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Classification performance based on ImageNet is the de-facto standardmetric

for CNN development. In this work we challenge the notion that CNN

architecture design solely based on ImageNet leads to generally e�ective

convolutional neural network (CNN) architectures that perform well on a

diverse set of datasets and application domains. To this end, we investigate

and ultimately improve ImageNet as a basis for deriving such architectures.

We conduct an extensive empirical study for which we train 500 CNN

architectures, sampled from the broad AnyNetX design space, on ImageNet

as well as 8 additional well-known image classification benchmark datasets

from a diverse array of application domains. We observe that the performances

of the architectures are highly dataset dependent. Some datasets even exhibit

a negative error correlation with ImageNet across all architectures. We show

how to significantly increase these correlations by utilizing ImageNet subsets

restricted to fewer classes. These contributions can have a profound impact

on the way we design future CNN architectures and help alleviate the tilt we

see currently in our community with respect to over-reliance on one dataset.

KEYWORDS

deep learning, ImageNet, convolutional neural network (CNN), CNN design, empirical

study

1. Introduction

Deep convolutional neural networks (CNNs) are the core building block for most

modern visual recognition systems and lead to major breakthroughs in many domains

of computer perception in the past several years. Therefore, the community has been

searching the high dimensional space of possible network architectures for models

with desirable properties. Important milestones such as DanNet (Ciresan et al., 2012),

AlexNet (Krizhevsky et al., 2012), VGG (Simonyan and Zisserman, 2015), HighwayNet

(Srivastava et al., 2015), and ResNet (He et al., 2016) (a HighwayNet with open gates)

can be seen as update steps in this stochastic optimization problem and stand testament

that the manual architecture search works. It is of great importance that the right

metrics are used during the search for new neural network architectures. Only when

we measure performance with a truly meaningful metric is it certain that a new
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high-scoring architecture is also fundamentally better. So far,

the metric of choice in the community has generally been the

performance on the most well-known benchmarking dataset—

ImageNet (Russakovsky et al., 2014).

More specifically, it would be desirable to construct such a

metric from a solid theoretical understanding of deep CNNs.

Due to the absence of a solid theoretical basis novel neural

network designs are tested in an empirical fashion. Traditionally,

model performance has been judged using accuracy point

estimates (Krizhevsky et al., 2012; Zeiler and Fergus, 2014;

Simonyan and Zisserman, 2015). This simple measure ignores

important aspects such as model complexity and speed. Newer

work addresses this issue by reporting a curve of the accuracy

at different complexity settings of the model, highlighting how

well a design deals with the accuracy vs. complexity tradeoff (Xie

et al., 2017; Zoph et al., 2018).

Very recent work strives to improve the quality of the

empiric evaluation even further. There have been attempts to

use extensive empirical studies to discover general rules on

neural network design (Hestness et al., 2017; Kaplan et al., 2020;

Rosenfeld et al., 2020; Tuggener et al., 2020), instead of simply

showing the merits of a single neural network architecture.

Another line of research aims to improve empiricism by

sampling whole populations of models and comparing error

distributions instead of individual scalar errors (Radosavovic

et al., 2019).

We acknowledge the importance of the above-mentioned

improvements in the empirical methods used to test neural

networks, but identify a weak spot that runs trough the above-

mentioned work: the heavy reliance on ImageNet (Russakovsky

et al., 2014) (and to some extent the very similar Cifar100

Krizhevsky and Hinton, 2009). In 2011, Torralba and Efros

already pointed out that visual recognition datasets that were

built to represent the visual world tend to become a small

world in themselves (Torralba and Efros, 2011). Objects are

no longer in the dataset because they are important, they

are important because they are in the dataset. In this paper,

we investigate how well ImageNet represents a diverse set of

visual classification datasets—and present methods to improve

said representation, such that CNN architectures optimized on

ImageNet become more effective on visual classification beyond

ImageNet. Specifically, our contributions are: (a) an extensive

empirical study examining the fitness of ImageNet as a basis for

deriving generally effective CNN architectures; (b) we show how

class-wise subsampled versions of ImageNet in conjunction with

the original datasets yield a 2.5-fold improvement in average

error correlations with other datasets (c) we identify cumulative

block depth and width as the architecture parameters most

sensitive to changing datasets.

As a tool for this investigation we introduce the notion

of architecture and performance relationship (APR). The

performance of a CNN architecture does not exist in a vacuum,

it is only defined in relation to the dataset on which it is used.

FIGURE 1

Is a CNN architecture that performs well on ImageNet

automatically a good choice for a di�erent vision dataset? This

plot suggests otherwise: It displays the relative test errors of 500

randomly sampled CNN architectures on three datasets

(ImageNet, Powerline, and Insects) plotted against the test error

of the same architectures on ImageNet. The architectures have

been trained from scratch on all three datasets. Architectures

with low errors on ImageNet also perform well on Insects, on

Powerline the opposite is the case.

This dependency is what we call APR induced by a dataset. We

study the change in APRs between datasets by sampling 500

neural network architectures and training all of them on a set

of datasets1. We then compare errors of the same architectures

across datasets, revealing the changes in APR (see Figure 1).

This approach allows us to study the APRs induced by different

datasets on a whole population of diverse network designs rather

than just a family of similar architectures such as the ResNets

(He et al., 2016) or MobileNets (Howard et al., 2017).

All of our code, sampled architectures, complete training run

data, and additional figures are available at https://github.com/

tuggeluk/pycls/tree/ImageNet_as_basis.

