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Artificial Intelligence and Machine Learning (AI/ML) tools are changing the

landscape of healthcare decision-making. Vast amounts of data can lead

to e�cient triage and diagnosis of patients with the assistance of ML

methodologies. However, more research has focused on the technological

challenges of developing AI, rather than the system integration. As a result,

clinical teams’ role in developing and deploying these tools has been

overlooked. We look to three case studies from our research to describe

the often invisible work that clinical teams do in driving the successful

integration of clinical AI tools. Namely, clinical teams support data labeling,

identifying algorithmic errors and accounting for workflow exceptions,

translating algorithmic output to clinical next steps in care, and developing

team awareness of how the tool is used once deployed. We call for detailed

and extensive documentation strategies (of clinical labor, workflows, and

team structures) to ensure this labor is valued and to promote sharing of

sociotechnical implementation strategies.

KEYWORDS
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1. Introduction

Since the widespread adoption of electronic health records (EHRs), prospects of

utilizing data to improve patient care have been in the spotlight of medical and

informatics research. Artificial intelligence (AI) may improve healthcare decision-

making by considering far more data than any individual in making recommendations

for common medical decisions (Wang and Summers, 2012). Recent advancements in

AI used to make predictions from large clinical datasets have generated a barrage of

applications, though many attempts fail during implementation (Coiera, 2019; Emanuel

and Wachter, 2019; Yang et al., 2019; Matthiesen et al., 2021).

Much of the work on the design and development of medical-AI tools

favor algorithmic performance (Beede et al., 2020; Johnson et al., 2021). A less

discussed aspect of these tools is the required labor of the end-users throughout

development and deployment (Anderson and Aydin, 1997; Pratt et al., 2004).
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For example Sepsis Watch, a successful AI system, reported

personnel time as the largest resource for implementation

(Sendak et al., 2020). Therefore, understanding how new

technologies impact people’s work is a critical step in fostering

technology usefulness, acceptance, and adoption (Kushniruk,

2002; Khairat et al., 2018). However, recent reviews of clinical

AI tools have exposed barriers to adoption in real-world settings

(Middleton et al., 2016; Tonekaboni et al., 2019). Consistently,

these reviews show that poor adoption is not due to inadequate

algorithmic performance but rather issues related to how the

tools are designed and implemented into existing workflows

(Yang et al., 2019). Pratt et al. highlighted a similar paradigm

at the peak of the transition to EMRs, showing that a focus

on Computer-Supported Cooperative Work (CSCW) research

is necessary for successful implementation: “Often, the causes

of system failures cannot be explained in purely technical terms.

Rather, the complex network of relationships among people in

an organization strongly affects the success of a technology”

(Pratt et al., 2004).

We see a clear need to discuss the often-invisible labor

required to create and deploy medical-AI (Anderson and

Aydin, 1997; Pratt et al., 2004). The concept of invisible labor

was first introduced as undervalued and often unpaid work

that serve critical roles in society (Daniels, 1987). The term

was later extended to CSCW to encompass the redistribution

of work with technical solutions (Suchman, 1995; Star and

Strauss, 1999). More recently, ’invisible labor’ represents crowd-

workers who support many tasks related to web automation

and AI (Gray and Suri, 2019). To avoid undervaluing the

labor required for successful implementations, we argue that we

must understand the complex relationship between people in

healthcare organizations and AI tools.

In this perspective, we examine three case studies, outlined

in Figure 1, two from an author’s previous work and one based

on a recently-deployed system. These studies identify the labor

performed by clinical teams to create and use AI technology

(Jacobs et al., 2021a,b; Cheema et al., 2022). Using these findings

and related literature, we describe four examples of how labor

is needed in the creation of medical-AI that requires clinical

expertise (summarized in Figure 2). We do not consider this

list exhaustive. Rather, we present these to motivate more

documentation and sharing of the effort and workflow strategies

used in the design and implementation of medical-AI.

2. Examples of labor behind clinical
AI developments

We describe four types of labor involving clinical staff,

occurring at four distinct phases of the development process.

We refer to the first phase of development as preparing

data, as it involves preparing data for algorithmic use.

