
TYPE Original Research

PUBLISHED 19 January 2023

DOI 10.3389/fcomp.2022.1032452

OPEN ACCESS

EDITED BY

Yingxu Wang,

University of Calgary, Canada

REVIEWED BY

Heitor Costa,

Universidade Federal de Lavras, Brazil

Muhammad Aamir,

Huanggang Normal University, China

*CORRESPONDENCE

Hironori Washizaki

washizaki@waseda.jp

SPECIALTY SECTION

This article was submitted to

Software,

a section of the journal

Frontiers in Computer Science

RECEIVED 30 August 2022

ACCEPTED 30 December 2022

PUBLISHED 19 January 2023

CITATION

Isotani H, Washizaki H, Fukazawa Y, Nomoto T,

Ouji S and Saito S (2023) Sentence embedding

and fine-tuning to automatically identify

duplicate bugs. Front. Comput. Sci. 4:1032452.

doi: 10.3389/fcomp.2022.1032452

COPYRIGHT

© 2023 Isotani, Washizaki, Fukazawa, Nomoto,

Ouji and Saito. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Sentence embedding and
fine-tuning to automatically
identify duplicate bugs

Haruna Isotani1, Hironori Washizaki1*, Yoshiaki Fukazawa1,

Tsutomu Nomoto2, Saori Ouji3 and Shinobu Saito3

1Department of Computer Science and Engineering, Waseda University, Tokyo, Japan, 2Software Innovation

Center, NTT CORPORATION, Tokyo, Japan, 3Computer & Data Science Laboratories, NTT CORPORATION,

Tokyo, Japan

Industrial software maintenance is critical but burdensome. Activities such as

detecting duplicate bug reports are often performed manually. Herein an automated

duplicate bug report detection system improves maintenance e�ciency using

vectorization of the contents and deep learning–based sentence embedding to

calculate the similarity of the whole report from vectors of individual elements.

Specifically, sentence embedding is realized using Sentence-BERT fine tuning.

Additionally, its performance is experimentally compared to baseline methods to

validate the proposed system. The proposed system detects duplicate bug reports

more e�ectively than existing methods.

KEYWORDS

bug reports, duplicate detection, BERT, sentence embedding, natural language processing,

information retrieval

1. Introduction

Software often contains bugs, which are issues with the code. Potential bugs identified by

the user are submitted via a bug report. Bug reports assist with software maintenance, which is

necessary to ensure the usefulness and functionality of industrial software. However, triaging bug

reports can be time-consuming and burdensome for maintenance engineers. When a bug report

is received, the first step is determining whether the report is for a new issue or a duplicate of

an existing issue. Herein an automated duplicate bug report detection system is described.1 This

system aims to assist in detecting duplicate bug reports for software developed and maintained

by the NTT Corporation.

In our system, sentence embedding (distributed representations of semantics) generates

vectors from the description content for each element in a bug report. Subsequently, the semantic

similarities of reports are calculated from vector representation similarities. Duplicate reports are

identified by the degree of similarity. The higher the degree of similarity, the higher the likelihood

a report is a duplicate. Our system employs Sentence-BERT (SBERT) (Reimers and Gurevych,

2019) for sentence embedding. Specifically, SBERT is trained on general texts and fine-tuned

with texts in bug reports. Adjusting the text in bug reports used for tuning realizes a specialized

SBERT for each element found in a report.

To demonstrate the usefulness of our system, it is experimentally compared with two

baselines, which were built with vectors generated using all elements in bug reports and natural

1 This paper substantially extends our preliminary conference paper presented at the IEEE International

Conference on Software Maintenance and Evolution, ICSME 2021 (Isotani et al., 2021). Explanations of the

proposed method, experiment, and related works are considerably revised and expanded in a well-structured

paper format.

Frontiers inComputer Science 01 frontiersin.org

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2022.1032452
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2022.1032452&domain=pdf&date_stamp=2023-01-19
mailto:washizaki@waseda.jp
https://doi.org/10.3389/fcomp.2022.1032452
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcomp.2022.1032452/full
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Isotani et al. 10.3389/fcomp.2022.1032452

language processing techniques. The results confirm that the

proposed system detects more duplicate bug reports than

the baselines.

This paper addresses the following research questions:

RQ1. Is it possible to identify duplicate reports? Directly

comparing bug reports is challenging because each report is

composed of many elements. Moreover, the type of bug report

may affect the ability to detect duplicate reports, as well as the

optimal performance. RQ1 examines the elements impacting the

ability to detect duplicate bug reports and the optimal technique

to detect duplicate bug reports.

RQ2. Does the proposed system outperform the baselines?

The proposed system processes elements separately and

subsequently fine-tunes Sentence-BERT (SBERT) with bug

reports. Determining the benefits of separating processing by

element and fine-tuning SBERT may improve our system so

that it is applicable in practical situations. To address RQ2, the

performance of the proposed system is compared to baselines

built using basic natural language processing techniques to

generate vectors from all elements.

This study has two main contributions:

• An automatic duplicate bug report detection system is proposed.

• The proposed system outperforms the baselines.

The rest of this paper is organized as follows. The background

is detailed in Section 2. The proposed system is overviewed and

evaluated in Sections 3, 4, respectively. Related works are introduced

in Section 5. Finally, the conclusions and future work are presented

in Section 6.

2. Background

The objective of our proposed system is to support software

maintenance processes by detecting duplicate bug reports employing

SBERT. In this section, we explain the targetmaintenance process and

details of SBERT.

2.1. Target maintenance process

Our research targets a maintenance flow that begins when a user

finds a problem (Figure 1). The details from the time a problem

is identified until the user receives a response of the findings are

shown in Figure 2. In the target system, maintenance involves three

types of bug reports. The first is generated when the user reports

a problem to the reception center (user report). The second occurs

when the reception center sends a request to the maintenance team

to investigate the problem (inquiry report). The final report contains

the investigation result and solution proposed by the maintenance

team (failure report). All reports are written in Japanese.

When the reception center receives a user report, it examines

manuals, screen displays, and logs to resolve the issue. If successful,

the center responds to the user. If unsuccessful, the center initiates

an inquiry report for the maintenance team. The inquiry report

describes the problem and the opinions of the reception center. After

reviewing the design document and code, the maintenance team

reports the findings back to the reception center if the issue has been

previously identified. If the issue is due to a new bug, themaintenance

team generates a failure report. The failure report includes details

about the problem. Additionally, once the issue is resolved, its origin

and how to prevent it are added to the failure report. Then the failure

report is shared with the reception center and the user. Finally, the

development vendor fixes the bug.

As part of the investigation, the maintenance team determines

whether the bug is due to the problem identified in the inquiry

report. Not only can this be time-consuming and burdensome, but

it also requires highly skilled maintenance engineers because each

previous inquiry and failure report is analyzed individually. As such,

skills and knowledge regarding a specific bug may not be transferred

adequately. To overcome this limitation, this study devises a system

to automatically detect whether an inquiry report is for a new issue or

a duplicate.

