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Fault detection is an essential task for large-scale industrial maintenance. However,

in practical applications, due to the possible harm caused by the collection of fault

data, the fault samples that lead to the labeling are usually very few. Most existing

methods consider training unsupervised models with a large amount of unlabeled

data while ignoring the rich knowledge that existed in a small amount of labeled

data. To make full use of this prior knowledge, this article proposes a reinforcement

learning model, namely, adversarial reinforcement learning in weakly supervised (WS-

ARL), which performs significantly better by jointly learning small labeled anomaly data

and large unlabeled data. We use an agent of the reinforcement learning model as a

fault detector and add a new environment agent as a sample selector, by providing

an opposite reward for two agents, and they learn in an adversarial environment.

The feasibility and e�ectiveness of the model are verified by experimental analysis

and compared the performance of the model with five state-of-the-art weakly/un-

supervised methods in the hydraulic press fault detection task.

KEYWORDS
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1. Introduction

Since Germany took the lead in putting forward the concept of “Industry 4.0,” it marks the

beginning of the transformation of the manufacturing industry to intelligence and information

technology. In recent years, China, the United States, and other countries have also put

forward the concepts of “Made in China 2025” and “Industrial Internet,” which aim to combine

traditional production modes with modern information technology to improve production

efficiency and security. Predictive maintenance (PDM) technology is considered to be one of

the key data-driven analytical applications in large manufacturing industries. With the rapid

growth in the complexity and automation of industrial systems in recent years, unexpected

system failures may bring serious financial impacts, business losses, and fatal workplace injuries

to factories (Xie et al., 2022). PDM applications can anticipate failures well in advance so

that decision-makers can take appropriate actions, such as maintenance, replacement, or even

planned shutdown (Sahal et al., 2020). However, there are some problems with data-driven

applications. In industrial scenarios, there is a large amount of unlabeled data that is easy to

obtain, while the collection of fault data is usually destructive and will cause huge losses. As the

result, very few plants are allowed to run into a failure state and collect samples to train fault

diagnosis systems (Kingma et al., 2014), which leads to target failures with no or fewer data

available and, thus, the domination of unsupervised methods in this field for decades (Maale

et al., 2016). For example, Xu et al. (2018), Su et al. (2019), Choi et al. (2022), and Wang et al.

(2022) use variational autoencoder (VAE) to reconstruct input data and determine anomalies

based on reconstruction probabilities. Geiger et al. (2020) and Kim et al. (2021) designed an

anomaly detector based on a generative adversarial network (GAN).
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Unsupervised learning models assume that all training data are

normal and learn a tight boundary for fault detection (Markus

et al., 2000). However, in practical industrial applications, apart

from a large batch of unlabeled samples, there is often a set of

known classes of fault instances, e.g., a subset verified as normal

or abnormal by some domain experts; the anomaly provides

valuable prior knowledge. Therefore, compared to unsupervised

methods, semi-supervised (Gao et al., 2021; Wu et al., 2021)

learning effectively exploits these labeled anomalies and can

significantly improve detection accuracy. One semi-supervised

approach is to assume that a large amount of unlabeled data

are normal and learn to cluster the normal data together while

pushing the small amount of labeled anomalous data away (Liu

et al., 2012; Li et al., 2020). The other approach is to learn

different patterns for different classes, such as deep probabilistic

generative models (Vinod and Hinton, 2010; Volodymyr et al.,

2015).

Most related studies use a small amount of labeled data to

train detection models, but they only learn about labeled anomalies

without considering anomalous instances that may exist in large

batches of unlabeled data. In fact, in industrial fault detection tasks,

there are often a large number of abnormal instances in unlabeled

data. Effective use of this knowledge can significantly improve the

model’s understanding of abnormal types and conditions.

