non-discrimination

only within the “advantaged” outcome group (Hardt et al., 2016).

Equal opportunity or true positive rate (TPR) is defined as:

TPR =
TP

(TP + FN)
(3)

where TP refers to true positives and FN refers to false negatives.

Equal opportunity considers a model to be fair if the TPRs of

the privileged and unprivileged groups are equal. However, this

approach does not consider the needs of each population and

hence may not result in equitable outcomes. Some leeway for

statistical uncertainty is given in practice, where the difference

is less than a specific cutoff. Determinations of such cutoff come

down to governments and policies.

3.3.3. Equalized odds

Equalized odds is a fairness metric that checks if, for any

particular label and attribute, a classifier’s predictions are equal

for all values of that attribute (Hardt et al., 2016). Compared

to equal opportunities, equalized odds are a stricter definition

of fairness. Like with equal opportunity, this definition requires

that the TPRs are equal. However, equalized odds also require

that the FPRs are equal. A false positive rate (FPR) is defined as:

FPR =
FP

(FP + TN)
(4)
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where FP refers to false positives and TN refers to

true negatives.

3.4. Understanding bias in text data

The fairness metrics introduced above focus predominantly

on tabular data. However, the free-form medical text can also be

a source of bias. Other sources of bias include, but are not limited

to, bias associated with the patient’s ability to access healthcare

and the biases of the clinician writing in the medical record.

In this research, data bias refers only to the bias in tabular and

textual data.

Medical text in free-form includes acronyms and

abbreviations. Hence even simple changes, such as converting

uppercase letters to lowercase or omitting full stops, can result

in a different meaning. In this paper, the free-form text data was

pre-processed by removing tokens that contain non-alphabetic

characters, including all special characters and tokens that

appear in fewer than three training documents (Yogarajan,

2022).

The free-form medical text in the NZ-GP Harms dataset

is predominantly written in English, but includes some te reo

Māori. Automatic language detection in code-switched English-

Māori text is an area of ongoing current research (James et al.,

2022; Trye et al., 2022). For the purpose of this research, Māori

language was identified manually.

We consider the most frequent tokens that can incorporate

bias to form a preliminary understanding of the bias in text data.

In classification tasks, the frequency of tokens is used in Bag-of-

words (BOW) representations of text. The BOW approach is a

simple, yet effective method (Goldberg, 2017; Joulin et al., 2017),

for representing text.

Furthermore, we also explore the option of using popular

word embeddings to represent text (Goodfellow et al., 2016;

Goldberg, 2017). However, there is evidence that indicates

the pre-trained embeddings exhibit biases (Caliskan et al.,

2017; Badilla et al., 2020). Word Embedding Association Test

(WEAT) (Caliskan et al., 2017) and Relative Norm Distance

(RND) (Garg et al., 2018) are examples of fairness metrics

designed to quantify bias in embeddings. Word Embedding

Fairness Evaluation (WEFE) (Badilla et al., 2020) is a framework

designed to measure fairness in word embeddings using metrics

such as WEAT and RND.

This paper makes use of WEFE’s implementations of WEAT

to analyze selected popular word embeddings, namely, Google’s

Word2Vec model (word2vec-google-news-300)4, FaceBook’s

fastText model (fasttext-wiki-news-subwords-300)5 and GloVe

model (glove-wiki-gigaword-300)6.

4 https://code.google.com/archive/p/word2vec/

5 https://fasttext.cc/docs/en/english-vectors.html

6 https://nlp.stanford.edu/projects/glove/

WEFE and WEAT use similar notations where two sets of

target words T1 and T2 and two sets of attribute words A1 and

A2 are expected to be defined such that the query (Q) is formed.

Q = ({T1,T2}, {A1,A2}) (5)

Given that the word embedding w and cos(w, x) is the cosine

similarity of the word embedding vectors, WEAT first defines

the measure as:

d(w,A1,A2) = (meanx∈A1cos(w, x))− (meanx∈A2cos(w, x))

(6)

Resulting in WEAT fairness metric:

FWEAT(M,Q) =
∑

w∈T1

d(w,A1,A2)−
∑

w∈T2

d(w,A1,A2) (7)

If the output of FWEAT is positive then the target T1 will be

related to attribute A1 and target T2 to attribute A2. However,

if FWEAT is negative target T1 will be related to attribute A2 and

target T2 to attributeA1. FWEAT values are usually between±0.5

and±2, and the ideal score is 0.