Inquiry reports are composed of the following elements:

• Title: Summary of the reported problem

• Content: Description of the issue, including the phenomena,

environment, settings, and operations at the time of the incident

• Commercial impact (optional): Impact of the problem on the

service and users

• Answer: Results of the maintenance team’s investigation.

The first three are completed by the reception center. The

maintenance team logs the last one by either providing a solution if

the issue is due to a previously reported bug or by indicating that a

failure report was generated because the issue is due to a new bug.

Failure reports contain the following elements:

• Title: Summary of the problem described in the failure report,

which differs from the title of the inquiry report

• Test environment: Environment in which the problem was

observed

• Details: Details of the problem from the inquiry report and the

initial opinions of the maintenance team.

• Origin of failure: This is further divided into:

• Cause: Root issue

• Conditions: Conditions in which the problem occurs

• Effect: Abnormal behavior when the problem occurs and

troubles for users

• Workaround: A temporary solution until the bug is fixed

• Affected version: Versions impacted by the problem.

• Measures: This is further divided into:

• Measure policy: How to fix the bug

• Source: A simple description of where and how to modify the

source code, which may refer to a different file

• Document: A simple description of where and how to modify

the document, which often refers to a different file.

• Feedback: This is further divided into:

• Injection cause: Cause of the bug, including background and

history

• Reason for delayed removal: Explanation of why the bug was

not found before the release

Frontiers inComputer Science 02 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1032452
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Isotani et al. 10.3389/fcomp.2022.1032452

FIGURE 1

Overview of the maintenance process.

FIGURE 2

Maintenance process of the reception center and the maintenance

team.

• Inspection: The inspection results for similar bugs in parts of

the product with a comparable structure

• Measures to prevent recurrence: Prevention measures to

prevent similar bugs in the future.

All elements are documented by the maintenance time. The

test environment and the details are documented through detailed

investigation by the maintenance team with reference to the details

from the inquiry report. Vendor developers may contribute to the

failure cause, themeasures, and the feedback. In our proposed system,

the contents of these elements are used to detect duplicate reports.

2.2. Sentence-BERT

Sentence-BERT (SBERT) is an extension of BERT (Devlin et al.,

2019). BERT is a deep learning–based language representation mode

FIGURE 3

Structure of BERT.

based on Transformer (Vaswani et al., 2017) (Figure 3). Unlike

Transformer, which is a language representation model that connects

encoders and decoders through an attention mechanism, BERT pre-

trains deep bidirectional representations with unlabeled texts. Pre-

training provides context and sentence relationships. The advantage

of BERT is that a high-performance model for diverse natural

language processing tasks can be realized by simply fine-tuning. The

drawback is that BERT is inefficient for large-scale semantic similarity

comparisons because converting sentences into vectors comparable

to cosine similarity is time-consuming.

SBERT extends BERT to include sentence embedding (Reimers

and Gurevych, 2019). It embodies the content features by converting

sentences into vectors. Since being published in 2019, SBERT has

been a state-of-the-art method (Ghosh et al., 2020; Li et al., 2020;

Zhang et al., 2021). The vector output is similar to the cosine

similarity. As a model, SBERT adds pooling operations to the output

of a pre-trained BERT (Figure 4). Training involves fine-tuning using

either a Siamese or triplet network. A Siamese network is a type of

neural network that employs two subnetworks to extract features

from two inputs and then measures the distance between the feature

vectors (Bromley et al., 1993). In contrast, the triplet network is a type

of embedding network trained by triplet loss (Schroff et al., 2015).

The additional pooling operation calculates a fixed-length vector of

the entire sentence from each token vector.

Our proposed system adopts a triplet network. The triplet

network uses the triplet loss function and three types of sentences

Frontiers inComputer Science 03 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1032452
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Isotani et al. 10.3389/fcomp.2022.1032452

FIGURE 4

Structure of sentence BERT.

FIGURE 5

Structure of the triplet network.

as inputs (Figure 5). The first is an anchor. The second is a positive,

which is similar to the anchor. The third is a negative, which differs

from the anchor. SBERT is trained to ensure that the distance between

the anchor vector va and the positive vector vp is a constant ǫ

(margin), which is smaller than that between the anchor vector va
and the negative vector vn. The loss function is expressed as:

Triplet loss = max(‖va − vp‖ − ‖va − vn‖ + ǫ, 0) (1)

where ‖ ... ‖ is a distance metric.

3. Proposed duplicate bug detection
system

Here, a system is developed for the maintenance process

described in Section 2.1. Our system automatically detects whether

an inquiry report is new or a duplicate of a previous one.

3.1. Duplicate bug report detection

A system must overcome three challenges to assist maintenance

engineers in identifying duplicate bug reports. The first is devising

a process to evaluate whether a bug report is new or a duplicate.

Consistent with best practices (Deshmukh et al., 2017; Akilan et al.,

2020; Kukkar et al., 2020; Rodrigues et al., 2020; Sehra et al., 2020;

Xiao et al., 2020), our proposed system uses the components of

the bug reports for this assessment. Because our research targets

an organization with a standard format for the bug reporting

process, the elements in bug reports follow a general formula with

explicit or implicit rules. Although each report has minor differences,

this barrier can be overcome by converting elements or reports

into vectors.

The second is converting bug reports into vectors that capture the

characteristics of the reported problems. To address this challenge,

our system vectorizes descriptions by element type in the report using

sentence embedding. This approach should be suitable to clarify the

characteristics of the problem because target reports are written in a

natural language. In our system, reports are vectorized by element

because each report contains unique information. Here, sentence

embedding is both a technique and a model. It converts sentences

into vectors that capture the characteristics of the content.

The third is selecting an appropriate sentence embedding model.

Our method uses supervised learning trained with general texts and

fine-tuned with texts from bug reports. Supervised learning uses

general texts because the data available for training using only bug

reports is limited. However, fine-tuning with bug reports captures the

vocabulary of the domain-specific and product-specific expressions

found in the bug reports. This approach should ensure that the

vectors reflect expressions in the bug reports.

To overcome the above challenges, our proposed system adopts

SBERT for sentence embedding and a triplet network. We chose

SBERT because it should absorb the variations in the reports. Not

only does the target maintenance system have three different types

of reports but reports on the same bug may also differ because the

wording and explanations depend on the person completing the

report. Additionally, as an attentive neural network, SBERT can learn

long-distance dependencies and is appropriate for tasks that include

the context of long sentences (Babic et al., 2020). We chose a triplet

network as it should incorporate differences specific to reports for an

organization or a product because it trains the model using examples

of duplicate reports.

Figure 6 shows the input and output of our system, where A is the

new report and B–D are the outputs. Inputs are the title and content

of an inquiry report. It should be noted that optional content (e.g.,

commercial impact) may be omitted. The output is a list of previous

inquiry and failure reports in descending order of similarity. In this

example, report B has the highest similarity score to A followed by

reports C and D. The maintenance engineer uses the results of our

proposed system to evaluate if A is a duplicate report. The engineer

reviews the content of the outputted reports starting with the one

with the highest similarity. The search is more efficient because the

list is a ranking of the likelihood of being a duplicate.

