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Ship detection using synthetic aperture radar (SAR) images has important

applications in military and civilian fields, but the di�erent sizes of the ship

downgrade the detection accuracy of multiscale ships. Aiming at the problem

of the poor accuracy and low e�ciency of multiscale ship detection in

complex scenes, this paper proposes a lightweight and anchor-free frame

detection strategy for multiscale ships in SAR images. First, to deal with the

problems of limited training samples, di�erent sizes, attitudes, and angles

of the ships in SAR images, a data augmentation strategy suitable for SAR

images is adopted to expand the training space, followed bymultiscale training

to enhance the model generalization ability for multiscale ship detection.

Second, a lightweight and anchor-free ship detection model based on the

improved CenterNet is proposed, which abandons the dense anchor frame

generation and extracts the key point of the ships for detection and positioning.

Compared with the anchor frame-based detection method, this proposed

detection model does not need to use the post-processing method to remove

redundant anchor frames, and can accurately locate the center point of the

ships with a better detection performance. Third, to reduce the model size

and simplify the model parameters, a more lightweight network design is

adopted in combination with the characteristics of SAR images. Hence, a

residual network (ResNet) with fewer convolutional layers is constructed as the

backbone network, and the cross-stage partial network (CSPNet) and spatial

pyramid pooling (SPP) network are designed as the bottleneck network. The

shallow ResNet can fully extract the SAR image features and reduce the training

overfitting, and CSPNet and SPP can e�ectively combine the low-level image

features to obtain the high-level features, reducing the model computation

while at the same time enhancing the feature extraction ability. Finally, the

evaluation index of the common objects in the context dataset is introduced,

which can provide higher-quality evaluation results for ship detection accuracy

and provide comprehensive evaluation indicators formultiscale ship detection.

Experimental results show that the proposed strategy has the advantages of

high detection e�ciency, strong detection ability, and good generalization
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performance, which can achieve real-time and high-precision detection of the

multiscale ship in complex SAR images.

KEYWORDS

multiscale ship detection, synthetic aperture radar (SAR), SAR image, improved

CenterNet, lightweight, anchor-free frame

Introduction

With the rapid development of high-resolution synthetic

aperture radar (SAR) imaging technology (Xie et al., 2016, 2017,

2020, 2022), more SAR satellites have been launched, and along

with it, the amount of SAR image data has grown rapidly.

Subsequently, a large number of studies on target detection using

SAR images have emerged (Chen et al., 2022; Tang et al., 2022;

Xu et al., 2022), especially in the application of oceanmonitoring

(Cui et al., 2022; Kahar et al., 2022; Song et al., 2022). Generally,

ship detection using SAR images can be divided into far-sea ship

detection, near-sea (coastal) ship detection, and nearshore (port)

ship detection (Li et al., 2022). Ship SAR images are mainly

composed of the ocean background, ship targets, and land areas

(Wang and Chen, 2017). In far-sea detection, since there is no

land interference, the image’s grayscale changes uniformly and

slowly, and the SAR image is mainly affected by the sea clutter,

so ship detection is relatively easy. In near-sea detection, the

number of ships gradually increases, and their type becomes

abundant, which may be accompanied by smaller islands or

reefs, thus making ship detection gradually and increasingly

difficult. In nearshore detection, the SAR images become more

complex, since they are in the sea-land segmentation area,

which is easily affected by land images. Especially in the port

area, the grayscale of the land image changes drastically, there

are numerous and complex edges, which greatly increases the

difficulty of ship detection. In addition, the ship size varies by its

type in the SAR image, which may degrade the accuracy of the

multiscale ship detection (Li et al., 2019).

Currently, the traditional detection method (like the

constant false alarm rate) is usually used for ship detection in

SAR images (Ai et al., 2020). This method mainly relies on

the manual design to extract the image features, which may

be susceptible to complex background interferences, resulting

in low detection accuracy, poor recognition efficiency, and

weak generalization ability (Karvonen et al., 2022). The deep

learning-based detection method, on the other hand, gets rid of

the dependence on artificially designed features and modeling

since it can automatically learn the parameters and extract

the features (Ai et al., 2022). Compared with the traditional

detection method, the deep learning-based detection method

has the advantages of high detection accuracy and strong anti-

interference, which has great development potential in the ship

detection task given the different ship attitudes in complex and

changeable SAR scenes (Yang et al., 2022).

The deep learning-based detectionmethod is mainly divided

into single-stage algorithms (such as you only look once (YOLO)

(Redmon et al., 2016), single-shot multi-box detector [Souaidi

and Ansari, 2022), and RetinaNet (Miao et al., 2022)], and

two-stage algorithms [including the region convolutional neural

network (R-CNN) (Wu et al., 2021), Fast R-CNN (Girshick,

2015), and Faster R-CNN (Ren et al., 2017)]. It is known that

the single-stage algorithms can focus more on the fusion and

prediction of the target features at different scales, which can

be extended to the multiscale ship detection in the SAR images.

Redmon and Farhadi (2018) proposed the YOLOv3 by adapting

an over-residual network to extract the features and drawing

on the feature pyramid network (FPN) idea, which could then

extract the features from three scales and predict them to

promote the precision of the target detection. Because there are

some differences in the imaging mechanism between the optical

image and SAR image (Liu et al., 2020), the YOLOv3 could not

be directly applied for ship detection using SAR images. Hu et al.

(2019) proposed a ship detection model based on an improved

YOLOv3 by designing the network structure of the underlying

residual unit and the FPN. Wang et al. (2019) proposed a ship

detectionmodel based on the RetinaNet using the Gaofen-3 SAR

image, while Yang et al. (2020) came up with a convolutional

neural network (CNN) detection model based on the deep

multiscale feature fusion. Cui et al. (2021) suggested another

ship detection method based on the CenterNet and large-scale

SAR images, which could realize ship detection in large-scale

SAR images via the spatial shuffle-group to enhance attention.

Zhang et al. (2020) proposed a ship detection network by fusing

the salient and CNN features, which could improve the accuracy

of ship detection in the SAR image by using the multiscale

salient and convolutional features. Jiao et al. (2018) suggested

a SAR ship detection network densely connecting the feature

maps from the top to bottom and generating the prediction from

each fused feature map; however, this algorithm neglected the

connections between the individual feature channels. Cui et al.