3.5. Experimental setup

For this research, we use machine learning models such as

logistic regression (Bisong, 2019), XGBoost (Wang et al., 2020),

and EasyEnsemble. XGBoost -Extreme Gradient Boosting-

is a scalable supervised machine learning algorithm built

upon decision trees, ensemble learning, and gradient boosting.

EasyEnsamble (Liu et al., 2009) is an ensemble of AdaBoost

learners trained on different balanced bootstrap samples, where

random under-sampling is used to achieve balancing. We use

sklearn7 implementations for these classifiers with 10-fold cross-

validations.

This research aims to address the need for socially

responsible, fair, trustworthy AI for healthcare for NZ

populations. As such, we focus more on assessing fairness

measures and not on improving prediction model accuracy.

The choice of the above algorithms is based on the extent of

available examples in the literature that support these algorithms

for healthcare applications (Hotzy et al., 2018; Luo et al.,

2019; Tong et al., 2020; Yao et al., 2020; Barak-Corren et al.,

2021; Peng et al., 2021; Snider et al., 2021; Wu et al., 2022).

However, it is vital to point out, in this paper we avoid

complicated “black-box” algorithms such as neural networks. A

black box model, in this context, can be defined as a machine

learning based algorithm such as sophisticated neural networks

which receives data input and produces outputs/predictions

using thousands of parameters while the explanation for that

prediction remains unknowable and untraceable (Guidotti et al.,

7 https://scikit-learn.org/stable/
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TABLE 2 Disparate Impact (DI) values of NZ-GP Harms data with targets: Harm Status and Preventable Harm Status, and NZ-GDF Data with targets:
Hospital mortality.

Patient NZ-GP data Patient NZ-GP data Patient NZ-GDF data

Harm Preventable Hos-
mortality

Ethnicity

Māori 14.6% 0.81 12.1% 1.35 23.4% 0.82

NZ European 75.9% 1.36 81.1% 0.78 39.4% 1.26

Pacific 3.50% 0.74 2.60% 1.28 12.8% 1.21

Gender

Male 54.5% 1.00 42.0% 1.00 60.6% 1.00

Female 45.5% 1.00 58.0% 1.00 39.4% 1.00

Protected groups: Ethnicity and Gender. DI closer to 1 is better. DI < 0.8 implies prediction bias against the specific group (red), DI > 1.25 implies prediction bias in favor of the specific

group (blue).

2018). Deep-learning models and other sophisticated models

will be considered in future research.

We use tools such as SHAP (Shapley Additive

exPlanations) (Lundberg and Lee, 2017) and LIME (Local

Interpretable Model-agnostic Explanations) (Ribeiro et al.,

2016) to interpret and explain model outputs. SHAP force plots

are used to understand the model outputs of a given patient

(referred to as local interpretability of model output). SHAP

Summary plots are used to understand the overall model output

(i.e., global interpretability of model output). LIME is used for

free-form text data.

Chi-squared (χ2) test of independence is used to test if there

is a significant relationship between the two classes “Harm” and

“no Harm” given a token. The null hypothesis is that there is

no relationship between the token in class “Harm” and class “no

Harm.”

4. Experimental results and analysis

This section presents an analysis of the fairness measures

and bias indicators for the three tasks using the New Zealand

data for both data and algorithmic bias. In this research, we treat

tabular data separate from text data. However, we acknowledge

that both data types can be combined in a multi-modal setting

to address the tasks. Multi-modal AI models are out of the scope

of this research and will be addressed in future research.

4.1. Data bias

4.1.1. Tabular data

Tables 2, 3 present DI scores for NZ-GP Harms data and

NZ-GDF data for sensitive gender and ethnicity groups. For

ethnicity, “NZ European” is considered the privileged group and

Māori (and Pacific) are considered unprivileged groups. Table 2

indicates no bias for sensitive group gender across all three cases,

where the DI scores are perfect “1.” NZ-GDF data indicates no

bias toward or against Māori and Pacific populations. NZ-GP

data was used for two tasks, predicting harm and predicting

preventable harm. The main reason for this is to check how

an algorithmic design (i.e., research task design) results in

bias as indicated by Obermeyer et al. (2019). NZ-GP data was

collected with extensive care by health professionals to ensure

the inclusion of the NZ population (Leitch et al., 2021). This

is reflected in the DI scores of task 1, where no data bias is

indicated toward the Māori population. However, for task 2,

where only a subset of data is used, there are clear bias indicators

for both Māori and Pacific groups.