Our proposed system has four steps (Figure 7):

• Step 1. Title and content extraction in Figure 7: Our system

receives a new report as input and extracts the title and contents

of the input report.

• Step 2. Title SBERT and content SBERT in Figure 7: Our system

vectorizes each title and content element using two SBERT

models to generate title and content vectors independently.

• Step 3. Similarity calculation and report similarity calculation in

Figure 7: Our system calculates title similarities between the title

vector of the input report and the title vectors of past reports. In

Frontiers inComputer Science 04 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1032452
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Isotani et al. 10.3389/fcomp.2022.1032452

FIGURE 6

Inputs and outputs of the proposed system.

FIGURE 7

Overview of the flow in proposed system.

parallel, our system calculates content similarities between the

input report’s content vector and past reports’ content vectors.

After that, our system combines the title similarity and the

content similarity by calculating various weighted similarities

and the max and min of two similarities and selecting the

best one.

• Step 4. Sort in Figure 7: Our system outputs a list of past reports

in descending order of similarity.

Our system contains two SBERT models: one for the title and

another for the content. These models are initially built by training

with large amounts of Japanese text. Then they are fine-tuned

using descriptions from actual existing reports. After fine-tuning

and deployment of the system, additional learning can be conducted

continuously using newly created reports.

The title and the content vectors of previous reports are generated

by vectorizing their title and contents. The title and the content

vectors of all previous reports are stored so they can be recalled later.

Since SBERT outputs vectors comparable to the cosine similarity, our

system calculates the similarity scores between the input and previous

reports and outputs a list of previous inquiry and failure reports in

descending order of similarity. As the report similarity, our system

combines the title similarity and the content similarity by calculating

various weighted similarities (such as 0.75 * title similarity + 0.25 *

content similarity) as well as the max and min of two similarities and

selects the best one.

3.2. Model training

A pre-trained Japanese BERT model2 by Inui and Suzuki

Laboratory, Tohoku University, serves as the base of our system.

SBERT is built by a large triplet set of Japanese sentences using a

triplet network.

The experimental models use a large-scale Japanese image

caption dataset, STAIR Captions (Yoshikawa et al., 2017). By

referring to the literature (Uno, 2020), 100,000 triplets were prepared.

Each captioned image was vectorized with GiNZA.3 The threshold

for the cosine similarity was set. In the experiment, the margin ǫ was

set to 1, the same as that set in the literature of the Sentence BERT

proposal (Reimers and Gurevych, 2019). The other hyperparameters

were also set by referring to the literature and manual of SBERT’s

code (Reimers and Gurevych, 2019). In the future, we plan to conduct

more experiments using different thresholds and hyperparameters to

confirm their impacts on the result.

Caption pairs with values above the threshold are selected

as the anchor and the positive. In contrast, a pair with a value

below the threshold is selected as the negative. Once the anchor,

positive, and negative are set, the system is trained on the report

triplet set. The distance metric for triplet loss is the cosine distance

(1-cosine similarity).

Each report triplet set is prepared using four steps:

• Step 1: Extract the contents for the training from reports.

• Step 2: Select a report with at least one duplicate report and

randomly set the content of one element as the anchor.

• Step 3: Select a duplicate report of the one selected in Step 2. Set

the element corresponding to the anchor as the positive.

2 https://github.com/cl-tohoku/bert-japanese

3 https://megagonlabs.github.io/ginza/

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1032452
https://github.com/cl-tohoku/bert-japanese
https://megagonlabs.github.io/ginza/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Isotani et al. 10.3389/fcomp.2022.1032452

• Step 4: Select a non-duplicate report of the one selected in Step

2. Set the element corresponding to the anchor as the negative.

Triplets are prepared with all possible combinations by repeating

the above steps. Note that triplets whose anchor and positive are

swapped but have the same negative are identical, and only one

should be included in the report triplet set.

3.3. Training elements and report similarity
calculations

Element correspondence for training the title and content models

involves three steps (Figure 8):

• Step 1: Prepare data and extract elements.

• Step 2: Prepare a report triplet set from all reports and build a

model.

• Step 3: Use a sequential selection method to determine

candidates for combinations of corresponding title elements.

• Step 4: Evaluate each title element correspondence combination.

• Step 5: Use a sequential selection method to determine

candidates for combinations of corresponding content elements

and evaluate each combination.

• Steps 6 and 7: Calculate the similarity score. Our proposed

system adopts the combination with the highest evaluation. Our

system combines the title similarity and the content similarity as

the report similarity by calculating various weighted similarities,

max, and min of two similarities and selecting the best one.

The details of the procedure are as follows.

3.3.1. Data preparation
Data is treated in three steps:

• Step 1a: Label each report pair in the dataset as a duplicate or

unrelated.

• Step 1b: Identify test data as inquiry reports with at least one

duplicate report in the dataset.

• Step 1c: Separately extract the description for each element.

Extracted elements include the titles and the contents from the

inquiry reports. Additionally, single elements and the content

+ answers, which are the concatenations of the contents and

the answers, are extracted. Extracted elements from the failure

reports are all single elements, single sub-elements, and the test

environment + details, which are the concatenations of the test

environments and the details.

3.3.2. Model building
The model is built using three steps:

• Step 2a: Identify the element correspondences to train the title

or content model.

• Step 2b: Prepare a report triplet set from all reports previously

identified as training data.

• Step 2c: Build a model using the report triplet set and the above

training method.

Note that the correspondences of a pair of inquiry

reports and a pair of failure reports are the same elements.

Elements from an inquiry report and a failure report are

their titles, contents, answers to inquiries, test environment,

and failure details. For example, Table 1 shows the triplets

when inquiry reports A and B are duplicates, inquiry report

C is unrelated, and the element correspondences between

the titles and between the contents of the inquiry reports

are selected.

3.3.3. Evaluation of title element correspondence
combinations

Title element correspondence is determined using four steps:

• Step 3a: For each report, vectorize the title and treat it as the title

vector of the report.

• Step 3b: Calculate the cosine similarity of the test vector for each

report in the test data. For example, if there are reports A–D,

where A is the test data, calculate the similarity between A & B,

A & C, and A & D.

• Step 3c: List the results from Step 3b in descending order.

• Step 3d: Assess each ranking using a ranking evaluation metric.

This includes calculating the average evaluation scores for all the

rankings of the element correspondence.

The experiment used average precision (AP) as an evaluation

metric to build the system.

3.3.4. Selection of title element correspondence
combination candidates

Repeat steps 2 and 3 but change the selection of element

correspondences training, and select multiple element

correspondence combinations whose evaluation scores are relatively

high as title element correspondence combination candidates.

In the experiment, the correspondence between the

titles of inquiry or failure reports is selected. Thus, the

element correspondences are determined according to the

forward-backward stepwise selection method. The experiment

excludes the simultaneous selection of an element and

its sub-element.