2. Related work

2.1. Neural network design

With the introduction of the first deep CNNs (Ciresan

et al., 2012; Krizhevsky et al., 2012) the design of neural

networks immediately became an active research area. In the

following years many improved architectures where introduced,

such as VGG (Simonyan and Zisserman, 2015), Inception

1 Since we only sample models in the complexity regime of 340 mega

flops (MF) to 400MF (ResNet-152 has 11.5GF) we could complete the

necessary 7500 model trainings within a moderate 85 GPU days on Tesla

V100-SXM2-32GB GPUs.

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1041703
https://github.com/tuggeluk/pycls/tree/ImageNet_as_basis
https://github.com/tuggeluk/pycls/tree/ImageNet_as_basis
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Tuggener et al. 10.3389/fcomp.2022.1041703

(Szegedy et al., 2015), HighwayNet (Srivastava et al., 2015),

ResNet (He et al., 2016) (a HighwayNet with open gates),

ResNeXt (Xie et al., 2017), or MobileNet (Howard et al., 2017).

These architectures are the result of manual search aimed

at finding new design principles that improve performance,

for example increased network depth and skip connections.

More recently, reinforcement learning (Zoph et al., 2018),

evolutionary algorithms (Real et al., 2019) or gradient descent

(Liu et al., 2019) have been successfully used to find suitable

network architectures automatically. Our work relates tomanual

and automatic architecture design because it adds perspective on

how stable results based on one or a few datasets are.

2.2. Empirical studies

In the absence of a solid theoretical understanding, large-

scale empirical studies are the best tool at our disposal to gain

insight into the nature of deep neural networks. These studies

can aid network design (Collins et al., 2017; Greff et al., 2017;

Novak et al., 2018) or be employed to show themerits of different

approaches, for example that the classic LSTM (Hochreiter and

Schmidhuber, 1997) architecture can outperform more modern

models (Melis et al., 2018), when it is properly regularized. More

recently, empirical studies have been used to infer more general

rules on the behavior of neural networks such as a power-law

describing the relationship between generalization error and

dataset size (Hestness et al., 2017) or scaling laws for neural

language models (Kaplan et al., 2020).

2.3. Generalization in neural networks

Despite their vast size have deep neural networks shown in

practice that they can generalize extraordinarily well to unseen

data stemming from the same distribution as the training data.

Why neural networks generalize so well is still an open and

very active research area (Dinh et al., 2017; Kawaguchi et al.,

2017; Zhang et al., 2017). This work is not concerned with the

generalization of a trained network to new data, but with the

generalization of the architecture design progress itself. Does an

architecture designed for a certain dataset, e.g. natural photo

classification using ImageNet, work just as well for medical

imaging? There has been work investigating the generalization

to a newly collected test set, but in this case the test set was

designed to be of the same distribution as the original training

data (Recht et al., 2019).

2.4. Neural network transferability

It is known that the best architecture for ImageNet is not

necessarily the best base architecture for other applications such

as semantic segmentation (Long et al., 2015) or object detection

(Chen et al., 2019). Researchers who computed a taxonomy of

multiple visions tasks identified that the simmilarities between

tasks did not depend on the used architecture (Zamir et al.,

2019). Research that investigates the relation between model

performance on ImageNet and new classification datasets in

the context of transfer learning (Donahue et al., 2014; Razavian

et al., 2014) suggests that there is a strong correlation which is

also heavily dependent on the training regime used (Kornblith

et al., 2019). Our work differs form the ones mentioned above in

that we are not interested in the transfer of learned features but

transfer of the architecture designs and therefore we train our

networks from scratch on each dataset. Moreover do we not only

test transferability on a few select architectures but on a whole

network space.

2.5. Neural network design space analysis

Radosavovic et al. (2019) introduced network design spaces

for visual recognition. They define a design space as a set of

architectures defined in a parametric form with a fixed base

structure and architectural hyperparameters that can be varied,

similar to the search space definition in neural architecture

search (Zoph et al., 2018; Liu et al., 2019; Real et al., 2019).

The error distribution of a given design space can be computed

by randomly sampling model instances from it and computing

their training error. We use a similar methodology but instead

of comparing different design spaces, we compare the results of

the same design space on different datasets.

3. Datasets

To enable cross dataset comparison of APRs we assembled

a corpus of datasets. We chose datasets according to the

following principles: (a) include datasets from a wide spectrum

of application areas, such that generalization is tested on a

diverse set of datasets; (b) only use datasets that are publicly

available to anyone to ensure easy reproducibility of our work.

Figure 2A shows examples and Table 1 lists meta-data of the

chosen datasets. More detailed dataset specific information is

given in the remainder of this chapter.

Concrete. Özgenel and Sorguç (2018) contains 40 thousand

image snippets produced from 458 high-resolution images that

have been captured from various concrete buildings on a single

campus. It contains two classes, positive (which contains cracks

in the concrete) and negative (with images that show intact

concrete). With 20 thousand images in both classes the dataset is

perfectly balanced.

MLC2008. Shihavuddin et al. (2013) contains 43 thousand

image snippets taken form the MLC dataset (Beijbom et al.,

2012), which is a subset of the images collected at the Moorea

Coral Reef Long Term Ecological Research site. It contains

images from three reef habitats and has nine classes. The
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FIGURE 2

(A) Example images from each dataset. Images of Cifar10/100 are magnified fourfold, the rest are shown in their original resolution (best viewed

by zooming into the digital document). (B) The structure of models in the AnyNetX design space, with a fixed stem and a head, consisting of one

fully-connected layer of size c, (where c is the number of classes). Each stage i of the body is parametrised by di,wi,bi,gi, the strides of the

stages are fixed with s1 = 1 and si = 2 for the remainder.

class distribution is very skewed with crustose coralline algae

(CCA) being the most common by far (see Figure A5A in

Appendix 6.1).