(2019) proposed a two-stage detector called the dense attention

pyramid network, which could refine the feature maps, suppress

environmental interference, and improve the precision of the

multiscale ship detection in the SAR images. Shi et al. (2018)

combined the low and high-level features using the deep CNN,
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and then the combined features were further fed into the support

vector machine (SVM). Guo et al. (2021) proposed a more

effective and stable single-stage detector, which could achieve

high-precision ship detection in SAR images with a negligible

increase in the time cost.

Although the deep learning-based ship detection method

has made great progress in processing accuracy, detection

efficiency, and automation degree in SAR images, there are still

a few issues that need to be addressed urgently. First, parameters

redundancy. Most of the existing algorithms directly draw on

the target detection model in the optical images and then use a

relatively complex backbone network to extract the SAR image

features. However, unlike optical images, SAR images do not

contain rich feature information. The complex network does

not assist refine the SAR image detection but instead leads

to large and redundant model parameters. Second, additional

post-processing requirements. Although the detection accuracy

is greatly improved compared to the traditional detection

method, the existing deep-learning method is based on the

idea of dense anchor frame generation for target detection.

It is not suitable for sparse ships and extremely unbalanced

positive and negative samples in the SAR images, which further

require expensive computational resources post-processing to

remove the overlapping candidate frames and many anchor

frames that drain the memory resources while running the

algorithm. Third, training samples are single and scarce. Deep

learning-based algorithms usually require many complicated

and diverse training samples. The public dataset usually used in

ship detection [like the AIR-SARShip (Sun et al., 2019)] have

just single backgrounds or lacks training samples. Thus the

generalization capability of the trained model is poor, making

it difficult to apply in more complicated scenes.

To solve these problems, this paper built a multiscale ship

detection framework in the SAR image based on the improved

center point detection network (CenterNet) (Zhou et al., 2020)

for the optical images, called CenterSAR which is lightweight,

has high precision, and strong generalization capability. Tomeet

the requirements of real-time and high-precision ship detection

in the SAR images, a lightweight and anchor-free frame ship

detection method based on the improved CenterNet has been

proposed. This method has realized the rapid and accurate

positioning and detection of multiscale ships in SAR images

by predicting the information of key points of the ship and

the relevant attributes of the detection frame. To address the

scarcity of ship samples in the SAR image, a series of data

augmentation methods suitable for SAR images have been used

to expand training samples, after which multiscale training has

been introduced to enhance the generalization performance of

the model.

In the following sections, the data augmentation strategy

suitable for SAR images is discussed along with multiscale

training. A lightweight and anchor-free frame ship detection

model is proposed. The fully convolutional network includes a

backbone network for feature extraction, a bottleneck network

for feature fusion, and a deconvolutional network for feature

sampling. The target detection network consists of the center

prediction and width-height regression and offsets correction,

which can extract the detection frame information from low-

resolution feature maps to locate the ships. In the sections

thereafter, the proposed method is tested and validated through

a public dataset of ship SAR images. Section “Conclusion”

provides a conclusion.

Data augmentation for SAR images

Synthetic aperture radar imaging is quite different from

optical imaging and includes phenomena such as unintuitive

characterization, uneven background clutter, and strong speckle

noise. Moreover, the targets in the SAR imagemay have different

sizes, and the same target may show differences in the SAR

images with different resolutions or different observation angles,

which is not conducive to the training of the detection model.

In addition, the deep-learning-based method requires a large

number of training data to ensure model performance, but it

is difficult and expensive to obtain enough training samples of

the SAR image, thus the lack of sample capacity can easily lead

to serious overfitting of the training model. Therefore, when the

detectionmethod in the optical image is directly applied to target

detection in the SAR image, it is easy to cause a large offset of

the detection frame and low recognition accuracy. Thus, it is

necessary to carry out the relevant preprocessing according to

the characteristics of the SAR images.

The data augmentation is mainly aimed at addressing

the root cause of the model overfitting problem, that is, the

problem of insufficient training samples. It aims to extract

more effective information from the limited data and generate

the value equivalent to the more abundant data. The data

augmentation consists of a series of methods used to generate

new training samples. By applying a series of transformations to

the original training data to expand the model training space,

the robustness and generalization of the model are increased,

while alleviating the problem of model overfitting (Feng, 2021).

In general, the distance of the SAR imaging is long, which

leads to a small-size image of the ship target in the SAR image,

and the same target has obvious differences in SAR images

with different resolutions and different observation angles. The

data augmentation processing can effectively suppress the SAR

image noise, highlight the important information of interest

in the SAR image, and help the model to identify the targets

more accurately.

In this paper, a series of data augmentation techniques

suitable for SAR images are used to enrich the training samples.

The proposed data augmentation strategy mainly includes

random multiscale scaling, flipping, small-angle rotating, and

filling, which are shown in Figure 1. Random multiscale scaling
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FIGURE 1

Data augmentation strategy.

mainly includes image scaling within a certain range. Since

the ships in the SAR images are generally small, the proper

magnification of the SAR image can extract the features

more effectively. The random flip mainly includes the random

horizontal flip and random vertical flip. The random small-angle

rotation mainly includes the random rotation transformation

within five degrees counterclockwise, because the scattering

characteristics of the SAR image can remain approximately

unchanged within five degrees, which improves the diversity of

the training samples (Wang et al., 2017). The transformed SAR

image sizemay change, and a padding layer is added at the end to

ensure that all input images have a fixed size and help the model

train at the multiscale. Besides, this paper makes the enhanced

data more diverse by introducing random factors. Lastly, the

final padding layer enables all input images to be scaled at any

scale and ensures that the image size of the final input model

is consistent, thereby improving the generalization capability of

the model.