3.3.5. Selection of content element
correspondence combination candidates

This is determined in the same way as selecting title element

correspondence combination candidates (Section 3.3.3), except

content elements and not report titles are used. The vectorized

content in the inquiry report is treated as the content vector.

The vectorized test environment + details of the failure report

are treated as the content vector. When selecting the element

correspondence, start with the correspondences between the contents

of inquiry reports followed by that between the content +

answer described in an inquiry report, the test environment +

details described in a failure report, and the details described in

failure reports.

Frontiers inComputer Science 06 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1032452
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Isotani et al. 10.3389/fcomp.2022.1032452

FIGURE 8

Determination of element correspondences for training models and the report similarity calculation method.

TABLE 1 Example of a triplet.

Anchor (report A) Positive (report B) Negative (report C)

Title Abnormal operation due to operation of function X Behavior of function X during process Y execution History cannot be displayed in function Z

Content The system freezes when running process Y while

using function X...

When function X is in process Y, ... will be started

before function X is finished...

In function Z, when setting ... , an error occurs

when trying to display the history...

3.3.6. Combinations of a title element and content
element

Combinations of title and content elements are evaluated using

five steps:

• Step 6a: Select a title element correspondence combination

candidate and generate the title vector for each report in the

dataset using the model.

• Step 6b: Select a content element correspondence combination

candidate and generate the content vector for each report using

the model trained with the combination in the dataset.

• Step 6c: Calculate the title similarities and the content

similarities with each of the other reports.

• Step 6d: Calculate the report similarity and list the results in

descending order.

• Step 6e: Evaluate the rankings using the evaluation metric.

Calculate the average evaluation score.

3.3.7. Best combinations and similarity calculations
Repeat step 6 (Section 3.3.6), but change the element

correspondence combinations selected in step 6a and the report

similarity calculation method chosen in step 6b to cover all

combinations of a title element correspondence combination

candidate, a content element correspondence candidate, and a report

similarity calculation method.

The experiment uses the following report similarity

calculations:

• Weighted similarities

• 1.0 * title similarity

• 1.0 * content similarity

• 0.5 * title similarity + 0.5 * content similarity

• 0.75 * title similarity + 0.25 * content similarity

• 0.25 * title similarity + 0.75 * content similarity

• Max (title similarity, content similarity)

• Min (title similarity, content similarity).

The system adopts the highest evaluation score using the

title element correspondence combination, content element

correspondence combination, and the report similarity

calculation method.

4. Experiment

The experiment compares our proposed system to two baselines.

4.1. Baseline systems

Vector similarities in the baseline systems are calculated from

a document (corpus) created from all elements in a report.

Two baselines were prepared. One used the term frequency-

inverse document frequency (TF-IDF). The other used Latent

Dirichlet Allocation (LDA) (Blei et al., 2003). We selected

Frontiers inComputer Science 07 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1032452
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Isotani et al. 10.3389/fcomp.2022.1032452

these approaches as the baselines since these are well-accepted

fundamental ones and are often adopted as comparative baselines

in text and document similarity measurements and other text

processing tasks (Dai et al., 2015; Shahmirzadi et al., 2019).

Furthermore, these still work well in certain areas, even against

state-of-the-art sentence embedding approaches; for example, we

have confirmed and reported that TF-IDF worked better than

approaches based on Universal Sentence Encoder (USE) (Cer

et al., 2018) and SBERT in linking security-related documents

based on similarity measurements (Kanakogi et al., 2022). Thus,

it is worth comparing our system with these baselines. In the

future, we plan to compare our system with approaches based on

other existing state-of-the-art embedding models (such as USE,

Cer et al., 2018; InferSent, Conneau et al., 2017; and GenSen,

Subramanian et al., 2018) as additional baselines to confirm the

model performance.

Each new input of the baselines requires data from not only the

new report but also all previous reports because the content of the

new report affects the vector generation of all reports. Similar to our

proposed system, the baselines output a list of similarities to the new

report in descending order.

Each baseline has four steps to detect duplicate reports

(Figure 9):

• Step 1: Concatenate the contents for all elements in the new and

previous reports.

• Step 2: Analyze the texts of new and previous reports

morphologically.

• Step 3: Generate vectors from all documents.

• Step 4: Calculate the cosine similarity and output list in

descending order.

In Step 2, a set of all words in the original form, excluding

symbols, is treated as a document. Morphological analysis

divides a sentence into words and identifies the part of

speech. In the experiment, morphological analysis employs

MeCab.4

TF-IDF weights the words in a document. The weight is

calculated by multiplying the term frequency (TF) by the inverse

document frequency (IDF). TF is a measure of the word frequency

in the document, while IDF is the degree of how rare a document

containing the word is. In TF-IDF, the vector is equal to the

number of unique words in the document. The value of each

vector component is the frequency of the corresponding word

in the document multiplied by the weight of TF-IDF. In the

experiment, scikit-learn (Pedregosa et al., 2011) generates the vectors

in TF-IDF.

LDA is a topical and generative statistical model for documents.

Each document is a mixture of potential topics based on the concept

that each topic can be characterized by its word distribution. The

LDA model is built from all the documents. In the experiment, the

number of topics was set to ten. The vector represents the per-

document topic distribution analyzed by the LDA model. The LDA-

based document topic analysis uses gensim (Řehůřek and Sojka,

2010).

4 https://taku910.github.io/mecab/

FIGURE 9

Steps to detect duplicate reports in the baseline systems.

TABLE 2 Dataset used in the experiment.

Inquiry reports Failure
reports

Total number of reports 25 26

Number of reports without duplicates 2 3

Number of reports with one duplicate 14 14

Number of reports with two duplicates 9 9

4.2. Dataset

Our system is functional and was applied to detect duplicate bug

reports for software product X developed andmaintained by the NTT

Corporation. The NTT Corporation has maintained product X since

2004 using the target maintenance method. Hence, the dataset in the

experiment is the inquiry and failure reports for software product

X. The dataset is curated so that each report has between 0 and 2

duplicate reports (Table 2). The experiment focuses on the inquiry

reports issued in 2014 and their corresponding failure reports. This

year was selected because the product was mature by this time, and

the likelihood of a corresponding failure report is high.

4.3. Evaluation

4.3.1. Proposed system
The performance evaluation has five steps:

• Step 1: Divide all reports into five groups to implement the 5-fold

cross-validation to avoid overfitting by calculating the average of

the results. As the number of N-fold cross-validation, we chose

N = 5 for our experiment since often the 5-fold cross-validation

has been adopted for handling bug reports such as their severity

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1032452
https://taku910.github.io/mecab/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Isotani et al. 10.3389/fcomp.2022.1032452

TABLE 3 Number of triplets in a report triplet set and the mean evaluation

score.

Title model Content
model

Number of triplets in a report triplet set 1,200–1,500 1,100–1,300

Mean evaluation score 0.985 0.987

prediction (Chaturvedi and Singh, 2012; Sharma et al., 2015). In

the future, we plan to conduct more experiments using different

values (such as 2- and 10-fold) to confirm their impacts on the

result.