Therefore, for the problem of industrial fault detection, how to

make full use of labeled data while exploring unlabeled data has

become a current research hotspot. Pang et al. (2020) propose to

use of a reinforcement learning model to learn labeled data and

unlabeled data simultaneously. However, Euclidean distance in high

dimensions will reduce the reliability of the algorithm, which further

influences the selection of observation samples. Inspired by Pang

et al. (2020), this article proposes a model, namely, adversarial

reinforcement learning in weakly supervised (WS-ARL), and we

design an additional agent, by constantly trying to reduce the reward

of the detection agent while actively exploring anomalies in unlabeled

data, forcing the detection agent to focus on learning the most

difficult possible fault samples. Our main contributions are given

as follows:

• We design two agents, namely, a detection agent and an

environmental agent, which implement fault detection and

data sampling under adversarial conditions, respectively. In

addition to the regular main detection agent responsible for

outputting detection results, the environment agent is used as

the selector for the next observation sample. The model will

reward the detection agent based on the recognition results and

give the environment agent the exact opposite reward. To the

best of our knowledge, this is the first time that adversarial

reinforcement learning has been applied to weakly supervised

industrial fault detection.

• By combining sample generation techniques and unsupervised

algorithms, a unique reward function is designed. According

to the behavior of the detection agent, the standard −1/1

reward is generated as a supervised reward in the oversampled

labeled anomaly instance set. In the unlabeled instance set, an

anomaly score is generated as an unsupervised reward. The

simulated environment is randomly sampled in both, enabling

joint learning of a small batch of labeled data and a large batch

of unlabeled data.

• We construct a model, namely, adversarial reinforcement

learning in weakly supervised (WS-ARL), and evaluate it in the

hydraulic press fault detection task. By setting different known

fault types and fault contamination rates, the result shows that

compared with other models, the area under precision-recall

curve (AUC-PR) improvement of about 1–5% is obtained.

2. Related studies

2.1. Anomaly detection

Anomaly detection (fault detection in this article) is an active

topic in various fields. The problem we study is the fault detection of

industrial equipment based on time series, such as engines (Malhotra

et al., 2016) and hydraulic system (Helwig et al., 2015). By monitoring

multiple time series (such as telemetry data and sensor data), the

device can detect abnormal conditions. However, analyzing a single

time series separately has many problems. First, it is labor-intensive

to train andmaintain an individual anomaly detectionmodel for each

metric; second, operation engineers are more concerned about the

overall status of an entity than each constituent metric (Ya et al.,

2019). Thus, in this article, we combine multiple univariate time

series into multivariate time series to analyze the overall anomaly

of equipment data. Figure 1 shows a multivariable time series with

a valve fault in the hydraulic machine dataset.

In recent years, the most related studies of anomaly detection

methods include weakly supervised and supervised learning.

Supervised learning methods (Heras and Donati, 2014; Park et al.,

2017) require labeled data to train the model and cannot identify

unknown anomaly categories. In fact, in anomaly detection tasks

in many fields, abnormal samples are often difficult to observe and

record, which leads to the need for unsupervised methods for most

tasks. Su et al. (2019) proposed an encoder–decoder model that uses

a gated recurrent unit (GRU) to capture sequence information and

identify anomalies according to reconstruction probability. Zenati

et al. (2018) used two networks for adversarial learning to learn

the potential space of data and calculated reconstruction errors.

The abovementioned studies separate representation learning from

anomaly detection methods, leading to suboptimal or unstable

detection performance (Pang et al., 2019). At the same time, the

unsupervised method does not consider the existence of a small

amount of labeled data, which prevents the further improvement of

the accuracy of the model.

Considering the inadequacy of the unsupervised approach, the

latest research focuses on anomaly detection based on weakly

supervised and the detection accuracy can be further improved

by a few labeled anomalies. Willetts et al. (2020) combined a

clustering algorithm and generation model to detect anomalies;

Kingma et al. (2014) applied variational inference to the problem

of weakly supervised classification and recovered original data

from low-dimensional space with partial label information. Ruff

et al. (2019) aimed to find a compact hypersphere in the latent

space that represents normal samples and places abnormal samples

in distance. Compared with unsupervised methods, these semi-

supervised methods take full advantage of prior knowledge of small

amounts of labeled data and, thus, have the potential to achieve higher

performance gain.
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FIGURE 1

Time-series metrics of four temperature sensors (TSs) and one pressure sensor (VS) in 15 s, with one fault region highlighted in red (Helwig et al., 2015).