Lightweight and anchor-free ship
detection model

The CenterNet (Zhou et al., 2020) does not need to

design anchor frames of various sizes for the different types

of targets in advance to extract the target features, which

can reduce the complexity of the network and decrease the

unnecessary parameters. In this paper, the CenterNet used for

the target detection in the optical images is extended and

improved into the target detection in SAR images, thus a

lightweight and anchor-free ship detection model based on

an improved CenterNet is proposed for the multiscale ship

detection in SAR images. The proposed model adopts an

end-to-end design, and its structure is shown in Figure 2. It

mainly includes a fully convolutional network and a target

detection network. The fully convolutional network consists

of a backbone network for feature extraction, a bottleneck

network for feature fusion, and a deconvolutional network

for feature sampling. Consistent with CenterNet, the proposed

target detection network consists of center prediction, width-

height regression, and offset correction, which is used to extract

the detection frame information from the low-resolution feature

maps to locate the ships.

Provided that the input SAR image is I ∈ RW×H×1,

the predicted output of the model is the heat map Ŷ ∈

[0, 1]
W
R ×H

R ×C . W is the image width, H is the image height, R

is the down-sampling step size, and C is the number of the target

category. If Ŷx,y,c = 1, it means that there is a target center point

of the category C at the coordinates (x, y), while if Ŷx,y,c = 0, it

means the background.

Fully convolutional network

This paper designed a fully convolutional network with

an encoder-bottleneck-decoder structure. The encoder uses the

residual network (ResNet) (He et al., 2016) as the backbone

network to extract the image features. The cross-stage partial

network (CSPNet) (Wang et al., 2020) and spatial pyramid

pooling (SPP) (He et al., 2015) networks are designed as the

bottleneck network to enhance the feature extraction ability

of the model, and the decoder is composed of a stack of

deconvolution networks. Given a sampling step size R, the

proposed network can extract the high-order features of the

SAR images and then down-sample to obtain the low-resolution

feature maps.

Feature extraction backbone network

The feature extraction mainly uses the deep network to

extract the shallow position information and high-level semantic

information in the SAR image and then processes the extracted

features according to target characteristics. The main purpose of

the feature extraction is to enhance the utilization of the hidden

information in the SAR images and decrease the influence of the

interference in the SAR images, thereby improving the detection

accuracy of the ships. The quality of the extracted image features

will greatly affect ship detection performance, thus the structural
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FIGURE 2

Structure diagram of the proposed model.

design of the backbone network for the feature extraction is

particularly important.

The design of the backbone network needs to be composed

of the stack of the CNNwith a certain depth. However, the CNN

has degradation problems such as gradient disappearance and

weight decay when the network depth increases. The ResNet

can effectively solve the problems caused by network depth,

which is suitable as a backbone network for extracting the image

features, thus it is widely used in many tasks. However, different

from optical images, SAR images do not contain rich feature

information as the network is too deep to be of advantage in

target detection in SAR images, and it increases the number

of extra parameters causing overfitting problems. Given the

characteristics of SAR images, this paper designed a shallow

residual network (like ResNet-18) as the SAR image feature

extraction network.

The structure of the ResNet-18 network is shown in Figure 3.

The curves between the convolutional layers are the residual

connection of the skip layer. The solid line is the identity

residual connection that is used between the convolutional

layers with the same number of channels. The dotted line is

the transformation residual connection that is used between

the convolutional layers with a different number of channels,

and additional convolutional layers need to be introduced for

the transformation. The ResNet is designed as four cascaded

sub-networks, and each sub-network is composed of a certain

number of residual blocks. The residual block contains two

3 × 3 convolutional layers with the same number of output

channels, which is followed by a batch normalization layer

and a linear rectification function (ReLU) activation layer. The

design of the residual block requires that the input and output

of the convolutional layer have the same shape and number

of channels. If the number of channels needs to change, an

additional 1 × 1 convolutional layer needs to be introduced,

which can transform the input into the same number of channels

before the residual connection. In Figure 3, the input is added

to the activated output through the residual connection across

the layers, so that the input can propagate forward faster and

accelerate the convergence of the model training.

Feature fusion bottleneck network

The bottleneck network is a key part of the target detection

network. It performs reprocessing applications after the fusion

of important features extracted by the backbone network, which

is beneficial to the next step of network task learning. As shown

in Figure 4, the designed bottleneck network consists of the

CSPNet and SPP modules.

For the lightweight feature extraction network, the CSPNet

mainly solves the problems of the heavy computation and high

parameters of the CNN models from the perspective of the

network structure design. The CSPNet first divides the feature

map of the input layer into two parts which respectively go

through a series of local convolutional layers, and then one part

of the feature is extracted through the designed hidden layer

network (such as the residual block). Finally, the two parts of the

output are connected and merged across the stage through the

transition connection layer. Compared to directly inputting the

feature map into the hidden layer network for the calculation,

the CSPNet only inputs a part of the feature map, which can

significantly reduce the amount of computation and memory

consumption, and thus the staged convolution and merging

operations can enhance the learning capability of the network.

The SPP is an FPN that uses four pooling methods to extract

the feature maps of different scales (1 × 1 max pooling, 5 × 5

max pooling, 9 × 9 max pooling, and 13 × 13 max pooling),

and then the different step sizes and filling methods are used for

the four pooling methods to ensure that the extracted feature

maps are of the same size. Finally, the extracted feature maps

of different scales are subjected to feature fusion operations.

Because the SPP only has a simple pooling operation, it does

not contain trainable weight parameters. Thus, the SPP module

does not affect the complexity of the detection model, but it can

enhance the feature extraction capability of the network.

Frontiers inComputer Science 05 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1012755
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Xie et al. 10.3389/fcomp.2022.1012755

FIGURE 3

ResNet-18 network structure.

FIGURE 4

Bottleneck network structure. (A) CSPNet module; (B) SPP module.

Feature sampling network

After the feature extraction and feature fusion of the

bottleneck network, a small-size and low-resolution feature map

is obtained. To further use the feature map of the input image

for learning the target detection task, it is necessary to design

a decoder to expand the size of the extracted feature map,

which can realize the process of mapping the image from low-

resolution to high-resolution, i.e., the up-sampling operation.
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There are three up-sampling methods, namely, the bilinear

interpolation up-sampling, de-pooling, and deconvolution. The

first two methods do not include trainable parameters, and

cannot be adapted when the network is trained; therefore,

deconvolution is the usually used up-sampling network.