Table 3 presents DI scores where both sensitive groups are

combined. In this case, there is a noticeable difference in DI

scores across all three tasks and definite indicators of bias. This is

an observationwhich requires further investigation in the future.

It will require a larger range of NZ health data to verify if there

is a clear pattern.

4.1.2. Free-text data

This section will only consider NZ-GP Harms data for task 1

to understand the impact text data has over bias. NZ-GDF data

does not include free-form medical text, hence is not included.

To analyze the free-form text, we examined the most

frequent tokens, and a subset of tokens with possible gender or

Māori reference was selected. Figure 4 provides the frequency of

such tokens, which can be considered biased due to gender or

ethnicity references.

Furthermore, we use WEAT to analyze the bias in selected

embeddings for a given query. Table 4 provides FWEAT scores

for embeddings with selected targets and attributes from Table 5.

The scores are mostly not close to ‘0’, indicating some bias in the

embeddings for given targets and attributes. For example, the

negative values in T1 and T2 with respect to A2 and A3 across
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TABLE 3 Disparate Impact (DI) values of NZ-GP Harms data with targets: Harm Status and Preventable Harm Status, and NZ-GDF Data with targets:
Hospital mortality. Protected groups’ ethnicity and gender are combined.

Protected groups NZ-GP Data NZ-GDF data

Ethnicity Gender Harm Preventable Hos-mortality

Māori Male 0.72 1.49 0.93

Female 0.89 1.21 0.65

NZ European Male 0.89 0.91 1.32

Female 1.37 0.93 0.76

Pacific Male 0.78 1.80 1.19

Female 0.70 0.69 1.18

DI closer to 1 is better. DI < 0.8 implies bias against group (red), DI > 1.25 implies bias for group (blue).

TABLE 4 FWEAT scores for embeddings with selected targets and attributes from Table 5.

Embeddings model T1 and T2 T1 and T2 T3 and T4 T5 and T6

wrt A2 and A3 wrt A1 and A3 wrt A1 and A3 wrt A2 and A3

word2vec-google-news-300 –0.348 –0.305 0.292 –0.051

glove-wiki-gigaword-300 –0.365 –0.166 0.137 -

fasttext-wiki-news-subwords-300 –0.160 -0.073 –0.0338 0.486

If FWEAT is+ve target Tx will be related to attribute Ax and target Ty to attribute Ay ; if−ve target Tx will be related to attribute Ay and visa versa. The ideal score is 0. For embeddings with

the high level of out-of-vocabulary (OOV) words FWEAT is not calculated.

FIGURE 4

NZ-GP Harms Data (Task 1). Examples of possible tokens among the most frequent tokens where possible bias due to gender references and
ethnicity tokens are presented. Māori tokens: “wairoa” means long water, “Wairoa” is also a district name; “Wanganui” is a district, city and river
name; “ao” means world; “aotearoa” is the Māori name for New Zealand which can be directly translated as the land of the long white cloud; “te”
means the; “waitemata” is a name of a district and habour, and it means obsidian waters.

all three embeddings indicate the target T1 “Ethnicity” is related

to attribute A3 “exercise” and T2 “Gender” to “health” with

the most negative value being from GloVe embeddings. These

relationships provide some understanding among a set of target

words and attributes. However, there is a need to investigate

domain-specific embeddings further and handle OOV words to
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ensure the bias, if present, toward Māori can be addressed at the

embedding level before developing an AI model such as a neural

network.

4.1.3. In summary

In a nutshell, in this section, we have considered data bias

in both NZ-based EHRs, and both tabular and free-form text

data. We use two very distinct NZ datasets, one obtained from

one hospital and another from multiple GP practices, where

clinicians obtain both datasets. The NZ-GP Harms data were

carefully collected to limit bias. However, this does not include

the bias associated with the patient’s ability to access healthcare

and the biases of the clinician writing in the medical record.

The DI scores across the two datasets and three tasks for

the protected groups provided an analysis of the tabular data.