At present, deep reinforcement learning (DRL) has demonstrated

human-level capability in several tasks. A related application to

anomaly detection, recently investigated by Guillermo et al. (2019),

incorporates the environment’s behavior into the learning process

for intrusion detection. Our study is completely different from

that of Guillermo et al. (2019). (a) They used DRL to achieve

unevenly distributed supervised learning vs. we implement semi-

supervised learning of a small number of labels. (b) They used

a simple 1/0 reward function for evaluation, whereas we use two

custom reward functions applied to different agents. Another related

study by Pang et al. (2018) leverages a few labeled anomalies to

learn more application-relevant feature representations. Different

from using only one agent (Pang et al., 2018) to achieve sample

selection and anomaly detection, we use two agents to complete

these tasks separately. (a) We design the new rewards function for

the two agents, and let them conduct adversarial learning. (b) We

use the environment agent for sample selection and prove that the

Euclidean distance in low dimension can better measure the distance

between samples.

2.2. Reinforcement learning

As a machine learning method, reinforcement learning has the

ability to learn and develop autonomously through trial and error

in a dynamic environment (Sutton and Barto, 1998). Through

the interaction of the agent with the environment, reinforcement

learning models do not require any supervised process during

training (Guillermo et al., 2019). Research in the field of intrusion

detection has proven that reinforcement learning is a better choice

than supervised and unsupervised learning when the dataset is

large enough.

2.2.1. Brief introduction to reinforcement learning
Reinforcement learning (Sutton and Barto, 1998) is one of the

machine learning methods including agents, actions, environments,

and rewards. Starting at time t, the agent performs an action atin

the environment, and the environment generates a reward rt for it,

which is represented as a state St , and the model learns, recursively,

by feeding this state back to the agent.

The goal of reinforcement learning is to find a policy π that

maximizes the reward as Equation (1).

Rt =

∞
∑

k=0

γk τt + κ (1)

Where Rt represents the sum of accumulated rewards obtained by

the agent from time t to any time step afterward; γ ∈ (0, 1]represents

the discount factor; τt+κ represents the reward obtained at each time

step after time t. Reinforcement learning defines the value function

to calculate the expected value of the cumulative return at each step
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state St , that is, it is used to measure the pros and cons of the state

St under the influence of the agent. The value function is shown in

Equation (2):

Vπ (s) = E (Rt|St = s) (2)

The value function depends on the agent’s policy π . Among all

possible functions, there exists an optimal value function with the

highest value as Equations (3), (4):

V∗(s) = maxπ Vπ (s) (3)

π∗ = argmaxπ Vπ (s) (4)

Where π∗is the optimal policy function that maximizes the

achievable action value of the state s. For convenience, reinforcement

learning builds a function called Q function, which takes a state

and action pair as input, and outputs a reward value. Therefore,π∗

become as Equation (5).

π∗ = argmaxa Q
∗ (s, a) (5)

Where Q∗ represents the Q optimal value that can be obtained.

2.2.2. Deep Q-learning algorithm
Q-learning is a value function-based algorithm proposed by

Watkins in 1989 which could obtain the expectation of the benefit

by the Q function when an action is performed in a state (Valenzuela

et al., 2013). The Q-learning provides a learning rate for the agent to

learn and update a new Q value iteratively, as shown in Equation (6):

Qnew (St , at) ←,

(1− α)Q (St , at)+ α(rt + γ maxa Q (St+1, at+1)) (6)

In the process of continuous state Sttransition, the Qvalue is

constantly updated. In Equation (6), α ∈ (0, 1) represents the

learning rate, and a higher learning rate could speed up the learning

process but may also loss of more information.

Deep Q-Learning (DQN) combines neural networks and Q-

Learning, which fills the gap of Q-Learning in complex problems such

as infinite state spaces. DQN approximates the optimal Qfunction

through a deep neural network, as shown in Equation (7):

Q (S, a; θ) = Q∗ (S, a) (7)

Through iterative training, the following losses are minimized to

learn parameters θ :

Lj (θj),= E(S, a, r, S′ )˜U(ε)

[(r + γ maxa Q (S
′
, a
′
; θ−j )− Q (S, a; θj))]

(8)

Where ε is the set of the learning experience of the agent, each

element is stored as et = (St , at , rt; St+1), and the model will use

the small batch samples randomly selected from the experience set to

calculate the loss; θjis the parameter of theQ network in the j iteration

process; target network is the one with the parameter θ−j which is

responsible for calculating the target value in each round and updates

θ−j by θjin each Kstep.