Deconvolution (Zeiler et al., 2011) is not the reverse operation

of the standard forward convolution, but a special kind of

forward convolution. It adds the zero pixels to the edge of

the feature map to expand the size according to a certain

proportion, then rotates the convolution kernel, and finally the

forward convolution. Through deconvolution, the part with a

feature value of zero is filled as the learned feature, which can

suppress the image noise, strengthen the image representation

ability, and restore the detailed structure of the image to the

maximum extent. The designed decoder mainly contains three

deconvolution modules, each of which is sequentially composed

of a deformable convolution layer, a batch normalization

layer, a ReLU activation layer, a deconvolution layer, a batch

normalization layer, and a ReLU activation layer. The function

of adding the forward convolution layer is to further extract

the features learned from the edge pixels by the deconvolution

and to ensure the robustness of the network to the image

noise. If there are large differences between regions (such as

the ocean and land), due to the inherent symmetric geometry

of the standard convolution operations, it will be difficult for

the convolution operations to learn the spatial dependency

of the image for ships with a large-scale and unknown

shape, which leads to the feature representation learned by

this layer to become weak. Thus, the deformable convolution

(Dai et al., 2017; Zhu et al., 2019) is chosen to replace the

standard convolution operation. The basic idea is to additionally

introduce a learnable bias that can perform the feature extraction

on the irregular regions, so the convolution kernel focuses on

the region of interest or the target rather than the fixed position

sampling. Applying the deformable convolution to the ship’s

detection in SAR images can better extract the features from

different types of areas in complex scenes and then obtain the

ship areas.

Although the deformable convolution can adaptively extract

the image feature information, it adds extra computation

due to the introduction of a parallel network for calculating

the bias of the convolution operation. If the deformable

convolution design is used too much, the model parameters

will increase sharply, model inference speed will become slow,

and overfitting problems will be caused during the training

process. Therefore, the sampling network as a decoder contains

three deconvolution networks, each of which includes a standard

deconvolution layer and a deformable convolution layer, and

then a batch normalization layer is used to enhance the network

generalization ability. According to the presented sampling step

R, the network up-samples the feature map extracted by the

bottleneck network as inputs and outputs the feature map

with 1/R time of the original image resolution for subsequent

detection and recognition tasks.

Target detection network

The designed target detection network mainly includes the

center prediction network, offset correction network, and width-

height regression network.

Center prediction network

The function of the center prediction network is to locate the

center point of the target, and it includes two layers of the CNN

and one layer of the ReLU activation layer. The network takes

the sampled feature map obtained by the fully convolutional

network as the input and then undergoes a layer of sigmoid

activation function transformation to make the output of the

network a feature map Ŷ ∈ [0, 1]
W
R ×H

R ×C , which can indicate

whether there is a target center point at a certain coordinate.

The role of the ReLU activation function is to increase the

non-linearity of the network and effectively reduce the gradient

disappearance problem, and the role of the Sigmoid function

is to map the output of the network to the interval [0,1]. The

sampled image is a low-resolution feature map, provided that

the key point coordinates corresponding to the original image

target are pi ∈ R
2, so the key point coordinates by the down-

sampling are p̃i =

⌊

pi
R

⌋

. To combine the image annotation

information for training and for a certain category c in each

ground truth map, it is necessary to use the detection frame

annotation information to construct the feature map of the

real image Y ∈ [0, 1]
W
R ×H

R ×C . A Gaussian feature map is

constructed using the Gaussian kernel, which is given by:

Ypc = max
i

exp

(

−

(

pi − p̃i
)2

2σ 2
i

)

(1)

where, σ 2
i is the scale adaptive variance of the i category

target which is used to control the value of the feature map

according to the size of each target. If two Gaussian distributions

of a category overlap, the maximum value between them is

taken. Except for the Gaussian kernel function corresponding

to each target in the heat map, the other position elements

are zero. Before network training, it is essential to use the

annotation information to construct the real value of the heat

map corresponding to each sample, and thus the output of

the central prediction network can approximate the real value

through training. In the inference stage, the center prediction

network will output a heat map. If the value of an element

in the heat map is greater than the value of the surrounding

eight elements, this point is a candidate center point, and the

element value of this point is used as the confidence of the

prediction target. In subsequent processing, the candidate center

points whose confidence reaches the threshold are used as the

center point of the prediction target, and then the output of the

width-height regression network and offset correction network

is combined after which the prediction frame can be generated

and obtained.
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O�set correction network

The resolution of the input image becomes 1/R time of

the original resolution after down-sampling, however, the target

detection is based on the original image. Considering the

discreteness of the coordinates, mapping the key points of the

feature map to the original image will introduce precision errors,

so an additional offset correction network is required to predict a

local deviation for each center point of the targets. The structure

of this network is similar to the central prediction network,

except that there are differences in network dimensions. Its

output is Ô ∈ R
W
R ×H

R ×2, which is used to compensate the

offset of each key point at the coordinates pi ∈ R
2, reducing

the mapping error between the feature map and the original

image. The different categories of center points share the same

offset correction network, which can reduce the number of

model parameters.

Width-height regression network

The target detection task aims to locate all the regions in the

input image where the targets exist, so the model also needs a

network for outputting the predicted detection frame size, which

can be used to determine the size of the target region. Therefore,

the structure of this network also is like the central prediction

network, except that there are differences in the dimensions. Its

output is Ŝ ∈ R
W
R ×H

R ×2, which is used to indicate the width and

height of the prediction frame corresponding to the key points in

the heat map, in order to provide a basis for the target detection.