• Step 2: Designate one group as the test data. The remaining are

training data.

• Step 3: Train the title and content models using the training

data. Use the report triplet set to evaluate models, and then store

the title vectors and content vectors of all reports as previous

reports.

• Step 4: For each report in the test data, remove the title vector

and content vector. Use each report as input.

• Step 5: The system outputs a list of similarities in descending

order.

These steps are repeated for every element and report until all

data is used as the test step. Then the performance is assessed using

an evaluation metric. The performance value is the mean score of the

evaluation metric.

The evaluationmetric of a title or content model is the proportion

of triplets where the distance between the anchor and positive vectors

is smaller than that between the anchor and negative vectors.

The evaluator in SBERT is used to evaluate a model’s

performance. Five sets of models are prepared because the system is

built five times. Table 3 shows the range of the number of triplets in

the report triplet set used for training and evaluating as well as the

mean evaluation score of the five different model sets.

Furthermore, we conducted the same experiment by preparing

our proposed system without fine-tuning (i.e., without the training

step 3) to clarify the effectiveness of fine-tuning using reports.

In the experiment, we identified and employed the following

good correspondence combination and the calculation method.

For the title element correspondence combination, we identified

and adopted the correspondences between the titles of inquiry or

failure reports, between the contents of inquiry reports, between the

answers of inquiry reports, between the test environments of failure

reports, and between the feedback of failure reports. For the content

item correspondence combination, we identified and adopted the

correspondences between the contents of inquiry reports, between

the answers of inquiry reports, between the content + answer of an

inquiry report and the test environment + details of a failure report,

between the details of failure reports, and between the measures

of failure reports. For the report similarity calculation method,

we identified and utilized report similarity = max (title similarity,

content similarity).

4.3.2. Baselines
The baselines are evaluated using three steps:

• Step 1: Select an inquiry report with at least one duplicate report

in the dataset as a new report. Remove the content of the answer

and input the report into the system.

• Step 2: Input the other reports as previous reports.

• Step 3: The system outputs a list of similarities in descending

order.

These steps are repeated for all reports with at least one duplicate.

Then the performance is assessed using an evaluation metric.

4.3.3. Evaluation metric
A conversation with a maintenance engineer revealed that if

they were to adopt our proposed system to detect duplicate reports,

they would first review the results with the highest rankings.

Consequently, we selected a metric that reflects the ranking of the

duplicate reports.

The mean average precision (MAP) evaluates the output ranking

performance by a search system. First, the average precision (AP) of

the outputs from multiple search queries is ranked. Then MAP is

determined using the mean value of multiple evaluation scores of

the outputs. AP is expressed using the precision of the top r ranks

(Precision@r) as:

AP =
1

n

∑

r

Precision@r · I(r) (2)

where n is the number of duplicate reports of the input report in

our research.

I(r) =

{

1 (the rth ranked element is a match (duplicate))

0 (otherwise)
(3)

4.4. Results

The MAP score of our proposed system with fine-tuning is 0.829

compared to a score of 0.751 using the baseline with TD-IDF and

0.308 for the baseline with LDA (Figure 10). Hence, our proposed

system with fine-tuning outperforms the baselines. Furthermore, our

proposed system with fine-tuning outperformed our system without

fine-tuning.

4.4.1. RQ1. Is it possible to identify duplicate
reports?

The results show that it is possible to detect duplicate bug

reports automatically. Not only the proposed system but also the

baselines can detect duplicate reports. The results suggest that it

is possible to design an automated bug detection system for the

maintenancemethod targeted in this study. The results also show that

the training and fine-tuning process influence the ability to identify

duplicate reports.

4.4.2. RQ2. Does the proposed system outperform
the baselines?

The proposed system with fine-tuning outperformed the

baselines. Moreover, fine-tuning positively impacted the detection

Frontiers inComputer Science 09 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1032452
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Isotani et al. 10.3389/fcomp.2022.1032452

FIGURE 10

Performance evaluation scores by system.

performance by confirming that the system with fine-tuning

outperformed that without fine-tuning. The proposed system

processes each element in a report individually and fine-tunes SBERT

with actual bug reports. This approach is more effective than the

baselines, which use TF-IDF or LDA to train with all the data in a

report. For the reports targeted in this research, a combination of

processing separately by element and fine-tuning SBERT with reports

improves the performance of duplicate bug report detection.

Our proposed system has two main advantages. First, fine-

tuning with SBERT allows the characteristics of the target reports

to be incorporated. Second, training the title model, independent

of the content model, allows more appropriate vectors to be

generated. The title model focuses on expressions. Although titles

have limited content, they provide succinct descriptions of the

problem. In contrast, the content model covers a wide range of

problem descriptions. Because content containsmore details (e.g., the

test environment, setting, failure description, operations at the time

of the incident, and possibly the root cause), critical expressions to

identify duplicate reports may appear in the elements but not the

title. By combining title and content similarities in various ways,

such as weighted values and the max and min of two similarities,

and selecting the best one, our system can effectively address the

nature of each different domain dataset to detect duplicate reports.

For example, we identified and utilized report similarity = max(title

similarity, content similarity) in the experiment.

As shown in Table 3, the constructed SBERT effectively

generates vectors. Not only does using two models identify

differences in wording and explanations, but this approach can

also detect abnormalities in product X because training uses long-

distance dependencies.

4.5. Threats to validity

The data was skewed to ensure that the experiment contained

reports with duplicates. A real-world maintenance project likely has

fewer duplicate reports. This is a threat to external validity. In the

future, this should be assessed by evaluating the performance using

real-world datasets with more reports and fewer duplicates.

Another threat to external validity is that the dataset was for a

specific product. The proposed system was designed based on the

characteristics of the report descriptions in the dataset, but it may

be effective for other products. In the future, the universality of the

proposed system should be validated using datasets of reports for

other products that employ the same maintenance method.

The format of the bug report is another threat. It is difficult

to directly apply the proposed system because the format varies

by maintenance method. In the future, a generalized detection

technique, which is independent of the maintenance method, should

be developed and evaluated using bug reports obtained from different

maintenance methods.

5. Related works

Previous studies have analyzed bug reports and detected

duplicates. The similarities and differences between our proposed

system and existing works are summarized below. Furthermore, we

also summarize recent works on fundamental sentence embedding

techniques.

5.1. Duplicate bug report detection

Our system detects duplicate bug reports using vector similarities.

Similar systems have been used in other research. One study

developed a technique to output the duplication probability by

consolidating vectors. They generated fragmented elements of bug

reports (product information and priority) and the sentence parts

(Rodrigues et al., 2020). In the sentence parts, vectors were generated

by categorizing words into two groups: belonging to the summary or

belonging to a description. The approach of using different vectors to

compare reports drastically differs from our proposed system.