Once data is prepared, training algorithms on the data

takes place to make predictions. Achieving an acceptable

prediction accuracy can take substantial time and fine-

tuning. The third phase requires creating an interactive tool,

which can present algorithmic output to user(s). Finally,

once deployed into a clinical setting, embedding of the

clinical tool occurs, as it now exists within a broader

clinical context. Other development phases can describe this

process (Nascimento et al., 2019). We include these four

phases to illustrate how labor requirements can change

over time.

2.1. Data labeling with clinical expertise

Machine learning (ML) and AI pipelines require data first

to be curated, labeled and validated. Data curation is the

process of collecting data about a particular problem, which

can be difficult and generally produces datasets siloed to single

health systems (Wiens et al., 2019; Wu et al., 2021). Data

labeling entails classifying each data sample, which is then

used to train models to identify those classifications from

new samples. While methods exist for labeling automation

(Wang et al., 2018), manual intervention is regularly required

(Rajkomar et al., 2019). Data validation compares data

labels or model outputs against ground truth methods

(e.g., –expert analysis) which can introduce measurement

bias in interpretations (Suresh and Guttag, 2021). Highly

specialized classification problems, like medical diagnosis,

require experts at each of these steps, which is expensive and

laborious.

In case study 3, an AI-powered tool was embedded within

the EHR to develop regular reports of patients at risk of

advanced heart failure (Cheema et al., 2022). Labeling of datasets

comprised a delicate balance between clinical expertise and

the availability of human labor. Determining the appropriate

heart failure stage for a patient is a complex process with no

clear-cut lines between stages and requires data across multiple

sources. As one participant shared: “Chart review takes time. It

takes time to go through all the clinical notes. We’re looking

at [multiple electronic medical records like] what’s in Epic,

what’s in [external systems like] Care Everywhere, making

sure that we’ve got a thorough understanding of what’s going

on with that patient.” The team developed an approach in

which the algorithm was tested on a holdout set of patients

labeled by a cardiology fellow using criteria from clinical

consensus statements. Once the model and workflow went

live, the nurse clinician documented the label for each patient.

These labels were then used to evaluate model performance

prospectively.

Thus far, we have not seen standardized methodologies

for continually incorporating clinical expertise to data

collection and labeling, resulting in many research efforts

relying on few, stale datasets (Sendak et al., 2019). Ultimately,
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FIGURE 1

A summary of the three case studies from our research, which we use to characterize examples of invisible clinician labor in the development of

novel AI-clinical team tools.

FIGURE 2

Four types of labor requiring clinical expertise at di�erent developmental stages.

an AI tools’ aim is to ease the workload for clinicians,

but developing these tools requires devoting effort to

data curation, labeling, and validation. AI development

has an uphill labor commitment before it produces

relief in clinical processes, which must be realized and

planned accordingly.
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2.2. Identifying algorithmic errors and
exceptions

AI provides technological assistance by analyzing datasets

larger than any individual could interpret to identify patterns

for decision-making. However, these algorithms will never be

perfect due to the unpredictability of dynamic variables like

human behavior and environmental factors. For an algorithm

to make an accurate prediction, it must see many comparable

examples. With the numerous variables involved in medicine,

both erroneous predictions and exceptional cases are probable.

Yu and Kohane provide a hypothetical example where a

technician accidentally leaves ECG leads on a patient before

a chest X-Ray (Yu and Kohane, 2019). A clinician examining

the X-Ray would immediately know the problem and order a

new image or ignore the anomaly. By contrast, an AI algorithm

encountering such an example could produce an utterly invalid

recommendation. We found a real example of this in case study

3, where the Nurse Coordinator (NC) dismisses a referral due to

COVID-19 and extracorporeal membrane oxygenation (ECMO)

treatment results: “The computer says stage D, well yeah, I can

see why it would of say that, the patient has been hospitalized

five times. However, the patient has been hospitalized because of

COVID, or they were on ECMO, but you know what? They’re

recovered.”