ImageNet. Russakovsky et al. (2014) (The ILSVRC 2012

version) is a large scale dataset containing 1.3 million

photographs sourced from flickr and other search engines. It

contains 1, 000 classes and is well balanced with almost all classes

having exactly 1, 300 training and 50 validation samples.

HAM10000. Tschandl et al. (2018) is comprised of

10 thousand dermatoscopic images, collected from different

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1041703
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Tuggener et al. 10.3389/fcomp.2022.1041703

TABLE 1 Meta data of the used datasets.

Dataset No. images No. classes Img. size

Concrete 40 K 2 227× 227

MLC2008 43 K 9 312× 312

ImageNet 1.3 M 1, 000 256× 256

HAM10000 10 K 7 296× 296

Powerline 8 K 2 128× 128

Insects 63 K 291 296× 296

Natural 25 k 6 150× 150

Cifar10 60 k 10 32× 32

Cifar100 60 k 100 32× 32

populations and by varied modalities. It is a representative

collection of all important categories of pigmented lesions that

are categorized into seven classes. It is imbalanced with an

extreme dominance of the melanocytic nevi (nv) class (see

Figure A5 in Appendix 6.1).

Powerline. Yetgin et al. (2017) contains images taken

in different seasons as well as weather conditions from 21

different regions in Turkey. It has two classes, positive (that

contain powerlines) and negative (which do not). The dataset

contains 8, 000 images and is balanced with 4, 000 samples per

classes.

Insects.Hansen et al. (2019) contains 63 thousand images of

291 insect species. The images have been taken of the collection

of British carabids from the Natural History Museum London.

The dataset is not completely balanced but themajority of classes

have 100 to 400 examples.

Intel image classification. Bansal (2018) dataset (“natural”)

is a natural scene classification dataset containing 25 thousand

images and 6 classes. It is very well balanced with all classes

having between 2.1 thousand and 2.5 thousand samples in the

training set.

Cifar10 and Cifar100. Krizhevsky and Hinton (2009) both

consist of 60 thousand images. The images are sourced form the

80 million tiny images dataset (Torralba et al., 2008) and are

therefore of similar nature (photographs of common objects) as

the images found in ImageNet, bar the much smaller resolution.

Cifar10 has 10 classes with 6, 000 images per class, Cifar100

consists of 600 images in 100 classes, making both datasets

perfectly balanced.

4. Experiments and results

4.1. Experimental setup

We sample our architectures form the very general AnyNetX

(Radosavovic et al., 2020) parametric network space. The

TABLE 2 Dataset-specific experimental settings.

Dataset No. training epochs Eval. error

Concrete 20 Top-1

MLC2008 20 Top-1

Imagenet 10 Top-5

HAM10000 30 Top-1

Powerline 20 Top-1

Insects 20 Top-5

Natural 20 Top-1

Cifar10 30 Top-1

Cifar100 30 Top-5

networks in AnyNetX consist of a stem, a body, and a head.

The body performs the majority of the computation, stem and

head are kept fixed across all sampled models. The body consists

of four stages, each stage i starts with a 1 × 1 convolution

with stride si, the remainder is a sequence of di identical

blocks. The blocks are standard residual bottleneck blocks with

group convolution (Xie et al., 2017), with a total block width

wi, bottleneck ratio bi and a group width gi (into how many

parallel convolutions the total width is grouped into). Within a

stage, all the block parameters are shared. See Figure 2B for a

comprehensive schematic. All models use batch normalization.

The AnyNetX design space has a total of 16 degrees of

freedom, having 4 stages with 4 parameters each. We obtain

our model instances by performing log-uniform sampling of

di ≤ 16, wi ≤ 1, 024 and divisible by 8, bi ∈ 1, 2, 4,

and gi ∈ 1, 2, ..., 32. The stride si is fixed with a stride

of 1 for the first stage and a stride of 2 for the rest. We

repeatedly draw samples until we have obtained a total of 500

architectures in our target complexity regime of 360 mega flops

(MF) to 400 MF. We chose a narrow band of complexities

to allow for fair comparisons of architectures with minimal

performance variation due to model size. We use a very basic

training regime, input augmentation consists of only flipping,

cropping and mean plus variance normalization, based on each

datasets statistics. For training we use SGDwithmomentum and

weight decay.

The same 500 models are trained on each dataset until the

loss is reasonably saturated. The exact number of epochs has

been determined in preliminary experiments and depends on

the dataset (see Table 2). For extensive ablation studies ensuring

the empirical stability of our experiments with respect to Cifar10

performance, training duration, training variability, top-1 to

top-5 error comparisons, overfitting and class distribution see

Sections 6.1.1–6.1.6 in Appendix 6.1. Supplementary material

on the effect of pretraining and the structure of the best

performing architectures can be found in Sections 6.2.1, 6.2.2 in

Appendix 6.2.
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4.2. Experimental results

We analyze the architecture-performance relationship

(APRs) in two ways. For every target dataset (datsets which

are not ImageNet) we plot the test error of every sampled

architecture against the test error of the same architecture

(trained and tested) on ImageNet, visualizing the relationship of

the target dataset’s APR with the APR on ImageNet. Second, we

compute Spearman’s ρ rank correlation coefficient (Freedman

et al., 2007). It is a nonparametric measure for the strength of

the relation between two variables (here the error on the target

datasets with the error of the same architecture on ImageNet).