Loss function

The above three sub-networks mainly play the role of

classification, offset correction, and prediction frame regression,

thus it is necessary to design three different losses to train the

model. Given the pre-labeledN target key points p0, p1, . . . pN in

the SAR image, the classification loss Lk of the target key points

adopts the focal loss (Lin et al., 2020), which is determined by

Lk =
1

N

∑

xyc







(

1− Ŷxyc

)α
log

(

Ŷxyc

)

Yxyc = 1
(

1− Yxyc
)β
(

Ŷxyc

)α
log

(

1− Ŷxyc

)

otherwise

(2)

where, α and β are the hyperparameters of the focal loss,

which are set as α = 2 and β = 4 in this paper. Since key points

are very sensitive to position, to obtain more accurate results, an

offset loss Loff is added to correct the position of the key point,

and L1 distance is used as the loss function, i.e.,

Loff =
1

N

N
∑

p

∣

∣

∣
Ôp̃ −

( p

R
− p̃

)
∣

∣

∣
. (3)

For the detection frame size predicted by the width and

height regression network, the L1 distance is also used as the loss

function to regress the width and height of the detection frame,

which is given by:

Lsize =
1

N

N
∑

p

∣

∣

∣
Ŝp − Sp

∣

∣

∣
(4)

where, Sp ∈ R
W
R ×H

R ×2 is the width and height of the

real detection frame. Therefore, the final loss of the model is

the weighted sum of the above three loss functions, which is

given by:

L = Lk + λoff Loff + λsize Lsize (5)

where, λoff and λsize are both the hyperparameters that can

be used to control the weight of the corresponding loss. λoff and

λsize are set to 0.5 in this paper.

Experiment and discussion

Experimental setting

Experimental dataset

To verify the ship detection performance of the proposed

detection strategy, the High-Resolution SAR Images Dataset

(HRSID) (Wei et al., 2020) constructed by the University of

Electronic Science and Technology of China in 2020 is used for

the experimental comparison between the proposed detection

strategy and the traditional detection methods. HRSID borrows

the construction process of the common objects in context

(COCO) dataset (Lin et al., 2014). At an overlap rate of 25%,

136 panoramic SAR images with resolutions ranging from 1

to 5m were cropped into the SAR image of 800 × 800 pixels.

HRSID contains a total of 5,604 ship SAR images of different

resolutions, polarizations, sea areas, and coastal ports and 16,951

ship instances, which includes a training set of 3,642 SAR images

and a test set of 1,962 SAR images.

Experimental procedure

The traditional detection methods for comparison mainly

include two-stage target detection networks based on the

detection frame generation [like the Faster R-CNN (Ren et al.,

2017), Mask R-CNN (He et al., 2017), and CascadeMask R-CNN

(Cai and Vasconcelos, 2021)], the single-stage target detection

network based on detection frame position regression [like

the RetinaNet (Lin et al., 2020)], and the single-stage target

detection network based on the pixel-by-pixel regression of the

detection frame [like the fully convolutional one-stage (FCOS)

(Tian et al., 2019)]. According to the experimental setting in

the literature (Wei et al., 2020), this paper used the residual

network with different layers combined with FPN (ResNet-FPN)

(Lin et al., 2017) as the backbone network of the comparison

Frontiers inComputer Science 08 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1012755
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Xie et al. 10.3389/fcomp.2022.1012755

model; the residual network had 50 layers (ResNet-50) and 101

layers (ResNet-101).

The experimental hardware included a computer with a

CPU of Intel i9-9900X, installed with NVIDIA RTX 2080 Ti

GPU, Ubuntu18.04 operating system, and PyTorch software

framework (Paszke et al., 2019). The compute unified device

architecture (CUDA) 10.1 was used to accelerate all models

in the training and testing phases. Before the training and

testing, the traditional and proposed detection methods used the

random data augmentation operation proposed in this paper,

and the size of the input image was adjusted to 1,000 × 1,000

pixels during training. For the traditional detection method, the

training optimizer used the stochastic gradient descent (SGD)

method, the momentum and learning rates were set to 0.9

and 0.0025, respectively, and the weight decay factor was set

at 0.0001. There was a total of 12 rounds of training. For the

proposed detection method, Adam was used as the optimizer,

the initial learning rate was set to 0.0001, and the ResNet-18

and ResNet-34 were used as the backbone networks to extract

the image features. The rest of the parameters were consistent

with the model in the traditional detection method used for

the comparison.

During the initial training, the models in the traditional and

proposed methods learned with a lower learning rate to prevent

exploding the gradients, and they were subsequently trained

with a normal learning rate. To ensure that the model had good

converges, the learning rate of each method was periodically

decayed using a cosine periodic function. In the test stage, the

threshold of the intersection over union (IoU) used by anchor

frame-based methods (like the RetinaNet, Faster R-CNN, Mask

R-CNN, and Cascade Mask R-CNN) was set to 0.7, and the

anchor-free frame detection algorithm FCOS took a confidence

greater than 0.6 according to the predicted detection frame.

As a prediction result, the model of the proposed detection

method first generated 100 candidate center points for the

area where targets may have been during the test, and then

filtered them according to the confidence of each center point

corresponding to the existence of the target, and removed

the prediction results corresponding to the center point with

a confidence degree lower than 0.5. Finally, it retained the

detection frame corresponding to the final center point with a

higher confidence degree.

Evaluation indicators

In the target detection tasks, to quantitatively and

comprehensively evaluate the performance of the detection

models, the IoU detection precision and recall rate are

commonly used as evaluation indicators. The target detection

task aims to find the target and area of interest, and thus the

overlap rate can be used to measure the correlation between the

predicted result area and the real target area. The higher the

degree of overlap rate, the better the correlation, and the better

the prediction accuracy. The overlap rate can be quantitatively

represented by the IoU of the predicted detection frame (Bfrapd)

and the real detection frame (Bfragt), which can be calculated by

IoUframe =
Bfrapd ∩ Bfragt

Bfrapd ∪ Bfragt
(6)

According to the size of the IoU calculated by the predicted

detection frame and real detection frame, the background and

target can be distinguished, thus the detection precision and

recall rate can be:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

where, TP represents the number of positive samples

that are correctly classified, FP represents the number of

negative samples that are misclassified as positive samples,

and F represents the number of positive samples that are

misclassified as negative samples. According to precision and

recall, the average precision (AP) can be defined. In the Cartesian

coordinate system, if the horizontal coordinate is recall and

the vertical coordinate is precision, the area under the recall-

precision curve is the AP value, which is given by

AP =

∫

P(R)dR (9)

where, P is the precision and R is the recall rate. The

larger the value of the AP indicator, the better the detection

performance of the model.

Most of the existing research uses the AP indicator based

on the Pascal visual object classes (VOC) challenge competition

(Everingham et al., 2014) as the evaluation criterion, which

takes IoU = 0.5 as the threshold. However, it is difficult

for a single indicator to accurately and quantitatively reflect

the detection performance of the model in various scenarios.