In the clinical context, when errors like these are a

matter of patient safety, a common approach is to present

a model’s output to a clinical expert who will make a

final determination. However, in case study 1, we evaluated

mental health providers’ ability to identify errors in predictive

algorithms. Results showed that identifying algorithmic errors

can be a complex process, even for healthcare providers

with years of experience. In this study, presenting clinicians

with incorrect antidepressant treatment recommendations did

significantly change the accuracy of clinicians’ treatment

decisions, where accuracy was defined as “concordance with

expert psychopharmacologist consensus” (Jacobs et al., 2021b).

Thus, final decision-making requires interpreting the

algorithmic output, understanding the reasoning behind the

output, and then deciding whether to agree or disagree with

the algorithm’s determination. Therefore, practicing methods

of building trust and transparency must be prioritized to

avoid increasing errors in healthcare decision-making (Gretton,

2018). Yet, identifying errors may be more difficult for

healthcare providers than making decisions independently,

without influence from algorithm output. Similar studies have

shown people’s difficulty in identifying algorithmic errors

(Green and Chen, 2019; De-Arteaga et al., 2020). Little

recognition has been given to the challenging task placed on

clinicians to overcome the technical limitations of medical-AI,

and we see a need for more work considering ways to reduce

this burden while optimizing for patient safety.

2.3. Translating algorithmic output to
patient care decisions

Often, clinical AI output does not directly translate into

healthcare decisions. For example, an AI tool that groups

medical similarities for pathological image analysis sporadically

returns results lacking medical insight (Cai et al., 2019). In our

case studies, clinicians described the complex work of translating

predictions to appropriate next steps, as well as the desire for

more support in this translation work.

In case study 2, primary care providers (PCPs) participated

in co-design activities to design an interactive tool that used

ML to support antidepressant treatment selection decisions.

Clinicians discussed the desire for interoperability between the

proposed tool, which identified patients at risk of dropping out

of treatment, and current patient follow-up protocols. Clinicians

demonstrated differing abilities to connect predictions to

actionable next steps (Jacobs et al., 2021a). For example, when

the tool identified a patient at high dropout risk, some clinicians

were unsure how to respond appropriately. In contrast, other

clinicians stated that this should initiate the involvement of

a broader care team who could follow up with the patient

frequently. The obscure link between predictions and clinical

next steps signals a need for this translation work to be

formalized, documented, and shared.

In case study 3, a successful manual workflow has been

created. First, a nurse reviews the model’s recommendations,

a report which lists heart failure patients who may have

progressed to advanced stages. The nurse decides if a patient

on the report needs to be seen by the heart failure clinic

and initiates a manual process to contact the patient. This

involves looking for the patient’s current provider, contacting

the provider directly to notify them that the patient with

heart failure is high risk and may benefit from a specialist

evaluation, and then following up with the patient to schedule

an appointment if the provider places the referral. The nurses

shared that while a more automated procedure was considered,

it could not be implemented due to legal and compliance issues.

Such roadblocks are common in the regulated and high-stakes

environment of medicine and may attribute to adoption issues

due to limitations of seamless integration, regardless of technical

feasibility.

These case studies show a need for medical-AI tools to

integrate into existing clinical workflows seamlessly. Few

examples exist outlining this translation, but some practices

are highlighting the importance of workflow integration

(Sendak et al., 2020). While clinical team members may

be the best at translating model output to care decisions,

especially in light of potential algorithmic errors, we identify

an opportunity to share these strategies and decisions

across team members and clinical settings to establish

best practices.
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2.4. Developing awareness of AI use
within a clinical setting

How a system is used in a more extensive sociotechnical

process is key to its adoption and overall evaluation (Pratt

et al., 2004). This includes understanding howmodel outputs are

intended to support team goals and how individuals interpret

results for clinical decisions. Ehsan et al. coins this sense of

awareness Social Transparency, where all system users can gain

insight from decisions influenced by the model, for example,

with a tool that captures contextual detail of a decision-making

process (Ehsan et al., 2021).

The importance of social transparency and awareness of

a tools’ use within a broader team came up in multiple case

studies. In case study 2, PCPs stated that understanding if and

how their colleagues use new technology is a notable factor in

determining whether they would trust and use a tool. Several

clinicians shared that they are more comfortable adopting new

tools if they hear their colleagues say it is useful. In case study 3,

social transparency was implemented through the NC, which is

described as “key to how [the clinic has] been able to impact and

reach the patients.” The NC directs other clinicians on sorting

criteria and priorities of the model output, which is informed by

weekly meetings with physician leads.