Considering theMāori patient data, when the algorithmic design

included the complete datasets, there was no data bias in both

datasets. However, for task 2, where only a subset of data was

used, there was clear evidence of data bias. Although, in general,

gender groups showed no evidence of bias, when both protected

groups were combined, the observations were more interesting.

Being a Māori male indicated bias scores for NZ-GP data for

both tasks while being Māori female indicated bias DI scores for

NZ-GDF data.

Furthermore, to analyze text data, we consider the two

popular methods of representing text in natural language

processing tasks—BOW and word embeddings. Given that

BOW is formed using the frequency of tokens, we examine

the most frequent tokens to identify tokens that reference

some bias indicators. These tokens analyze the algorithmic bias

when BOW with logistic regression is used for predictions.

We also measured FWEAT scores for the most commonly

used embeddings using the WEFE framework when a

selection of target tokens and attributes were used. The

FWEAT scores indicated relationships among targets and

attributes. The relationships among targets and attributes

are a clear example of unintentional bias, and as such, it

is vital to recognize such possibilities and work toward

mitigating them.

4.2. Algorithmic bias

4.2.1. Tabular data

We use machine learning algorithms such as logistic

regression, XGBoost, and EasyEnsemble to analyze algorithmic

bias across all three tasks. Although we do not emphasize or

explore techniques to improve the prediction accuracy of such

algorithmic models, Supplementary Table S1 presents sensitivity

and specificity scores for reference.

Figures 5, 6 present DI scores across three tasks with

classifiers, where 10-fold cross-validation is used. DI scores are

TABLE 5 Collection of target and attribute word lists used. ∧ word lists
created by us. * common/popular names obtained from google search.

Targets Word list

T1 Ethnicity∧ [“white,” “european,” “kiwi,” “aotearoa,” “kai,”
“maori,” “mahi”]

T2 Gender∧ [“mr,” “mother,” “mrs,” “female,” “male,”
“daughter,” “father”]

T3 Female∧ [“mother,” “mrs,” “female,” “daughter,” “women”]

T4 Māori∧ [“aotearoa,” “kai,” “maori,” “kia,” “ora”]

T5 White_names* [“Emily,” “Anne,” “Jill,” “Allison,” “Laurie,” “Sarah,”
“Meredith,” “Carrie,” “Kristen,” “Todd,” “Neil,”
“Geoffrey,” “Brett,” “Brendan,” “Greg,” “Matthew,”
“Jay,” “Brad”]

T6 Māori_names* [“Mia,” “Nikau,” “Aria,” “Ari,” “Koa” “Amaia,”
“Kaiara,” “Keanu,” “Kaia,” “Mikaere” “Kora,”
“Kairo,” “Kiwa”]

Attributes Word list

A1 healthissues∧ [“diabetics,” “covid,” “cardio,” “hospital,” “stroke”]

A2 health∧ [“labtests,” “observation,” “blood,” “referral,”
“discharge”]

A3 exercise∧ [“sports,” “exercise,” “active,” “lazy,” “obese,”
“gym”]

calculated at each fold for the data and the classifiers, and the box

plots provide the range of DI scores. Lines are used to indicate

0.8 < DI < 1.25 for reference. Using an algorithm introduces

bias to data, even in cases where the data displays no signs of

bias.

Table 6 provides equal opportunity and false positive

rates for privileged groups. Equalized odds are when equal

opportunity and FPR are expected to be the same across all

groups. This means the ratio needs to be as close to “1” as

possible in TPRs and FPRs. Equal opportunities are closer to

“1” across all three classifiers for gender and ethnicity, while the

same observation is not evident with FPRs and consequently

equalized odds. For ethnicity, where the privileged group is

“NZ European,” XGBoost presents the best ratio for both equal

opportunity and equalized odds. In the case of gender, where

the privileged group is “Male,” equal opportunity ratio across all

three classifiers are approximately “1,” however FPR across all

three classifiers are high with logistic regression being the worst

of the three.