Another study proposed a technique to encode structured

information, short descriptions, and long descriptions (Deshmukh

et al., 2017). Their technique employed a different model for each

element, which was subsequently joined to generate a vector for a

report. Duplicates were subsequently determined from similarities.

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1032452
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Isotani et al. 10.3389/fcomp.2022.1032452

Models were trained such that the similarities between the target

report and duplicate reports became larger than those between the

target report and unrelated reports. Their study generated vectors

using bi-LSTM for short descriptions and CNN for long ones. In

contrast, our proposed system uses an attentive neural network to

train using long-distance dependencies to generate vectors. As such,

our system can generate more context-reflective vectors.

5.2. Bug report techniques using BERT

Other studies have applied BERT to software development and

maintenance documents. For example, one technique predicted the

time length to fix the bug by inputting texts from bug reports into

BERT (Ardimento and Mele, 2020). Another developed a technique

to identify duplicate bug reports by Open Source Software that caused

bugs using report texts and BERT (Hirakawa et al., 2020). Unlike

these studies, our system uses BERT to detect duplicate bug reports.

Furthermore, several studies (Rocha and da Costa Carvalho,

2021; Messaoud et al., 2022) have adopted BERT for encoding

textual features of bug titles and descriptions to detect duplicate

bug reports. Although our system also adopts BERT to detect

duplicates, our system examines various different correspondence

combinations at the element level and various different calculation

methods. In contrast, these studies haven’t explored such element-

level combinations. In the future, these models should be compared

with our system in detail by targeting the same datasets.

5.3. Sentence embedding

Sentence embedding techniques for extracting a numerical

representation of a sentence to encapsulate its meanings have

been well-studied in these years. Sentence embedding methods can

be categorized into non-parameterized and parameterized models

(Wang and Kuo, 2020). Furthermore, some methods combine the

advantage of both parameterized and non-parameterized methods,

such as SBERT-WK, which is computed by subspace analysis of the

manifold learned by the parameterized BERT-based models (Wang

and Kuo, 2020).

Non-Parameterized models are usually based on pre-trained

word embeddingmethods and aggregation of each word’s embedding

into a sentence. Weighted averaging techniques such as TF-IDF and

Smooth Inverse Frequency (SIF) (Arora et al., 2017) based on the

random walk to model the sentence generation process fall into this

group. From non-parameterized models, we selected the simplest

TF-IDF as one of the comparative baselines.

Parameterized models are more complex, and they usually

perform better than non-parameterized models (Wang and Kuo,

2020). USE based onmultiple objectives and transformer architecture

(Cer et al., 2018), InferSent employing bi-directional LSTM

(BiLSTM) with supervised training (Conneau et al., 2017), and the

SBERT method as one of the state-of-the-art sentence embedding

models by training the Siamese network over BERT fall into this

group. BERT, SBERT, and LSTM are often employed to achieve

complicated NLP tasks such as natural language understanding

(NLU). For example, the NLU framework for argumentative dialogue

has used both BiLSTM and a pre-trained BERTmodel for recognizing

the user intent and identifying system arguments (Abro et al., 2022).

A pre-trained BERT model, CNN, and RNN have been adopted

together in a multi-task model for multi-turn intent determination

and slot-filling tasks (Abro et al., 2020). From parameterizedmodels,

we selected the SBERT method for the core of our system.

In the future, we plan to compare our system with approaches

based on other non-parameterized and parameterized sentence

embedding models as different baselines to confirm the

model performance.

6. Conclusion and future work

Detecting duplicate bug reports can reduce the burden on

maintenance engineers. Herein a duplicate bug detection based on

deep learning using SBERT is reported. In our system, SBERT

generates vectors for each element in a bug report, which are

subsequently used to determine the similarities between reports and

output rankings in descending order.

The proposed system was designed for a specific maintenance

method. Its performance was assessed experimentally by comparing

it with baseline systems. Unlike the proposed system, which generates

vectors by each element, the baseline systems generate vectors using

all elements in the report. And the proposed system outperformed

the baseline systems. The results suggest that a multiple-step process

in which the elements in a report are separately processed and

fine-tuned with SBERT can effectively detect bug reports.

To enhance the effectiveness of our system, achieve duplicate

bug report detection in various actual development projects, and

explore new applications to achieve effective and practical handling

of bug reports, there are multiple directions for future research

roughly classified into five types: an examination of our system’s

design and settings in detail, evaluation of universality resulting in

generalization of our system, comparison with other existing state-

of-the-art approaches and identification of potential improvements,

incorporation other features including the structure of target

software, and exploring applications to other bug report analysis tasks

such as identifying typical report discussion patterns.

The first is to examine the individual degree of contribution by

item-wise processing and fine-tuning SBERT with the report texts

on the performance. We plan to evaluate our proposed system by

comparing it with 1) a system that generates vectors from separate

items in a report using a different technique, 2) a system that

generates vectors from all items in a report using SBERT fine-

tuned with texts in the reports, and 3) a system that generates

vectors from separate items in a report using SBERT before fine-

tuning with texts in the reports. In relation to that, it is also

necessary to examine better settings of our system in terms of

the model’s hyperparameters. To clarify that, we plan to conduct

more experiments using different thresholds and hyperparameters to

confirm their impacts on the result.

The second is to evaluate the robustness and universality of

our system under various environments with various maintenance

methods and report formats. To consider them, we plan to conduct

more N-fold cross-validation experiments using different N values to

confirm their impact on the result. Furthermore, it is necessary to

validate the universality of our system by evaluating the performance

using other real-world datasets with more reports. In relation to

that, we plan to generalize our system to be independent of the

Frontiers inComputer Science 11 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1032452
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Isotani et al. 10.3389/fcomp.2022.1032452

elementization of a report format. A generalized detection technique,

independent of the maintenance method, including report formats,

should be developed and evaluated using bug reports obtained from

different maintenance methods.

The third is to compare our system with approaches based

on other existing state-of-the-art models and identify potential

improvements and extensions of the system. We plan to

compare our method with approaches based on other non-

parameterized and parameterized sentence embedding models,

including USE and InferSent, as different baselines to confirm the

model performance.

The fourth is to extend our system to incorporate other

features, particularly the structure of target software products,

to improve performance in duplicate bug detection. Since the

relationships of modules provide additional information about the

source of a problem, devising a technique to identify similarities of

issues from modules in the description of bug reports should be

highly effective.

Finally, not only will these endeavors realize our ultimate goal,

but they should contribute to more effective analysis of bug reports,

including identifying typical bug report discussion patterns (Noyori

et al., 2021a), deep-learning of bug fixing time predictions (Noyori

et al., 2021b), and severity predictions (Liu et al., 2021).

Data availability statement

The original contributions presented in the study are included in

the article/supplementary material, further inquiries can be directed

to the corresponding author.

Author contributions

HI has handled conceptualization and methodology. All authors

have contributed to the literature review analysis, read, and agreed to

the published version of the manuscript.