DQN can learn strategies from large amounts of high-

dimensional original data with better accuracy and stability by

combining the powerful presentation ability of deep learning with the

powerful decision-making ability of reinforcement learning. Thus,

in this article, we use an adapted version of DQN to implement a

detection agent and an environment agent, respectively. Through

parallel training in the adversarial environment, we intelligently select

training samples and focus on exploring abnormal samples.

3. Methodology

The difficulty in industrial fault detection is mostly all about

data. First, manual labeling of data is an impossible task for a

large amount of industrial sensor data that are constantly updated.

Although unsupervised learning can classify data through easily

accessible unlabeled datasets, its performance is usually not as

good as supervised classifiers (Ma and Shi, 2020). Second, due to

the requirement for high security and high stability in industrial

production, the acquisition of anomalies is often expensive and rare.

In the dataset of this article, anomaly instances only account for 2% of

all instances. For such unbalanced unlabeled datasets, the model we

obtained can easily obtain high overall detection accuracy, that is, the

model over-focuses on normal instances and even misjudges a few

abnormal instances; it will not affect the overall evaluation. However,

in industrial fault detection, such false positives are unacceptable.

To address the above challenges, we propose an industrial fault

detection model based on WS-ARL, as shown in Figure 2.

The input data include unlabeled data (Da) and labeled data

(Da). The model contains the following two agents: a detection agent

and an environment agent. The unlabeled data and labeled data are

randomly sampled with 7:3. For labeled data, after oversampling

through the Smote algorithm (Chawla et al., 2002), it is directly

passed to the detection agent for identification; for unlabeled data,

it should be ensured that when the detection agent learns, it focuses

more on the possible fault samples, rather than on identifying normal

samples. Therefore, we design a distance-based function (dis, refer to

Formula 9), which autonomously provides the detection agent with

samples approaching anomalies based on the current observations

and recognition results. The proposed two agents work in an

adversarial model that gives an opposite reward to the environment

agent based on the reward provided to the detection agent. Our

ultimate goal is to make the detector strengthen the learning of

the minority class of anomalies. The specific training process of the

model is as follows:

(1) Randomly extract samples from the training set as input, the

detection agent will select the optimal action (representing

normal and abnormal, respectively) {a0, a1}, and obtain the

corresponding reward, while the environment agent will obtain

the opposite reward.

(2) Randomly enter Da and Du and select the next observation

sample. If it enters Da, the next observation is randomly selected

from it; if it enters Du, the next observation that tends to be

abnormal is selected according to the input observation and the

identification result.

(3) According to the obtained reward value and the inferred next

observation, the policy functions of the detection agent and the

environment agent are updated according to the DQN update

rule as described in Section 2 (Mnih et al., 2013).
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FIGURE 2

Architecture of the WS-ARL model. (A) The detection agent provides the detection results of the sample. (B) The environment agent selects the next

observation sample. (C) The policy functions of the two agents will be updated based on the DQN (Deep Q-learning) update rules.

FIGURE 3

The structure of fault detection, including the detection agent and environment agent.

We hope to learn the optimal action-value

function and achieve fault detection by the DQN

network. Considering the scarcity of abnormal

data, we design dual agents to sample and identify

data, respectively.

3.1. Dual-agent detection model

The detection agent, as the detector of the model, is implemented

by a simple network with one hidden layer. For each given

observation sample St , the proposed model could select an optimal
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action from two possible actions{a0, a1}. Figure 3 shows the structure

of fault detection based on reinforcement learning.

We design an environment agent to select the next round

of observation samples, instead of the random sampling from

observation by the environment in original reinforcement learning.