Hence, establishing awareness is essential for the adoption

of new tools and for helping the team understand how the

technology operates in a collaborative environment. Promoting

awareness of the development of AI-tools in medicine can

prevent clinicians from being isolated in deciphering the

validation of the algorithm. An absence of awareness hinders

team collaboration and, by extension, prevents the delivery of

optimum patient care. Our case studies demonstrate a desire for

greater awareness of how medical-AI tools are used and how

such awareness may be created through the additional efforts of

nurses or other teammates.

3. Discussion

This paper characterizes invisible labor requirements placed

on clinical teams to make medicala-AI tools function in the

realworld. The types of labor we identified in our work include:

1) data curation, labeling, and validation prior to clinical data

being used to train an algorithm, 2) identifying errors made by

the algorithm, 3) translating AI output to clinically meaningful

next steps, and 4) developing team awareness of how a tool

is being used once deployed. Characterizing the labor placed

on members of clinical care teams, such as nurses, nurse

coordinators, nurse clinicians, nurse practitioners, physicians,

physician assistants, and technicians, is a vital component of

laying the foundation of usable and ethical AI for medicine.

From a usability standpoint, CSCW research provides

decades-long grounding in the complexities of sociotechnical

workflows and how technology enables broader collaborative

systems (Heath and Luff, 1996; Symon et al., 1996). Medicine is

at the forefront of merging human and technological expertise,

although new solutions must integrate within well-established,

highly collaborative workflows. Evaluating how a particular tool

fits within a clinical workflow, and the effects of its operation,

are necessary to claim a tool’s utility for implementation. The

ultimate goal for all is continued improvement in patient care.

If a tool’s implementation requires a high burden or impacts

existing productivity due to workflow turbulence, it will not gain

adoption in the clinic.

In reflecting on the labor costs of implementing medical-

AI tools, we observe a clear need for more, and easier,

documentation of labor, workflows, and team structures.

One useful area for future work is in creating platforms

that encourage multidisciplinary teams to capture detailed

design and implementation decisions about clinical-AI tools.

Comprehensive documentation can inform scaling lessons

learned to similar technologies or contexts. Whether this

documentation is of successful or failed implementations, its

existence can steer future undertakings in the appropriate

direction. In the words of case study 3’s participant: patterns or

similar aspects could reveal themselves, preventing the need to

start over.

We have seen documenting implementation successes and

challenges used to support rapid progress, such as in COVID

clinics (Gilbert et al., 2020). Similarly, this approach can scale

the development and availability of clinical AI by reducing

replicated efforts when similar systems must be embedded into

medical settings. Further, building on methods of transparency

and explainability, providing user-friendly and consistent

ways to document decisions and strategies throughout the

development pipeline can help develop a responsible AI clinical

practice.

The practice of ethical and responsible AI in medicine is

rapidly growing (Gretton, 2018; Wiens et al., 2019; McCradden

et al., 2022). Documenting the workflows used at each phase of

design and development is critical in identifying invisible labor.

Transparency is required to ensure that those who assume these

workloads are not undervalued, as can often occur with invisible

labor (Gray and Suri, 2019). Frequently, invisible labor can lead

to inequities, and ignoring human behavior devalues those who

make the technology work. This culminates in being detrimental

to both system implementation and society as a whole.

4. Conclusion

The often-invisible clinical work throughout the

development process of clinical-AI tools is a vital factor in

the technology’s success in the real world. Yet, thus far, most

research has centered around the technical challenges rather

than the significant effort required by clinical teams to make
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these tools work. By reviewing three case studies from our

research and related literature, we describe several types of

clinical labor used to support AI development and deployments

in healthcare settings. We call for greater attention and

documentation of these workloads and how clinical-AI tools are

changing healthcare workflows. Recognition of this labor as part

of the development process is necessary for successful, ethical

deployments of medical-AI. Further, by standardizing the

documentation and sharing of sociotechnical implementation

strategies (e.g., workflow changes, team structures), we may

help to accelerate the successful creation of medical-AI tools

with a real-world impact on patient care.
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