Acknowledgments

We thank Yuta Koizumi, Zhenyu Xu, Akira Kanamaru, Tatsuka

Muramoto, and Naohiko Tsuda for their support. We also would like

to thank the reviewers for their insightful comments and suggestions.

Conflict of interest

TN, SO, and SS were employed by NTT Corporation.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the reviewers.

Any product that may be evaluated in this article, or claim that may

be made by its manufacturer, is not guaranteed or endorsed by the

publisher.

References

Abro, W. A., Aicher, A., Rach, N., Ultes, S., Minker, W., and Qi, G. (2022). Natural
language understanding for argumentative dialogue systems in the opinion building
domain. Knowl. Based Syst. 242, 108318. doi: 10.1016/j.knosys.2022.108318

Abro, W. A., Qi, G., Ali, Z., Feng, Y., and Aamir, M. (2020). Multi-turn intent
determination and slot filling with neural networks and regular expressions.Knowl. Based
Syst. 208, 106428. doi: 10.1016/j.knosys.2020.106428

Akilan, T., Shah, D., Patel, N., and Mehta, R. (2020). “Fast detection of duplicate bug
reports using lda-based topic modeling and classification,” in 2020 IEEE International
Conference on Systems, Man, and Cybernetics, SMC 2020, Toronto, ON, Canada, October
11–14, 2020 (Toronto, ON: IEEE), 1622–1629.

Ardimento, P., and Mele, C. (2020). “Using BERT to predict bug-fixing time,” in 2020
IEEE Conference on Evolving and Adaptive Intelligent Systems, EAIS 2020, Bari, Italy, May
27–29, 2020 (Bari: IEEE), 1–7.

Arora, S., Liang, Y., and Ma, T. (2017). “A simple but tough-to-beat baseline for
sentence embeddings,” in 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24–26, 2017, Conference Track Proceedings (Toulon:
OpenReview.net).

Babic, K., Martincic-Ipsic, S., and Mestrovic, A. (2020). Survey of neural text
representation models. Information 11, 511. doi: 10.3390/info11110511

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. J. Mach.
Learn. Res. 3, 993–1022. Microtome Publishing.

Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah, R. (1993). “Signature
verification using a siamese time delay neural network,” in Advances in Neural
Information Processing Systems 6, [7th NIPS Conference, Denver, Colorado, USA, 1993],
eds J. D. Cowan, G. Tesauro, and J. Alspector (Denver, CO: Morgan Kaufmann),
737–744.

Cer, D., Yang, Y., Kong, S., Hua, N., Limtiaco, N., John, R. S., et al. (2018). “Universal
sentence encoder for english,” in Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2018: System Demonstrations, Brussels, Belgium,
October 31-November 4, 2018, eds E. Blanco and W. Lu (Brussels: Association for
Computational Linguistics), 169–174.

Chaturvedi, K. K., and Singh, V. B. (2012). “Determining bug severity using machine
learning techniques,” in 2012 CSI Sixth International Conference on Software Engineering
(CONSEG) (Piscataway: IEEE), 1–6. doi: 10.1109/CONSEG.2012.6349519

Conneau, A., Kiela, D., Schwenk, H., Barrault, L., and Bordes, A. (2017). “Supervised
learning of universal sentence representations from natural language inference data,” in
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2017, Copenhagen, Denmark, September 9–11, 2017, eds M. Palmer, R. Hwa, and
S. Riedel (Copenhagen: Association for Computational Linguistics), 670–680.

Dai, A. M., Olah, C., and Le, Q. V. (2015). Document embedding with paragraph
vectors. CoRR, abs/1507.07998. doi: 10.48550/arXiv.1507.07998

Deshmukh, J., Annervaz, K. M., Podder, S., Sengupta, S., and Dubash, N. (2017).
“Towards accurate duplicate bug retrieval using deep learning techniques,” in 2017 IEEE
International Conference on SoftwareMaintenance and Evolution, ICSME 2017 (Shanghai:
IEEE Computer Society), 115–124.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2019). “BERT: pre-training
of deep bidirectional transformers for language understanding,” in Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers), eds J. Burstein, C. Doran, and T. Solorio
(Minneapolis, MN: Association for Computational Linguistics), 4171–4186.

Ghosh, K., Pawar, S., Palshikar, G. K., Bhattacharyya, P., and Varma, V. (2020).
“Retrieval of prior court cases using witness testimonies,” in Legal Knowledge and
Information Systems - JURIX 2020: The Thirty-third Annual Conference, Brno, Czechia,
December 9-11, 2020, volume 334 of Frontiers in Artificial Intelligence and Applications,
eds S. Villata, J. Harasta, and P. Kremen (Brno: IOS Press), 43–51.

Hirakawa, R., Tominaga, K., and Nakatoh, Y. (2020). “Study on automatic defect
report classification system with self attention visualization,” in 2020 IEEE International
Conference on Consumer Electronics (ICCE) (Las Vegas, NV: IEEE), 1–2.

Isotani, H., Washizaki, H., Fukazawa, Y., Nomoto, T., Ouji, S., and Saito, S. (2021).
“Duplicate bug report detection by using sentence embedding and fine-tuning,” in
IEEE International Conference on Software Maintenance and Evolution, ICSME 2021
(Luxembourg: IEEE), 535–544.

Frontiers inComputer Science 12 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1032452
https://doi.org/10.1016/j.knosys.2022.108318
https://doi.org/10.1016/j.knosys.2020.106428
https://doi.org/10.3390/info11110511
https://doi.org/10.1109/CONSEG.2012.6349519
https://doi.org/10.48550/arXiv.1507.07998
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Isotani et al. 10.3389/fcomp.2022.1032452

Kanakogi, K., Washizaki, H., Fukazawa, Y., Ogata, S., Okubo, T., Kato, T., et al. (2022).
Comparative evaluation of nlp-based approaches for linking capec attack patterns from
cve vulnerability information. Appl. Sci. 12, 3400. doi: 10.3390/app12073400

Kukkar, A., Mohana, R., Kumar, Y., Nayyar, A., Bilal, M., and Kwak, K. (2020).
Duplicate bug report detection and classification system based on deep learning
technique. IEEE Access 8, 200749–200763. doi: 10.1109/ACCESS.2020.3033045

Li, T. J., Chen, J., Xia, H., Mitchell, T. M., and Myers, B. A. (2020). “Multi-modal
repairs of conversational breakdowns in task-oriented dialogs,” in UIST ’20: The 33rd
Annual ACM Symposium on User Interface Software and Technology, eds S. T. Iqbal, K.
E. MacLean, F. Chevalier, and S. Mueller (Virtual Event, USA: ACM), 1094–1107.

Liu, Q., Washizaki, H., and Fukazawa, Y. (2021). “Adversarial multi-task learning-
based bug fixing time and severity prediction,” in 10th IEEE Global Conference on
Consumer Electronics, GCCE 2021 (Kyoto: IEEE), 185–186.