In contrast, the COCO dataset adopts a more objective and

comprehensive evaluation indicator, which not only includes

a series of evaluation indicators (AP, AP50, and AP75) with

different IoU thresholds but also considers the multiscale target

detection ability of the model, where the detection results

of large, medium, and small targets are also included in the

evaluation metrics (APl, APm, and APs). Therefore, this paper

adopted the qualitatively higher COCO criteria to evaluate

the performance of the detection models. As defined by the

COCO evaluation criteria, AP is the average precision at 10 IoU

thresholds (0.50:0.05:0.95), and AP75 and AP50 represent the

results at the IoU thresholds at 0.75 and 0.50, respectively. APl,

APm, and APs respectively define the detection results of small,

medium, and large ship targets. Here, the area <32 × 32 pixels

is defined as a small ship target, the area larger than 96 × 96

pixels is defined as a large ship target, and the area between them

(from 32 × 32 pixels to 96 × 96 pixels) is defined as a medium

ship target.
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TABLE 1 Comparison of the data augmentation results.

Data

augmentation

methods

AP AP50 AP75 APs APm APl

Without data

augmentation method

61.2 84.2 69.7 61.1 63.3 16.9

Random scaling method 64.6 87.5 72.5 64.8 66.9 25.3

Random flipping method 62.0 86.2 70.2 63.7 64.8 21.8

Random rotating

method

63.8 86.6 70.4 63.4 64.4 21.5

Proposed method

(combined with four

data augmentation)

65.2 90.1 74.8 67.3 69.6 28.7

Experimental results and analysis

Data augmentation results

As shown in Figure 1, in the proposed data augmentation

method, all the training samples were first randomly scaled in

the range of {800 × 800, 900 × 900, 1,000 × 1,000, and 1,100

× 1,100 pixels} and then flipped horizontally or vertically and

rotated at a small angle within 5Âř. Finally, the transformed

image was filled to keep the size of the input image consistent. In

this way, by increasing the number of model training iterations,

the training samples could be greatly expanded. At the same

time, due to the existence of the last filling layer, the model could

accept input images of any scale for training, which improves

the generalization capability of the model for multiscale

SAR images. To illustrate the effect of the proposed data

augmentation method, this paper conducted the experiments

on the proposed ship detection model using different data

augmentation methods, and then comprehensively used four

augmentation methods for comparison. Since the input image

size in the SAR image dataset may be inconsistent, to ensure the

model can accept the multiscale input, the data augmentation

methods used a padding operation at the end. The data

augmentation results are shown in Table 1, and ResNet-18 was

used as the backbone network. Experimental results with the

best performance are shown in bold in Tables 1–3.

The experimental results show that when the data

augmentation method is not used, the detection accuracy of the

proposed ship detection model is low, and the value of AP is

only 61.2%. The analysis shows that different data augmentation

methods can greatly improve the detection accuracy of the

proposed ship detection model, and the random scaling method

has the most obvious improvement in the model performance.

From the results of the value of APl, APm, and APs, it is found

that the random scaling method significantly improves the

detection accuracy of the model for ships with various scales.

In addition, the random flip and random rotation methods also

TABLE 2 Comparison of the ship detection results.

Models Backbone network AP AP50 AP75 APs APm APl

Faster R-CNN ResNet-50+FPN 63.5 86.7 73.3 64.4 65.1 16.4

ResNet-101+FPN 63.9 86.7 73.6 64.8 66.2 24.2

Mask R-CNN ResNet-50+FPN 65.0 88.0 75.2 66.1 66.1 17.3

ResNet-101+FPN 65.4 88.1 75.7 66.3 68.0 23.2

Cascade Mask

R-CNN

ResNet-50+FPN 66.5 88.5 76.8 66.9 67.4 22.6

ResNet-101+FPN 66.9 88.8 76.9 66.4 69.9 23.9

RetinaNet ResNet-50+FPN 60.0 84.7 67.2 60.9 60.9 26.8

ResNet-101+FPN 59.8 84.8 67.2 67.2 62.7 26.5

FCOS ResNet-50+FPN 65.2 90.8 72.0 66.1 66.6 23.5

ResNet-101+FPN 65.5 90.5 72.8 66.0 67.1 22.8

Proposed

model

ResNet-18 65.2 90.1 74.8 67.3 69.6 28.7

ResNet-34 64.8 90.0 74.8 67.1 68.3 30.0

The bold values indicate the results with the best performance.

improve the model detection effect to varying degrees, and then

the various indicators exceed the model detection effect without

the data augmentation method. As the model is combined

with four data augmentation methods (proposed ship detection

method in this paper), the highest detection accuracy of AP50
can reach 90.1%, which is better than the performance of any

data augmentation method alone, thereby verifying the validity

of the proposed data augmentation method.

Ship detection results

Table 2 shows the ship detection results using different

target detection methods based on deep learning on the HRSID

dataset. In Table 2, it can be seen that the performance of the

model based on ResNet-18 and ResNet-34 in the proposed

target detection method is better than most of the compared

models in the traditional target detection method, reaching a

detection accuracy of 90.1 and 90.0% on the AP50, respectively,

which is only lower than that of the FCOS models with

ResNet-50+FPN and ResNet-101+FPN as backbone networks.

In addition, according to the results of APl and APm, the

model of the proposed target detection method achieved the

best performance with a detection accuracy of 67.3 and 30.0%,

respectively, and is only slightly lower than the best detection

model of the Cascade Mask R-CNN in the results of APs. This

establishes that the model of the proposed target detection

method can effectively extract the center point of the ships,

and the proposed model has a better detection accuracy for

multiscale ships. However, the performance of RetinaNet and

Faster R-CNN is relatively poor, whose value of the AP50 based

on the backbone network of ResNet-50+FPN is only 84.7 and

86.7%, respectively. Compared to the model of other target

detection methods, there is a large gap in detection accuracy,
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TABLE 3 Comparison of the proposed method based on di�erent backbone networks.