Spearman’s ρ is defined on [−1, 1], where 0 indicates no

relationship and −1 or 1 indicates that the relationship

between the two variables can be fully described using only a

monotonic function.

Figure 3 contains the described scatterplots with the

corresponding correlation coefficients in the title. The datasets

plotted in the top two rows show a strong (Insects) or

medium (MLC2008, HAM10000, Cifar100) error correlation

with ImageNet. This confirms that many classification tasks have

an APR similar to the one induced by ImageNet, which makes

ImageNet performance a decent architecture selection indicator

for these datasets. The accuracies on Concrete are almost

saturated with errors between 0 and 0.5, it is plausible that

the variations in performance are due to random effects rather

than any properties of the architectures or the dataset, especially

so since the errors are independent of their corresponding

ImageNet counterparts. Therefore, we refrain from drawing any

further conclusions from the experiments on Concrete. This has

implications for practical settings, where in such cases suitable

architectures should be chosen according to computational

and model complexity considerations rather than ImageNet

performance, and reinforces the idea that practical problems

may lie well outside of the ImageNet visual world (Stadelmann

et al., 2018). Themost important insight from Figure 3, however,

is that some datasets have a slight (Cifar10) or even strong

(Powerline, Natural) negative error correlation with ImageNet.

Architectures which perform well on ImageNet tend perform

sub-par on these datasets. A visual inspection shows that some of

the very best architectures on ImageNet perform extraordinarily

poor on these three datasets. We can conclude that the

APRs can vary wildly between datasets and high performing

architectures on ImageNet do not necessarily work well on

other datasets.

An analysis of the correlations between all datasets (see

Figure A8 in Appendix 6.2) reveals that Powerline and Natural

not only have low correlation with ImageNet but also with most

of the other datasets making these two truly particular datasets.

Interestingly is the correlation between Powerline and Naural

relatively high, which suggests that there is a common trait

that makes these two datasets behave differently. MLC 2008,

HAM10000 and Cifar100 have a correlation of 0.69 with each

other which indicates that they induce a very similar APR. This

APR seems to be fairly universal since MLC 2008, HAM10000

and Cifar100 have a moderate to high correlation with all

other datasets.

4.3. Impact of the number of classes

Having established that APR varies heavily between datasets,

leaves us width the questions if it is possible to identify

FIGURE 3

Test errors of all 500 sampled architectures on target datasets (y-axis) plotted against the test errors of the same architectures (trained and

tested) on ImageNet (x-axis). The top 10 performances on the target datasets are plotted in orange and the worst 10 performances in red.
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properties of the datasets themselves that influences its APR

and if it is possible to control these factors to reduce the APR

differences.

ImageNet has by far the largest number of classes among

all the datasets. Insects, which is the dataset with the second

highest class count, also shows the strongest similarity in

APR to ImageNet. This suggests that the number of classes

might be an important property of a dataset with respect

to APR. We test this hypothesis by running an additional

set of experiments on subsampled versions of ImageNet. We

create new datasets by randomly choosing a varying number

of classes from ImageNet and deleting the rest of the dataset

(see Supplementary Section S3 for chosen classes). This allows

us to isolate the impact of the number of classes while

keeping all other aspects of the data itself identical. We create

four subsampled ImageNet versions with 100, 10, 5, and 2

classes, which we call ImageNet-100, ImageNet-10, ImageNet-

5, and ImageNet-2, respectively. We refer to the resulting

group of datasets (including the original ImageNet) as the

ImageNet-X family. The training regime for ImageNet-100 is

kept identical to the one of ImageNet, for the other three

datasets we switch to top-1 error and train for 40 epochs,

to account for the smaller dataset size (see Section 4.3.1

in Appendix 6.1 for a control experiment that disentangles

the effects of reduced dataset size and reduced number of

classes).

Figure 4 shows the errors on the subsampled versions

plotted against the errors on original ImageNet. APR on

ImageNet-100 shows an extremely strong correlation with APR

on ImageNet. This correlation significantly weakens as the class

count gets smaller. ImageNet-2 is on the opposite end has errors

which are practically independent from the ones on ImageNet.

This confirms our hypothesis that the number of classes is a

dataset property with significant effect on the architecture to

performance relationship.

We have observed that the number of classes has a profound

effect on the APR associated with ImageNet-X members. It

is unlikely that simply varying the number of classes in this

dataset is able to replicate the diversity of APRs present in

an array of different datasets. However, it is reasonable to

assume that a dataset’s APR is better represented by the

ImageNet-X member closest in terms of class count, instead

of ImageNet. We thus recreate Figure 3 with the twist of

not plotting the target dataset errors against ImageNet, but

against the ImageNet-X variant closest in class count (see

Figure 5). We observe gain in correlation across all datasets,

in the cases of MLC2008 or Cifar10 a quite extreme one.

The datasets which have a strong negative correlation with

ImageNet (Powerline, Natural) have slightly (Natural) or even

moderately (Powerline) positive correlation to their ImageNet-

X counterparts. A visual inspection shows that the best models

on Imagenet-X also yield excellent results on Powerline and

Natural, which was not the case for ImageNet. Table 3 shows

the error correlations of all target datasets with ImageNet as well

as with their ImageNet-X counterpart. The move from ImageNet

to ImageNet-X more than doubles the average correlation (from

0.19 to 0.507), indicating that the ImageNet-X family of datasets

is capable to represent a much wider variety of APRs than

ImageNet alone.