Messaoud, M. B., Miladi, A., Jenhani, I., Mkaouer, M. W., and Ghadhab, L. (2022).
Duplicate bug report detection using an attention-based neural language model. IEEE
Trans. Reliabil. 1–13. doi: 10.1109/TR.2022.3193645

Noyori, Y., Washizaki, H., Fukazawa, Y., Kanuka, H., Ooshima, K., Nojiri, S., et al.
(2021a). What are the features of good discussions for shortening bug fixing time? IEICE
Trans. Inf. Syst. 104-D, 106–116. doi: 10.1587/transinf.2020MPP0007

Noyori, Y., Washizaki, H., Fukazawa, Y., Ooshima, K., Kanuka, H., Nojiri, S., et al.
(2021b). “Extracting features related to bug fixing time of bug reports by deep learning
and gradient-based visualization,” in Proceedings of the IEEE International Conference
on Artificial Intelligence and Computer Applications, ICAICA (Dalian: IEEE Computer
Society), 402–407.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830.

Řehůřek, R., and Sojka, P. (2010). “Software Framework for Topic Modelling with
Large Corpora,” in Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks (Malta: University of Malta), 45–50.

Reimers, N., and Gurevych, I. (2019). “Sentence-bert: sentence embeddings using
siamese bert-networks,” in Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019 eds K. Inui, J. Jiang, V. Ng, and X.Wan (Hong
Kong: Association for Computational Linguistics), 3980–3990.

Rocha, T. M., and da Costa Carvalho, A. L. (2021). Siameseqat: A semantic context-
based duplicate bug report detection using replicated cluster information. IEEE Access 9,
44610–44630. doi: 10.1109/ACCESS.2021.3066283

Rodrigues, I. M., Aloise, D., Fernandes, E. R., and Dagenais, M. R. (2020). “A soft
alignment model for bug deduplication,” in MSR ’20: 17th International Conference on
Mining Software Repositories, eds S. Kim, G. Gousios, S. Nadi, and J. Hejderup (Seoul:
ACM), 43–53.

Schroff, F., Kalenichenko, D., and Philbin, J. (2015). “Facenet: a unified embedding
for face recognition and clustering,” in IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2015 (Boston, MA: IEEE Computer Society), 815–823.

Sehra, S. S., Abdou, T., Basar, A., and Sehra, S. K. (2020). “Amalgamated models
for detecting duplicate bug reports,” in Advances in Artificial Intelligence-33rd Canadian
Conference on Artificial Intelligence, Canadian AI 2020, Ottawa, ON, Canada, May 13–15,
2020, Proceedings, volume 12109 of Lecture Notes in Computer Science, eds C. Goutte and
X. Zhu (Ottawa, ON: Springer), 470–482.

Shahmirzadi, O., Lugowski, A., and Younge, K. (2019). “Text similarity in vector space
models: a comparative study,” in 18th IEEE International Conference OnMachine Learning
And Applications, ICMLA 2019, eds M. A. Wani, T. M. Khoshgoftaar, D. Wang, H. Wang,
and N. Seliya (Boca Raton, FL: IEEE), 659–666.

Sharma, G., Sharma, S., and Gujral, S. (2015). A novel way of assessing software
bug severity using dictionary of critical terms. Procedia Comput. Sci. 70, 632–639.
doi: 10.1016/j.procs.2015.10.059

Subramanian, S., Trischler, A., Bengio, Y., and Pal, C. J. (2018). “Learning general
purpose distributed sentence representations via large scale multi-task learning,” in
6th International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30-May 3, 2018 (Vancouver, BC: Conference Track Proceedings.
OpenReview.net).

Uno, K. (2020). “Natural language processing for beginners part 9: verification of
similar sentence retrieval using sentence bert.” Available online at: https://www.ogis-ri.
co.jp/otc/hiroba/technical/similar-document-search/part9.html

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al. (2017).
“Attention is all you need,” in Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
eds I. Guyon, vonU. Luxburg, S. Bengio, H.M.Wallach, R. Fergus, S. V. N. Vishwanathan,
and R. Garnett (Long Beach, CA), 5998–6008.

Wang, B., and Kuo, C. J. (2020). SBERT-WK: a sentence embedding method by
dissecting bert-based word models. IEEE ACM Trans. Audio Speech Lang. Process. 28,
2146–2157. doi: 10.1109/TASLP.2020.3008390

Xiao, G., Du, X., Sui, Y., and Yue, T. (2020). “HINDBR: heterogeneous information
network based duplicate bug report prediction,” in 31st IEEE International Symposium on
Software Reliability Engineering, ISSRE 2020, eds M. Vieira, H. Madeira, N. Antunes, and
Z. Zheng (Coimbra: IEEE), 195–206.

Yoshikawa, Y., Shigeto, Y., and Takeuchi, A. (2017). “STAIR captions: constructing a
large-scale japanese image caption dataset,” in Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30-
August 4, Volume 2: Short Papers, eds R. Barzilay andM. Kan (Vancouver, BC: Association
for Computational Linguistics), 417–421.

Zhang, M., Li, Z., Fu, G., and Zhang, M. (2021). Dependency-based syntax-aware word
representations. Artif. Intell. 292, 103427. doi: 10.1016/j.artint.2020.103427

Frontiers inComputer Science 13 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1032452
https://doi.org/10.3390/app12073400
https://doi.org/10.1109/ACCESS.2020.3033045
https://doi.org/10.1109/TR.2022.3193645
https://doi.org/10.1587/transinf.2020MPP0007
https://doi.org/10.1109/ACCESS.2021.3066283
https://doi.org/10.1016/j.procs.2015.10.059
https://www.ogis-ri.co.jp/otc/hiroba/technical/similar-document-search/part9.html
https://www.ogis-ri.co.jp/otc/hiroba/technical/similar-document-search/part9.html
https://doi.org/10.1109/TASLP.2020.3008390
https://doi.org/10.1016/j.artint.2020.103427
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org

	Sentence embedding and fine-tuning to automatically identify duplicate bugs
	1. Introduction
	2. Background
	2.1. Target maintenance process
	2.2. Sentence-BERT

	3. Proposed duplicate bug detection system
	3.1. Duplicate bug report detection
	3.2. Model training
	3.3. Training elements and report similarity calculations
	3.3.1. Data preparation
	3.3.2. Model building
	3.3.3. Evaluation of title element correspondence combinations
	3.3.4. Selection of title element correspondence combination candidates
	3.3.5. Selection of content element correspondence combination candidates
	3.3.6. Combinations of a title element and content element
	3.3.7. Best combinations and similarity calculations


	4. Experiment
	4.1. Baseline systems
	4.2. Dataset
	4.3. Evaluation
	4.3.1. Proposed system
	4.3.2. Baselines
	4.3.3. Evaluation metric

	4.4. Results
	4.4.1. RQ1. Is it possible to identify duplicate reports?
	4.4.2. RQ2. Does the proposed system outperform the baselines?

	4.5. Threats to validity

	5. Related works
	5.1. Duplicate bug report detection
	5.2. Bug report techniques using BERT
	5.3. Sentence embedding

	6. Conclusion and future work
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