Both the environment agent and the detection agent are based on

DQN and trained in parallel. When the detection agent gives an

action (output), the environment agent combines the observation

samples about the current round and autonomously selects the next

round of observation samples. Therefore, the two agents act as

detector and sample selectors and get diametrically opposite rewards,

which forces the detector to focus on difficult samples (samples

that get less reward). We aim to provide the detector with samples

that are close to anomalies as much as possible, refer to the sample

selection method in DPLAN (Pang et al., 2020), and apply it to the

environment agent. It uses the distance between samples to select

the next sample to observe the distance metric functiondis shown in

Equation (9).

dis (St+1 | St , at , c; θ
env)

=



























random (Da) c = 0

arg min d (St , S; θ
env) c = 1 and at = a1

S ∈ Du

argmax d (St , S; θ
env) c = 1 and at = a0

S ∈ D

(9)

Where θ env represents the feature vector obtained by the output

of the environment agent in DQN; Sis a subset of Du, when the

amount of Du is small, it can also be set S = Du; St and St+1 are

the samples of the current round and the next round of samples,

respectively; c ∈ {0, 1} represents that the model is randomly

sampling from DaorDu. In order to encourage the model to fully

explore large batches of unlabeled data, we set cto 0 or 1 in a 3:7 ratio;

d (St , S; θ
env) returns the Euclidean distance between each instance

in S and St .

After each round of actions given by the detector, if the model

enters the dataset Da, a sample is randomly selected from it; if

the model enters the dataset Du, calculate the distance between

the current sample and other samples according to the following

principles: If the detector determines that the current sample is

abnormal, it returns the sample closest to it; otherwise, it returns

the sample that is farthest away from it. To measure the similarity

between unlabeled vectors, the method can be based on Euclidean

distance or cosine similarity. Here, we consider that the Euclidean

distance is difficult to reflect the inherent similarity between samples

in high dimensions (Tenenbaum et al., 2000). In order to correctly

represent the distance relationship between each vector and compare

two similarity measures, we design the network of the environment

agent, as shown in Figure 4.

The environment agent is a neural network with three hidden

layers. After combining with the literature (Huang et al., 2020) and

the experiment in Section 4.3.3, it is shown that Euclidean distance

in low dimensions can better demonstrate the similarity between

vectors and provide possible fault samples for the detection agent

more effectively; we finally choose to output a vector with dimension

3 as the benchmark for Euclidean distance calculation. Therefore, no

matter what action the detection agent takes, the environment will

FIGURE 4

The structure of the environment agent consists of three hidden layers.

eventually provide samples that are potentially closest to fault for the

next round of observations by the detection agent.

3.2. Reward function

The reward functions are designed for two agents, which produce

opposite reward values. The environment agent actively tries to

reduce the reward received by the detection agent and force it to learn

the most difficult samples by increasing the detector’s misprediction.

Through this adversarial learning mode, the detector performance is

further improved.

3.2.1. Detection agent reward
DPLAN (Pang et al., 2020) designed a joint reward mechanism,

which enables their agent can obtain rewards from the two datasets

{Da, Du}, respectively. Inspired by this mode, we design new rewards

for our detection agent and environment agent. The reward function

is defined as Equation (10):

rdt =



















1 (c = 0 and at = a1)

−1 , (c = 0 and at = a0)

−1+ iForest (St; θ
det) (c = 1 and at = a1)

0 (c = 1 and at = a0)

(10)

Where rdt represents the reward of the detection agent at time t; at
represents the action of the detection agent at time t; θdet represents

the hidden layer output of the detector agent, we set θdet as the

input of the unsupervised algorithm to ensure that the unsupervised

detector always works at low-dimensional space.

In particular, in order to quantify the anomaly level of anomalous

instances when the detector identifies unlabeled data, we introduce

an efficient unsupervised anomaly detection algorithm—a weakly

supervised improvement of iForest (Liu et al., 2012) as an anomaly

detector. Barbariol and Susto (2021) found that the optimal detection

effect of iForest can often be achieved when there are <100 iTrees

(isolation Tree). Through weakly supervised, it can be achieved

optimization for the number of iTrees. Therefore, in the case

of a small amount of labeled data, we introduce TiWS-iForest
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FIGURE 5

(A, B) Hydraulic systems.

TABLE 1 Data statistics information.