4.3.1. Disentangling the e�ects of class count
and dataset size

We showed how sub-sampled versions of ImageNet

matching the number of classes of the target dataset tend

to represent the APR of said target dataset far better. A

side effect of downsampling ImageNet to a specific number

of classes is that the total number of images present in the

dataset also shrinks. This raises the question if the increase

in error correlation is actually due to the reduced dataset

size rather than to the matching class count. We disentangle

these effects by introducing another downsampled version

of ImageNet, Imagenet-1000-10. It retains all 1, 000 classes

but only 10 examples per class resulting in a datastet with

FIGURE 4

Error of all 500 sampled architectures on subsampled (by number of classes) versions of ImageNet (y-axis) plotted against the error of the same

architectures on regular ImageNet (x-axis). The top 10 performances on the target dataset are plotted in orange and the worst 10 performances

in red.
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FIGURE 5

Test errors of all 500 sampled architectures on target datasets (y-axis) plotted against the test errors of the same architectures on the

ImageNet-X (x-axis). The top 10 performances on the target dataset are orange, the worst 10 performances red.

TABLE 3 Comparison of error correlations between target datasets

and ImageNet as well as the closest ImageNet-X member.

Dataset ρ -ImageNet ρ -ImageNet-X Difference

Concrete 0.001 0.106 0.105

MLC2008 0.476 0.811 0.335

Ham10000 0.517 0.608 0.091

Powerline −0.436 0.294 0.73

Insects 0.967 0.95 −0.017

Natural −0.38 0.186 0.566

Cifar10 −0.104 0.45 0.554

Cifar100 0.476 0.595 0.119

Average 0.19 0.507 0.317

the same number of classes as ImageNet but with the total

number of images of ImageNet-10. We train our population

of architectures on ImageNet-1000-10 and show the error

relationship of Cifar10, Natural, and Powerline with ImageNet-

1000-10 (as well as with ImageNet and ImageNet-10 as a

reminder) in Figure 6. The plots show that there are some

correlation gains by using ImageNet-1000-10 over ImageNet,

but the effect is far lower compared to ImageNet-10. This

shows that downsampling size has a minor positive effect

but the majority of the gain in APR similarity achieved

trough class downsampling actually stems from the reduced the

class number.

4.4. Identifying drivers of di�erence
between datasets

The block width and depth parameters of the top 15

architectures for ImageNet (see Figure A7 in Appendix 6.2)

follow a clear structure: they consistently start with low values

for both block depth and width in the first stage, then the values

steadily increase across the stages for both parameters. The

error relationships observed in Figure 3 are consistent with how

well these patterns are replicated by the other datasets. Insects

shows a very similar pattern, MLC2008 and HAM10000 have

the same trends but more noise. Powerline and Natural clearly

break from this structure, having a flat or decreasing structure

in the block width and showing a quite clear preference for a

small block depth in the final stage. Cifar10 and Cifar100 are

interesting cases, they have the same behavior as ImageNet with

respect to block width but a very different one when it comes to

block depth.

We thus investigate the effect of the cumulative block depth

(summation of the depth parameter for all four stages, yielding

the total depth of the architecture) across the whole population

of architectures by plotting the cumulative block depth

against the test error for the six above-mentioned datasets.

Additionally, we compute the corresponding correlation

coefficients. Figure 7A shows that the best models for ImageNet

have a cumulative depth of at least 10. Otherwise there is

no apparent dependency between the ImageNet errors and

cumulative block depth. The errors of Insects do not seem to

be related to the cumulative block depth at all. HAM10000 has
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FIGURE 6

The errors of all 500 architectures on Cifar10, Natural, and Powerline plotted against the errors on ImageNet (top row), ImageNet-1000-10

(middle row) and ImageNet-10 (bottom row). We observe that class-wise downsampling has the largest positive e�ect on error correlation.

a slight right-leaning spread leading to a moderate correlation,

but the visual inspection shows no strong pattern. The errors

on Powerline, Natural, and Cifar100 on the other hand have

a strong dependency with the cumulative block depth. The

error increases with network depth for all three datasets.

with the best models all having a cumulative depth smaller

than 10.

We also plot the cumulative block widths against the errors

and compute the corresponding correlation coefficients for the

same six datasets (see Figure 7B). We observe that the ImageNet

errors are negatively correlated with the cumulative block width,

and visual inspection shows that a cumulative block width of

at least 250 is required to achieve a decent performance. The

errors on Insects and HAM10000 replicate this pattern to a

lesser extent, analogous to the top 15 architectures. Powerline

and Natural have no significant error dependency with the

cumulative block width, but Cifar100 has an extremely strong

negative error dependency with the cumulative block width,

showing that it is possible for a dataset to replicate the behavior

on ImageNet in one parameter but not the other. In the

case of Cifar100 and ImageNet, low similarity in block depth

and high similarity in block width yield a medium overall

similarity of ARPs on Cifar100 and Imagenet. This is consistent

with the overall relationship of the two datasets displayed

in Figure 3.

Combining this result with the outcome of the last section,

we study the interaction between the number of classes,

the cumulated block depth and the cumulative block width.