To further understand the model outputs, we use SHAP

visualization tools. Figure 7 provides examples of two patient

outputs from XGBoost and Logistic regression. Forces of

Shapley values in blue represent the features that increase the

probability of default (in this case, “Harm”). In contrast, red

values represent the features incrementing the probability of

prediction. Furthermore, a summary plots of XGBoost and LR is

also presented as Supplementary Figure S1. The SHAP summary

plot allows us to understand the model by ranking the features
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FIGURE 5

NZ-GP Harms data with the target as patient Harm Status. Protected group: Gender (Top), ethnicity (Bottom). 10-cross-validation is performed
using three classifiers, and the DI score is calculated at each fold. DI values of true values are also included. Each box plot ranges from minimum
to maximum values of DI scores calculated at each fold. DI scores closer to 1 are better. DI < 0.8 implies bias against group (indicated by red
line), DI > 1.25 implies bias for group (indicated by blue line).

from the most relevant to the least important ones, where the

data points represent a different patient. High values of this

feature impact the output of the model (i.e., the probability of

predicting harm increases).

In both Figures 7 and Supplementary Figure S1, the

influence of “Gender” on final model predictions is evident.

However, despite the DI score indicating algorithmic bias,

features of “ethnicity” are far lower in the features that

impact the outcome. One possible reason for this difference

is that the sensitivity of chosen models for the tasks is not

high (i.e., the models are being too cautious in finding a

positive result).
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FIGURE 6

(Top) NZ-GP Harms data with the target as preventable Harm. (Bottom) NZ-GDF hospital mortality prediction. Protected group: Gender and
Ethnicity. Ten cross-validations are performed using two classifiers, and the DI score is calculated at each fold. DI values of true values are also
included. Each box plot ranges from minimum to maximum values of DI scores calculated at each fold. DI scores closer to 1 are better. DI < 0.8
implies bias against group (indicated by red line), DI > 1.25 implies bias for group (indicated by blue line).

4.2.2. Free-text data

For Task 1, we experiment using BOW to represent free-

form text with a dictionary size of 1,000 and 10,000 with logistic

regression as a classifier. The sensitivity and specificity scores

of BOW with logistic regression for task 1 using dictionary size

1,000 is 0.74 and 0.69 and using dictionary size 10,000 is 0.60 and

0.68, respectively.

To understand the data and check if the frequency of

words/tokens is significantly different between the labels, we

use the chi-squared test. Using the selected tokens presented

in Figure 4, the output of chi-squared test is presented in

Supplementary Table S2. The p-value for gender-related tokens

is 0.076 and ethnicity-related tokens is 0.51. Given both are

>0.05, the null hypothesis at 95% level of confidence is not
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TABLE 6 NZ-GP Harms data.

Patient XGBoost Logistic EasyEnsemble

proportion regression (adaBoost)

Equal opportunity (TPR)

Ethnicity: NZ European 75.9% 0.95 0.92 0.90

Gender: Male 54.5% 1.00 1.08 1.01

FPR

Ethnicity: NZ European 75.9% 1.06 0.70 0.69

Gender: Male 54.5% 1.31 1.45 1.31

Protected groups: Ethnicity and Gender. For ethnicity, we consider the privileged group as “NZ European” and gender as “Male.” The ratios of fairness metrics, where closer to 1 is better,

are presented where it gives the TPR and FPR unprivileged group to privileged group. Equalized odds are when both TPR and FPR have to be equal for both groups.

FIGURE 7

RED features: increase the prediction of true label; BLUE features: decrease the prediction of true label of the model. Plots (A, B): Output of a
35-year-old Māori female patient; where plot (A) XGBoost correctly classifying as “no Harm” and plot (B) logistic regression wrongly classifying
as “Harm.” Plots (C, D): Output of a 53-year-old NZ European female patient; where plot (C) XGBoost wrongly classified as “no Harm” and plot
(D) logistic regression correctly classified as “Harm.”

rejected. The null hypothesis was that gender or ethnicity related

tokens and the harm labels are independent.

Furthermore, we use both LIME and SHAP for

task 1 with BOW text representations with LR using

NZ-GP Harms data to understand individual predictions.

Supplementary Figure S2 presents two patient output

examples, where selected features that influence the

outcomes and the influential features from a collection
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of Bias tokens (see Figure 4 for the complete list)

are included.

Figure 8 provides examples of LIME outputs for two patients

indicating the features that influenced the algorithmic decisions

on “Harm” or “noHarm.” Gender indicating the token “Mother”

is visible in the example as a feature that influenced against

true label (i.e., “Harm” for this example). While these examples

do not display ethnic references, in the top 10 features, there

is no clear indication that this may not be the case for overall

predictions.