Fault description Number of
features

Number of
training
samples

Hydraulic
test bench
state

Proportion

Cooler degradation 756 598 Total efficiency 98%

Low efficiency 1%

Near failure 1%

Valve switch degradation 399 937 Best switch 97.9%

Small lag 0.7%

Serious lag 0.7%

Near failure 0.7%

Internal pump leakage 552 1,013 No leakage 98%

Weak leakage 1%

Serious leakage 1%

Accumulator leakage 618 485 Optimal pressure 97.9%

Slightly reduced pressure 0.7%

Severely reduced pressure close to total failure 0.7%

0.7%

The samples of each state accounted for the proportion of all training samples.

(Barbariol and Susto, 2021) as an anomaly detector, and it is

fewer iTrees means higher generation efficiency and computational

efficiency. By synthesizing the output results of all iTree pairs of

samples, the model mapped these results to [0, 1] as an anomaly

score, and the larger it is, the more abnormal it is.

Therefore, our detection agent will only get a positive reward

when it correctly identifies an abnormal sample in Da and will be

penalized when it is considered to be a normal sample (false negative).

We default Du to a normal sample when the agent considers it

abnormal (false positive), and a penalty will be given according to the

abnormal degree of the sample (the more abnormal, the less penalty);

otherwise, no reward will be given.

3.2.2. Environment agent rewards
The environment agent will actively try to increase the

detection difficulty of the detector by a reward function opposite

to the detection agent. The reward function is defined in the
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following equation:

ret =











0 (c = 0)

−rdt (c = 0 and at = a1)

−1 (c = 0 and at = a0)

(11)

Where ret represents the reward of the environment agent at time

t, and at represents the action of the detection agent at time t.

When sampling from Da, no reward is provided for the agent;

when sampling from Du and the detector identifies as normal, a

penalty is given; when sampling from Du and the detector identifies

as abnormal, the environment agent will be provided with the

opposite reward according to the reward value of the detection

agent. In other words, through adversarial training, the observations

selected by the training environment agent are more biased toward

instances that are difficult for the detector to distinguish. Experiments

show that the approach will help improve the final performance of

the detector.

4. Experiments

To verify the effectiveness of the proposed method, we designed

a series of experiments about fault detection on the multi-sensor data

by a hydraulic test bench (Helwig et al., 2015).

4.1. Experimental platform

The experimental platform is a hydraulic system, as shown in

Figure 5, which consists of a main operating loop (Figure 5A)

and a secondary cooling filter loop (Figure 5B) connected

by the tank. The machine runs in a fixed working cycle

and could simulate specified faults of varying severity. We

detect four different types of system faults which are cooler

degradation, valve switch degradation, internal pump leakage, and

accumulator leakage.

The hydraulic system collects monitoring data from 15 sets

of sensors in 2,205 s, including 6 sets of pressure sensors (PS1–

PS6), 2 sets of flow sensors (FS1 and FS2), 5 sets of temperature

sensors (TS1–TS5), electric power sensor (EPS1), and vibration

sensor (VS1), and the sampling frequency is between 1 and

100 Hz.

4.2. Data sample processing

For high-frequency hydraulic press sampling data, we use the

signal shape (linear fitting slope), distribution density features

(median, variance, skewness, and kurtosis), and Ricker wavelet

feature functions to achieve feature extraction. After feature

dimension reduction based on principal component analysis (PCA),

the original input data are obtained. We construct datasets

for 4 four failures, as shown in Table 1, where each dataset

contains one normal class and two to three abnormal classes.

Considering that only a few labeled anomalies are available

in industrial applications (Gao et al., 2021), the number of

labeled anomalies is fixed at 2 in each dataset, accounting for

0.2%−0.33% of the training data. It is guaranteed that in the
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FIGURE 6

(A) The result of cooler degradation. (B) The result of valve

degradation. (C) The result of internal pump leakage. (D) The result of

accumulator leakage.

training set and test set, the abnormal pollution rate is fixed at 2

and 5%.

FIGURE 7

(A) The number of fault samples selected according to Euclidean

distance in di�erent dimensions. (B) The number of fault samples

selected according to cosine similarity in di�erent dimensions.

TABLE 3 Ablation experiments on four datasets.

AUC-PR AUC-ROC

Dataset WS-ARL w/o AL WS-ARL w/o AL

Cooler degradation 0.787 0.752 0.977 0.930

Valve degradation 0.744 0.701 0.921 0.869

Internal pump leakage 0.530 0.483 0.771 0.736

Accumulator leakage 0.676 0.628 0.809 0.792

Bold means the best result in all methods.