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1041703
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Tuggener et al. 10.3389/fcomp.2022.1041703

FIGURE 7

Errors of all 500 sampled architectures on ImageNet, Insects, HAM10000, Powerline, Natural, and Cifar100 (x-axis) plotted against the

cumulative block (A) depths and (B) depths (y-axis).

Table 4 contains the correlations between cumulative block

depth/width and the errors on all members of ImageNet-X.

With decreasing number of classes, the correlation coefficients

increase for cumulative block depth and cumulative block width.

Although the effect on cumulative block depth is stronger,

there is a significant impact on both parameters. We therefore

can conclude that both optimal cumulative block depth and

cumulative block with can drastically change based on the

dataset choice and that both are simultaneously influenced by the

class count.
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TABLE 4 Correlation of observed error rates with the cumulative

block depth and width parameters for all ImageNet-X datasets.

Dataset C. block depth C. block width

ImageNet −0.205 −0.511

ImageNet-100 −0.022 −0.558

ImageNet-10 0.249 −0.457

ImageNet-5 0.51 −0.338

ImageNet-2 0.425 −0.179

5. Discussion and conclusions

5.1. ImageNet is not a perfect proxy

We have set out to explore how well other visual

classification datasets are represented by ImageNet.

Unsurprisingly there are differences between the APRs induced

by the datasets. More surprising and worrying, however, is that

for some datasets ImageNet not only is an imperfect proxy but

a very bad one. The negative error correlations with Natural,

Powerline and Cifar10 indicates that architecture search based

on ImageNet performance is worse than random search for

these datasets.

5.2. Varying the number of classes is a
cheap and e�ective remedy

It is striking how much more accurately the ImageNet-X

family is able to represent the diversity in APRs present in

our dataset collection, compared to just ImageNet by itself. It

has become commonplace to test new architectures in multiple

complexity regimes (He et al., 2016; Howard et al., 2017), we

argue for augmenting this testing regime with an additional

dimension for class count. This simple and easy to implement

extension would greatly extend the informative value of future

studies on neural network architectures.

5.3. Visual variability is less important
than anticipated

In the introduction we critiqued the over-reliance on

ImageNet based on the limits of “visual world” it represents,

since it only contains natural images and is mostly focused

on animals and common objects. However, our results show

that datasets with visually very different content such as Insects

and HAM10000 have a high APR correlation with ImageNet.

For Natural and Cifar10, which contain natural images, the

opposite is the case. This shows that the visual domain of a

dataset is not the central deciding factor for choosing the correct

CNN architecture.

5.4. Future directions

A future similar study should shed light on how well the

breadth of other domains such as object detection, segmentation

or speech classification are represented by their essential

datasets. If the representation is also insufficient it could be

verified if the symptoms are similar and the varying the

number of classes also helps covering more dataset variability

in these domains.

A labeled dataset will always be a biased description of

the visual world, due to having a fixed number of classes and

being built with some systematic image collection process. Self-

supervised learning of visual representations (Jing and Tian,

2019) could serve as remedy for this issue. Self-supervised

architectures could be fed with a stream completely unrelated

images, collected from an arbitrary number of sources in a

randomized way. A comparison of visual features learned in this

way could yield a more meaningful measure of the quality of

CNN architectures.

5.5. Limitations

As with any experimental analysis of a highly

complex process such as training a CNN it is virtually

impossible to consider every scenario. We list below

three dimensions along which our experiments are limited

together with measures we took to minimize the impact of

these limitations.

Data scope: We criticize ImageNet for only representing a

fraction of the “visual world”. We are aware that our dataset

collection does not span the entire “visual world” either but went

to great lengths to maximize the scope of our dataset collection

by purposefully choosing datasets from different domains, which

are visually distinct.

Architecture scope: We sample our architectures from

the large AnyNetX network space. It contains the CNN

building blocks to span basic designs such as AlexNet or

VGG as well as the whole ResNet, ResNeXt and RegNet

families. We acknowledge that there are popular CNN

components not covered, however, Radosavovic et al.

(2020) present ablation studies showing that network

designs sourced from high performing regions in the

AnyNetX space also perform highly when swapping in

different originally missing components such as depthwise

convolutions (Chollet, 2017), swish activation functions

(Ramachandran et al., 2018) or the squeeze-and-excitation

(Hu et al., 2018) operations.

Training scope: When considering data augmentation and

optimizer settings there are almost endless possibilities to tune

the training process. We opted for a very basic setup with no

bells an whistles in general. For certain such aspects of the

training, which we assumed might skew the results of our study

(such as training duration, dataset prepossessing etc.), we have
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conducted extensive ablation studies to ensure that this is not

the case (see Sections 6.1.2 and 6.1.6 in Appendix 6.1).
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6. Appendix

6.1. Verifying the numerical robustness of
our study

This Chapter we present additional studies

designed to test for possible flaws or vulnerabilities

in our experiments. We conduct these to

further strengthen the empirical robustness of

our results.

6.1.1. Stability of empirical results on Cifar10

The top-1 errors of our sampled architectures on Cifar10

lie roughly between 18 and 40, which is fairly poor, not

only compared to the state of the art but also compared to

performance that can be achieved with fairly simple models.