4.2.3. In summary

We use simple machine learning algorithms –logistic

regression, XGBoost, and EasyEnsemble– to model the three

prediction tasks. The DI scores were used to observe the

algorithmic bias, and the results show algorithmic bias even

for cases with no data bias. Equal opportunity and equalized

odds ratios for privileged groups indicate that XGBoost is the

best model for ethnicity. For gender, although equal opportunity

ratios for all three classifiers are approximately “1,” equalized

odds ratios are not.

For text data, there was evidence of the selected possible bias

tokens from frequent tokens that showed a significant difference

between the labels “Harm” and “noHarm” for BOWwith logistic

regression.

Furthermore, SHAP and LIME were used to explain

individual instances and predictions. For tabular data, while

there are clear indications of algorithmic bias for ethnicity

and gender, SHAP outputs only show evidence of gender-

related features. Likewise, for text data, LIME outputs also show

evidence of gender-related features. These observations can

result frommany factors, including the model choices. However,

there is a need for future research to reach a conclusive decision.

5. Discussions

The general results of this research show that bias was

detected within the machine learning methods employed in

this study. As expected, there were two sources of bias, the

data and the algorithms used to predict preventable harm.

Within the tabular data, DI scores indicated biases surrounding

different ethnic groups. However, the favored groups changed

depending on the target measure (Tables 2, 3). There were no

biases detected for gender groups collected in these samples.

There may also be bias indicated by the frequency of terms

used in free text data, although the implications are currently

unclear (Figure 4). Algorithmic bias is harder to summarize as

there was an apparent effect on the subset of the data the model

was trained on Figures 5, 6. The DI scores produced by training

on one subset indicated bias in favor of the target group, and

those from training with another subset indicated bias against

that same group. With these results, it can be suggested that

the data itself can heavily influence algorithmic bias. A more

extensive research question is how data and algorithms interact

with product bias.

Furthermore, the outputs of DI scores for prediction models

and the explainable AI techniques of model predictions do not

provide similar observations. While this may be due to the

selection and accuracy of algorithmic models, there is a need to

explore other factors. What if the need for techniques to analyze

bias or equity measures is also subjective to the variation in

populations (i.e., NZ vs. the USA)?

5.1. Possible introduction of bias

Using real-world datasets introduces challenges such as

missing data and smaller datasets. Standard practices dealing

with missing data include leaving out the data with missing

variables and imputing missing values. Removal of data

with missing values results in information loss and can also

create unfair/biased data (Farhangfar et al., 2007; Madhu and

Rajinikanth, 2012; Madhu et al., 2019; Ipsen et al., 2022).

The magnitude of potential data biases will be subject to the

percentage of removed data concerning the complete data and

the distribution changes in protected groups concerning the

privileged group. Imputation of missing values is generally based

on the correlation of other features, and the resulting dataset

can include biases (Madhu et al., 2019; Ipsen et al., 2022). The

NZ-GP Harms dataset includes a small subset of missing data

and is dealt with by the removal of the data. Future work using

this dataset will attempt to quantify any possible introduction

of biases.

The NZ-GDF dataset did not include any missing data.

However, the sample size is small (100 patients). The main

challenge in small data is over-fitting which can potentially cause

data and algorithmic biases. This paper uses simple machine

learning models and 10-fold cross-validations to minimize

over-fitting. Data augmentation is one of the most common

approaches to dealing with small datasets. There are examples

in the literature which show data augmentation techniques can

help reduce data bias (Jaipuria et al., 2020; Sharma et al., 2020).

Exploring possible data augmentation techniques to deal with

small datasets while possibly minimizing data and model bias is

a future research avenue.

5.2. Implications for New Zealand
healthcare

This research used NZ EHRs to analyze data and algorithmic

bias. We considered two tasks for NZ-GP Harms data. The

algorithmic design was such that predicting harm used all
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FIGURE 8

Lime output for examples of predictions using BOW with LR using NZ-GP Harms data. (Top) True label and prediction label are both indicating
“Harm.” (Bottom) True label is “Harm,” but predicted is “no Harm.” Label 1 is “Harm,” and label 0 is “no Harm.”
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available data while predicting preventable harm used a subset

of data. Despite the efforts toward unbiased data collection, we

notice bias in predicting preventable harm. This emphasizes the

need to consider the potential ways in which the data will be used

to ensure unintentional bias can be eliminated.