Backbone Model parameters Running AP AP50 AP75 APs APm APl

networks (MB) time (s)

ResNet-50 108.4 0.055 58.9 86.4 67.1 61.2 62.3 7.5

ResNet-101 259.1 0.086 50.6 80.2 55.5 52.1 51.4 5.9

MobileNet 29.70 0.022 55.5 83.8 62.8 57.8 62.2 9.8

indicating that these two models are not suitable for ship

detection in SAR images.

In addition, it can be observed that when the IoU threshold

is small (i.e., AP50), the anchor-free frame detection methods

such as FCOS and proposed models have better detection

performance.When the IoU threshold is increased, the detection

indicators are more stringent (i.e., AP75), and anchor frame-

based detection algorithms (the Faster R-CNN and its variants

of the Mask R-CNN and Cascade Mask R-CNN) have better

performance. The reason is that the anchor frame-based

detection algorithm can generate many candidate detection

frames, thus the quality of the detection frame after the non-

maximum suppression processing is higher. While, the anchor-

free frame detection method can directly generate the position

of the detection frame regression, thus the position accuracy

of the detection frame is not as good as the anchor frame-

based algorithm.

Finally, it is found that using a deeper backbone network

does not bring much improvement to all target detection

models, and even leads to a decrease in the detection

performance in some cases. This also explains the difference

between SAR images and optical images, since SAR images

do not contain rich feature information. Using a certain

network depth can fully extract the features of SAR images.

A deeper network will bring negative benefits and reduce the

efficiency of the model operation. Therefore, in SAR image

interpretation, the network structure must be designed more

reasonably to achieve a better trade-off between detection

accuracy and efficiency.

Figure 5 shows the ship detection results of various target

detection methods based on different models in simple far-

sea and near-sea scenes. The green frame represents the real

detection frame of the ships in the dataset, and the red frame

represents the predicted detection frame of the ships using

different methods. In the far-sea scene (the SAR images on the

left in Figure 5), due to the relatively pure background, although

it is interfered with by sea surface clutter, the ships are more

obvious. Therefore, all detection methods can detect the ships

well, and there is basically no missed detection phenomenon. In

the near-sea scene (the SAR images on the right in Figure 5), in

the anchor frame-based detection methods, gradually different

degrees of false alarms of ship detection appeared in the SAR

images, and coastal reefs have been detected as ships. On the

contrary, the anchor-free frame detection methods (the FCOS

method and proposed method in this paper) are not affected by

coastal reefs and can still accurately detect ships without false

alarms.

Figure 6 shows the ship detection results of the target

detection methods based on different models in complex

scenarios, including the coastal and port scenarios. In Figure 6A,

it is seen that the anchor frame-based Faster R-CNN method

is affected by land surface, resulting in poor detection

performance; it not only seriously missed detection (the SAR

image on the left), but also registered false alarms during the

process of small multi-ship detection (the SAR image on the

right). In Figures 6B,C, although the Mask R-CNN and Cascade

Mask R-CNN methods have better detection performance than

that of the Faster R-CNN method, there are fewer missed

detections and more false alarms. In Figure 6D, the detection

performance of the anchor frame-based RetinaNet method is

equally poor with seriously missed detections in complex scenes.

In Figures 6E,F, the anchor-free frame FCOS method and the

proposed detection method in this paper have better detection

performance and fewer false alarms than the anchor-based frame

detection algorithms. Notably, the detection performance of the

proposed detection method in this paper is better than that of

the FCOS method, and more ships could be detected in complex

multi-ship scenes (the SAR image on the right).

The above experimental results show that the anchor

frame-based detection methods are prone to generate many

overlapping detection frames. Although the ships can be

positioned in the SAR image, they are prone to many false

alarms. In contrast, the detection algorithm proposed in this

paper can accurately detect ships in various scenarios, and only

a small number of false alarms andmissed ships occurred, which

demonstrates the superiority of the proposed detection method

for multiscale ship detection in complex SAR images.

Model size and running speed

Figure 7 shows the model size and running speed of the

different detection methods, where the model size is the number

of parameters depending on the training, and the running speed

is the time required to detect the ship in a single SAR image.

For the running speed, two-stage detection methods such as

Faster R-CNN,Mask R-CNN, and CascadeMask R-CNN extract
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FIGURE 5

Ship detection results of the target detection methods based on di�erent models in simple far-sea and near-sea scenarios. The SAR images on

the left are the far-sea scene, and the SAR images on the right are the near-sea scene. (A) Fast R-CNN. (B) Mask-RCNN. (C) Cascade Mask

R-CNN. (D) RetinaNet. (E) FCOS. (F) Proposed model.

the candidate frame from the SAR image, and then make the

secondary correction based on the candidate regions to obtain

the prediction result. Although the detection accuracy is higher,

it takes a longer time. On the other hand, single-stage detection

methods such as RetinaNet and the proposed method directly

calculate the input image to generate detection results, so they

have faster detection speed. The proposed method is a single-

stage detection method based on the key points of the targets,

and it does not require additional post-processing steps to

remove many repeated anchor frames. Therefore, its detection

speed is much higher than that of all comparable detection

methods including RetinaNet, which takes only 0.024 s to detect

ships in a single SAR image.

For the model size, existing detection methods rely on

complex backbone networks to extract the image features and

incorporate the FPN to enhance the images with multiscale

changes for better detection of small ships. However, this

not only involves a great amount of computation but also

greatly increases the number of model parameters. Since the

proposed method uses a more lightweight design, and when

ResNet-18 is used as the backbone network, the model size is

only 36.3MB with a detection time of just 0.024 s. This is an

improvement in detection efficiency and detection accuracy. As

the number of layers in the backbone network is increased,

even when the ResNet-34 is used, the detection accuracy of the

proposed method is slightly improved, but detection efficiency
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FIGURE 6

Ship detection results of the target detection methods based on di�erent models in complex scenarios. The SAR images on the left are scenes

including the coast, and SAR images on the right are scenes including the port. (A) Fast R-CNN. (B) Mask-RCNN. (C) Cascade Mask R-CNN. (D)

RetinaNet. (E) FCOS. (F) Proposed model.

is compromised, and the amount of the model parameters is

increased. Thus, considering the requirements for optimum

performance, it is a better choice to use the ResNet-18 as the

backbone network in the proposed detection method.