This calls into question if our Cifar10 results are flawed in

a way that might have lead us to wrong conclusions. We

address this by running additional tests on Cifar10 and evaluate

their impact on our main results. We get a goalpost for what

performance would be considered good with our style of neural

network and training setup by running the baseline code

for Cifar10 published by Radosavovic et al. (2020). Table A1

shows that these baseline configurations achieve much lower

error rates. We aim to improve the error results on Cifar10

in two ways: First we train our architecture population with

standard settings for 200 epochs instead of 30 s, we replaced

the standard network stem with one that is specifically built

for Cifar10, featuring less stride and no pooling. Figure A1

shows scatterplots of the errors from all 500 architectures on

Cifar10 against the errors on ImageNet and ImageNet-10. We

can see that both new training methods manage to significantly

improve the performance with a minimum top-1 error below

10 in both cases. More importantly can we observe that both

new training methods have, despite lower overall error, a very

similar error relationship to ImageNet. The error correlation is

even slightly lower than with our original training (replicated

in Figure A1, left row). We can also see that in all three

cases the error relationship can be significantly strengthened by

replacing ImageNet with ImageNet-10, this shows that tuning for

individual performance on a dataset does not significantly impact

the error relationships between datasets which further strengthens

our core claim.

TABLE A1 Top-1 error of reference network implementations

(Radosavovic et al., 2020) for Cifar10.

Model ResNet-56 ResNet-110 AnyNet-56 AnyNet-110

Error 5.91 5.23 5.68 5.59

6.1.2. Verifying training duration

Since we have a limited amount of computational resources

and needed to train a vast number of networks we opted to

train the networks up to the number of epochs where they

started to saturate significantly in our pre-studies. As we have

seen in Section 6.1.1 can the network performance still improve

quite a bit if it is trained for much longer. Even though the

improved performances on Cifar10 did not yield any results

contradicting the findings of our study, we still deemed it

necessary to closer inspect what happened in the later stages of

training and thus performed a sanity check for Cifar10 as well

as the other two datasets that show a negative error correlation

with ImageNet—Powerline and Natural. Figure A2A shows the

Cifar10 test error curves of 20 randomly selected architectures

over 200 epochs. On the left side we see the same curves

zoomed in to epochs 30 to 200. We see that the error decreases

steadily for all architectures, the ranking among architectures

barely changes past epoch 30. The relative performance between

architectures and not absolute error rates are relevant for our

evaluations, we can therefore conclude that the errors at epoch

30 are an accurate enough description of an architecture’s

power.

For Powerline and Natural, we select the five best and five

worst architectures, respectively and continue training them for

a total of five times the regular duration. Figure A2B shows the

resulting error curves. Both datasets exhibit minimal changes

in the errors of the top models. On Natural we observe clear

improvements on the bottom five models but similar to Cifar10

there are very little changes in terms of relative performance.

Powerline exhibits one clear cross-over but for the remainder of

the bottom five models the ranking also stays intact. Overall we

can conclude that longer training does not have a significant effect

on the APR of our datasets.

6.1.3. Impact of training variability

The random initialization of the model weights has an

effect on the performance of a CNN. In an empirical study

it would therefore be preferable to train each model multiple

times to minimize this variability. We opted to increase the

size of our population as high as our computational resources

allow, this way we get a large number of measurements to

control random effects as well as an error estimate of a large

set of architectures. However, we still wanted to determine how

much of the total variability is caused by training noise and

how much is due to changing the architectures. We estimate

this by selecting two of the sampled CNN designs, number

147 performing slightly above average with an error of e147 =

11.9 and number 122 performing slightly below average with

e122 = 14.5. The quantiles of the error distribution from all

500 architectures are q0.25 = 11.53, q0.5 = 13.02 and q0.75 =

15.46 with an overall mean of µ = 13.9. We then train the

architectures 147 and 122 each 250 times. Figure A3 shows
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FIGURE A1

The Cifar10 test errors of all 500 architectures plotted against ImageNet (top row) and ImageNet-10 (bottom row), shown for our original

Cifar10 training (left column), training with a Cifar10 specific stem in the architecture (middle column), and training for 200 epochs, which is

roughly 6 times longer (right column). The plots show that the error correlation with ImageNet-10 is much larger in all three cases, confirming

that optimizing for individual Cifar10 performance does not alter our core result.

FIGURE A2

(A) Cifar10 test error curves of 20 randomly sampled architectures trained over 200 epochs (left). The same error curves but cut to epochs

30–200. (B) Test error curves of the five best and five worst models on Powerline and Natural, respectively, when training is continued to epoch

100.

the error distributions of both selected architectures as well as

the overall distribution obtained from training each of the 500

architectures once. There is of course some variability within

both architectures but both individual architectures produce

very narrow densities and show essentially no overlap. We can

therefore conclude that the effect of choosing an architecture is

Frontiers inComputer Science 15 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1041703
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Tuggener et al. 10.3389/fcomp.2022.1041703

FIGURE A3

Error distributions on Cifar10 of two architectures (122, 147)

both trained from scratch 250 times as well as the Cifar10 error

distribution of all 500 architectures. The plot shows that the

variability caused by changing architecture is much larger than

the one caused by random training e�ects.

much greater than the variability caused by random training

effects.

6.1.4. Relationship of top-1 with top-5 error on
ImageNet, Insects and Cifar100

We opted to use top-5 error since it is the most widely

reported metric for ImageNet and the top-5 numbers are

therefore easy to interpret on that dataset. Many of our datasets

have a significantly lower number of classes such that top-

5 error makes little sense and we opted to use top-1 for

those. This raises the question if comparing top-1 with top-

5 errors introduces unwanted perturbations into our analysis.