Furthermore, we provide evidence that using commonly

available pre-trained embeddings to represent text data also

acts as a new source of bias. While this was not intentional

at the data collection or model development stages, these

observations suggest a need for further analysis. Furthermore,

they raise questions about the current employment of AI in

NZ healthcare. Are changes necessary to adapt these generic

measures and thresholds to the New Zealand context? Do these

models adequately represent Māori data specifically suited for

the task? If not, do they risk worsening existing inequities,

even if developed and used with the best intentions? If used to

guide clinical decision-making or resource allocations, would

they entrench systemic or societal biases under the guise of

impartiality?

This research analyzed fairness metrics for NZ EHRs while
considering data and algorithmic bias. We provided an overview

of reproducible concepts that can be adapted to any NZ
population data. Furthermore, we discuss the gaps and future
research avenues that will enable more focused development

of fairness measures suitable for the New Zealand population’s

needs and social structure. A primary focuses of this research

was ensuring fair inclusions. As such, we combine expertise in

AI, clinical knowledge, and the representation of indigenous

populations. This inclusion of experts will be vital moving

forward, proving a stepping stone toward the integration of AI

for better outcomes in healthcare.

Figure 1 provided an overview of the AI/ML cycle where

the two primary stages included building a model and model

application. We believe an ideal AI/ML cycle should include

an in-between stage, where data and model bias needs to be

identified and mitigated before applying the model. Hence, the

modified AI/ML cycle would be:

Step 1: Building a model

Step 2: Identifying and mitigating data and model bias

Step 3: Model application

Steps 1 and 2 will require multiple iterations to ensure a

satisfactory outcome before reaching step 3. Step 2 will require

“Humans,” i.e., the experts mentioned above, input to ensure

data and model bias are identified and mitigated. Moreover,

this inclusion will enable the required threshold changes to

satisfy the NZ population’s needs. Future research will include

extensive discussions and possibly interviews or studies with

other experts in the field to help understand the real-world

implications, validate and improve these measures and lead to

ways to mitigate biases along data collection, model training,

evaluation and interpretation.

The aim of developing socially responsible, fair machine

learning algorithms to improve the healthcare outcomes of

underrepresented and indigenous populations is a vital avenue

of research and has a magnitude of impact on the equality

of healthcare across the world. In New Zealand, the ongoing

health system reforms and the inclusion of a new Māori health

authority are expected to provide opportunities and platforms

for health equity.
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SUPPLEMENTARY FIGURE S1

Summary plots. XGBoost (Left) and Logistic regression (Right). Here
“NConsultations” refers to the number of consultations;
“NoUniqueMedsRx” refers to the number of unique medications
prescribed; size of the medical practice is given by “Large,” “Medium,”
and “Small”; location by “Urban” and “Rural”; and race includes “NZ
Europeans,” “Māori,” “Pasifika,” and “Others.”

SUPPLEMENTARY FIGURE S2

BOW with LR using NZ-GP Harms data. Selected features that influence
the final outcomes are presented where the most prominent features,
and the influential features from a collection of Bias tokens is included.
(Left): Wrongly predicted as “no Harm” when the true label is harm with
an outcome of a NZ European patient death. (Right): correctly labeled
as “Harm” for a Māori patient. The bottom of the plot starts as the
expected value of the model output, and then each row shows how the
positive (red) or negative (blue) contribution of each feature moves the
value from the expected model output to the prediction.

SUPPLEMENTARY TABLE S1

Tasks 1,2 and 3 classification. 10-fold cross-validation is performed
using various classifiers.

SUPPLEMENTARY TABLE S2

NZ-GP Harms Data. Using chi-squared Test, gender-related and
ethnicity-related bias tokens from Figure 4 are tested between the two
classes ‘No Harm’ and ‘Harm’. For Gender-related tokens, the chi-square
statistic: 9.97, p-value: 0.076 and the degree of freedom: 5. The
expected contingency table is also presented. For ethnicity-related
tokens, chi-square statistic: 2.38, p-value: 0.51, and the degree of
freedom: 3.
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