Applicability discussion

Comparison of backbone networks

The ResNet is a commonly used backbone network in target

detection task, which can effectively extract the image features

for target detection. Since the SAR images are different from the

optical images with rich feature information, the model of the

proposed detection method is mainly based on the shallower

ResNet-18 and ResNet-34 for experimental comparisons. To

further explore the impact of different backbone networks on the

performance of the proposed detection method, this paper used

the ResNet-50 and ResNet-101 with deeper layers and the more

lightweight MobileNet (Howard et al., 2017) as the backbone

network of the proposed detection method, and then conducted

the experimental comparison on the HRSID dataset.

Table 3 shows the comparison results of the proposed

method using different backbone networks, including model

parameters, running speed, and detection accuracy. From

Table 3, it can be seen that when deeper ResNets (such as

ResNet50 and ResNet-101) are used in the proposed detection

method, the detection performance has a sharp decline, and the

AP is reduced by 6.3% compared to that of ResNet-18. The use
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FIGURE 7

Comparison of di�erent model parameters and running time. (A) Model parameters. (B) Running time.

FIGURE 8

Ship detection results in di�erent scenes based on the SSDD dataset. The green frame is the real detection frame of the ships, and the red frame

is the predicted detection frame of the ships.

of deeper backbone networks significantly affected the detection

performance of the proposed detection method for ships of

various scales, especially for the detection of large-scale ships

(the APl was reduced by 14.6%). Thus, using a deeper network

does not bring any advantage for the extraction of image features

but leads to reduced model performance. In addition, a more

complex network structure will significantly increase the model

parameters and running time. The parameters of the proposed

detection method using ResNet-101 as the backbone network

reach 259.1MB with a running time of 0.086 s, which makes

the proposed detection method in this paper gradually lose its

advantage in model size and running speed.

The MobileNet uses a depth-wise separable convolutional

structure to build a more lightweight deep CNN, which can

reduce the model size and improve the model speed while

maintaining the model performance. From Table 3, it is seen

that using the MobileNet as the backbone network has the

advantage of being lightweight, the size of the model parameters

is only 29.7MB, and the running speed is 0.022 s, which is

more lightweight and faster than the proposed detectionmethod

using the ResNet-18. However, for the detection performance,

the value of the AP of the proposed detection method using

the MobileNet as the backbone network is only 55.5%, and it

is inferior to the results of using the ResNet-18 as the backbone
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network in the various detection indicators. The experimental

results show that although the MobileNet is a lightweight and

efficient CNN, it is not suitable as a backbone network for

extracting the ship features in the SAR images.

From the results presented in Table 3, it is reasonable and

effective to choose ResNet-18 and ResNet-34 as the backbone

network of the proposed detection method, which not only has

good detection performance but also achieves a good balance in

terms of the model size and running speed, which is suitable

for complex scenes that require a lightweight model with

high efficiency.

Generalization capability analysis

In section “Experimental results and analysis”, the HRSID

dataset was used as test SAR images to verify and analyze the

performance of the proposed detection method in this paper for

ship detection using SAR images. Then, in section “Comparison

of backbone networks”, the impact of using different backbone

networks on the performance of the proposed detection model

was analyzed and it was found that using the simpler ResNet-18

and ResNet-34 had the best performance in ship detection in the

SAR images. To further analyze the generalization capability of

the proposed detection method, the SAR Ship Detection Dataset

(SSDD) was additionally selected to test the proposed detection

method. Since the source of the SAR image in the SSDD dataset

was similar to the HRSID dataset, the model of the proposed

detection method that was trained on the HRSID dataset was

directly used to test on the SSDD dataset. The test results are

shown in Figure 8.

From Figure 8, the following conclusions can be obtained.

First, most ships have been detected correctly, and the predicted

detection frames (red) and real detection frames (green) have

a high degree of coincidence in the nearshore and near-sea

scenes, which indicates the reliability and practicability of the

proposed detection method. Second, for the detection scene,

including small-scale ships, the proposed detection method can

accurately detect every ship, confirming that themodel is equally

effective and robust for small-scale ship detection. Finally, for

the complex nearshore scene, especially in the port area where

ships are densely arranged and have a high coincidence and

the interference with the land area has a greater impact, the

proposed detection method can still achieve a good detection

performance. In addition, the phenomenon of missed detection

and false alarm may occur only for individual ships, which

establishes that the proposed detection method has a good

anti-interference performance.

Therefore, the proposed model, trained on the HRSID

dataset, can be directly transferred to the SSDD dataset for ship

detection and does not require additional training on the SSDD

dataset, which demonstrates that the proposed method has good

robustness and generalization in complex SAR images.

Conclusion

This paper proposed a lightweight and anchor-free frame

ship detection strategy using SAR images. It focused on solving

the problem of multiscale ship detection in complex scenes,

thereby improving ship detection precision and efficiency. This

method obtains the size and position of the ship by predicting

the key point information of the target and the attributes of the

detection frame (width, height, center point position, and offset),

abandoning the conventional idea of generating dense anchor

frames. The proposed model, therefore, has the advantages

of being lightweight and having high efficiency. The data

augmentation method was adopted for the first time in ship SAR

images to expand the training samples, and multiscale training

was introduced to enhance the generalization of the model.

The experimental results on the HRSID dataset show that

the proposed detection method has a good detection ability

for small ships and can accurately identify ships of different

scales. In addition, the SSDD dataset was used to test the

proposed detection method, and the experimental results show

the proposed detection model trained based on the HRSID

dataset can be directly transferred to the SSDD dataset without

additional training. Thus it has a good generalization capability

and can detect ships more accurately. The proposed detection

method is a single-stage detection method based on the target

key points and compared to anchor frame-based detection

methods, it is more suitable for ship detection in SAR images

with sparse targets, especially in complex scenes (such as the

coast and port) with good robustness. The proposed detection

method adopts a lightweight structure design and does not

require any post-processing procedures during the detection

process. It, therefore, has the advantages of having a fast

detection speed and fewer model parameters which provide

better detection performance and has an important role in

terminal application scenarios with high real-time requirements.
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