We therefore compare the top-1 and top-5 errors for the three

datasets on which we use top-1 error (see Figure A4A). We see

that the two metrics have an almost linear relationship for the

ImageNet and Cifar100 datasets. More importantly are the top-

1 to top-5 error graphs monotonically ascending for all three

datasets, such that the ordering of architectures does not change

when swapping between the two metrics. Since we are interested

in the relative performances of our sampled architectures changing

between top-1 and top-5 error does not impact our analysis.

6.1.5. Overfitting of high-capacity architectures

The best architectures on Powerline, Natural and Cifar100

have a very small cumulated depth, so it is only natural to ask if

the deeper architectures perform poorly due to overfitting. We

address this concern by plotting the training errors of Powerline,

Natural, and Cifar100 against the cumulative block depths (see

Figure A4B). The training errors are strongly correlated with

the cumulative block depth, just like the test errors. Plots of

the cumulated block depth show almost the same structure for

training and test errors. We can therefore exclude overfitting as

a reason why the shallower networks perform better on Powerline,

Natural, and Cifar100.

6.1.6. Impact of class distribution

MLC2008 and HAM1000 have a strong class imbalance.

They both have one class which makes up a large amount of

the dataset. In order to study the impact of an imbalanced class

distribution, we created two new more balanced datasets out of

the existing data the following way: we reduced the number of

samples in the overrepresented class such that it has the same

amount of samples as the second most common class. We call

these datasets MLC2008-balanced and HAM10000-balanced.

Their new class distributions can be seen in Figure A5A.

We train our architecture population on MLC2008-balanced

and HAM10000-balanced leaving the training configuration

otherwise unaltered. Figure A5B shows the errors on the

balanced datasets vs. the errors on the unbalanced counterparts.

For both HAM10000 and and MLC2008, there is a strong

correlation between the errors on the balanced and unbalanced

datasets. We can therefore conclude that class imbalance is not a

determining factor for the APRs of HAM10000 or MLC2008.

6.2. Additional ablation studies

6.2.1. Impact of Pretraining

The main objective of our study is to identify how well

different CNN designs perform on varying datasets and if

the best architectures are consistent across the datasets. For

this reason we train all of our networks from scratch on

each dataset. However, we cannot ignore that pretraining on

ImageNet is a huge factor in practice and we therefore study

its impact on our evaluations. To this end have we train all

of our sampled architectures again on each dataset but this

time we initialize their weights with ImageNet pretraining

(we omit Concrete, which has very low errors even without

pretraining). Figure A6 shows the errors of each dataset without

(blue) and with (green) pretraining plotted against the ImageNet

errors. The data shows a distinct trend: the overall performance

improvement due to pretraining dictates howmuch stronger the

ImageNet-correlation of the pretrained errors is compared to the

errors without pretraining. For Cifar10 and Cifar100 where the

performance gain with pretraining is low to moderate the error

correlations do not drastically change. On the other end of the

spectrum are Natural and Powerline, where pretraining leads to

drasticall y lower errors. This in turn leads to much higher error

correlation with ImageNet(the Powerline correlation can not

grow significantly above 0 because the overall errors are so small
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FIGURE A4

(A) Top-1 error plotted against top-5 error of all 500 architectures on ImageNet, Cifar100, and Insects. The plots reveal that on all three datasets

the errors have a very close relationship: it is not perfectly linear but is monotonically ascending. (B) Training errors of the sampled architectures

(x-axis) plotted against the cumulated block depth for the 3 datasets that have the lowest test errors on shallow architectures. We observe that

for all three datasets shallow architectures also have the lowest training errors. Therefore overfitting is not the cause of this behaviour.

FIGURE A5

(A) Class distributions of MLC2008, HAM10000, and their balanced versions. (B) Errors of all 500 sampled architectures on MLC2008-balanced

and HAM1000-balanced (y-axis) plotted against the errors of their unbalanced counterparts (x-axis). The top 10 performances on the target

dataset are plotted in orange, the worst 10 performances in red. We observe a clear positive correlation for both datasets, hence we conclude

that the dataset imbalance has a limited impact on the APRs.

across all architectures). We can conclude that our findings are

still valid when pretraining is used, but their effects can be masked

when pretraining is the most important factor contributing to the

overall final performance.
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6.2.2. Structure of top performing architectures

Figure A7 shows the configuration of the top performing

architecture in blue, as well as the mean and standard deviation

of the top 15 configurations for every dataset. We observe

that the top 15 architectures have very high variance in both

bottleneck ratio and group width.

Block width on the other hand shows a clear pattern: almost

all high-performing architectures start with a very small block

width that increases across the stages. Only Powerline and

Natural do not show this pattern. In block depth, we observe

a similar pattern with a bit more noise. For block depth,

Powerline, Natural, Cifar10 and Cifar100, no such trend of

increased parameter values toward the later stages is observed.

This reinforces the idea that block width and block depth greatly

impact an architectures performance and their optimal choices are

dataset dependent.

FIGURE A6

Errors form all 500 architectures trained from scratch (blue) as well as the same architectures pretrained on ImageNet (green), plotted against the

respective ImageNet errors. We observe that the error correlation with ImageNet increases relative to the performance gain due to pretraining.
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FIGURE A7

Configurations of the top-performing architectures, with the four stages depicted on the x-axis and the parameter values on the y-axis. The best

architectures are shown in blue, the mean of the top 15 architectures is depicted in orange with with a vertical indication of one standard

deviation.

Frontiers inComputer Science 19 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1041703
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Tuggener et al. 10.3389/fcomp.2022.1041703

FIGURE A8

Matrix of error scatterplots of all datasets except Concrete (the first row replicates plots shown in Figure 3).
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