We implement the proposed model on the PyTorch framework

and train the network on Ubuntu with AMD Ryzen 5 3600

6-Core (16G) and an NVIDIA Geforce GTX 1650. We use

the area under the receiver operating characteristic curve

(AUC-ROC) and AUC-PR to evaluate the performance of the

model. AUC-ROC evaluates the performance of the model

on positive and negative samples; AUC-PR only focuses on

the recognition ability of the model to positive samples,
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which is more suitable for identifying anomalous classes

than AUC-ROC.

4.3. Results and analysis

As described in Section 3.1, a small number of anomalous

labeled samples and a large number of unlabeled samples are

selected to train and test the model. This section compares and

analyzes the performance of the proposed model and other

benchmark models on the four datasets of “cooler degradation,”

“valve switch degradation,” “internal pump leakage,” and

“accumulator leakage.”

4.3.1. Results on the test set
We compare the model in this article with a variety of anomaly

detection methods, which are divided into two categories according

to the implementation method, namely, the unsupervised model

[iForest (Liu et al., 2012) and VAE (An and Cho, 2015)] and semi-

supervised models [DevNet (Gan et al., 2015), DPLAN (Pang et al.,

2020), and Deep SAD (Ruff et al., 2019)]. Besides, the reliability and

rigor of the experimental results are ensured by comparing themwith

the benchmark model on the hydraulic press dataset.

Table 2 shows the results of multiple semi-supervised and

unsupervised methods on the four datasets, which are “cooler

degradation,” “valve degradation,” “internal pump leakage,” and

“accumulator leakage.” From the previously mentioned table, it can

be concluded that:

(1) Comparing two unsupervised methods, iForest has achieved

better results among the two indexes of the three datasets, and

the effect of fault detection of “valve degradation” is close to VAE.

It should also be pointed out that VAE runs 5–11 times longer

than iForest among the four fault detection tasks. This is mainly

due to iForest having low memory requirements and linear

time complexity, which makes it less competitively expensive

than other unsupervised algorithms. Therefore, considering

the overall operation efficiency and detection accuracy of the

model, iForest is more suitable as a quantitative algorithm for

anomaly level.

(2) Comparing the unsupervised method, the proposed method,

DevNet, DPLAN, and Deep SAD perform better on the AUC-

PR indicator. This is due to these methods not only help model

training through unlabeled data but also learn a few labeled

anomalies to improve detection accuracy.

(3) TheWS-ARLmodel proposed in this article has achieved the best

results in the AUC-PR and AUC-ROC of four datasets. This is

mainly because both Deep SAD and DevNet regard unlabeled

data as normal data, which can generate corresponding spherical

regions and determine the distribution of abnormal scores. These

methods only use labeled data for result optimization. WS-ARL

not only learns to label anomalies but also efficiently explores

possible faults in unlabeled data. This allows it to gain more

knowledge than either of these methods. Compared to DPLAN,

WS-ARL consistently provides the detector with a more efficient

learning sample by adversarial learning, which makes WS-ARL’s

performance over multiple datasets more stable.

4.3.2. Comparison of detection results with
di�erent numbers of supervised instances

To further study the detection effect in scenarios with more

known faults, on the basis that each dataset contains two

labeled anomalies, we increase the known fault category and

the number of faults. For “cooler degradation” and “internal

pump leakage” with two fault categories, we add labeled data

of two new fault categories in turn; for “valve degradation”

and “accumulator leakage” with three fault categories, we add

labeled data of three new fault categories in turn. Each time

thereafter, we add a fault instance for each category. The AUC-

PR changes with the number of known anomalies, as shown in

Figure 6.

In Figures 6A, C, we add two samples of new categories for the

first time (the number of faults goes from 2 to 4), and then add one

sample at a time for each category (the number of faults goes from 4

to 14). In Figures 6B, D, we add two samples of new categories for the

first two times (the number of faults goes from 2 to 6), and then add

one sample at a time for each category (the number of faults goes from

6 to 18). The increase in the known anomaly category and the number

of anomalies can provide more additional supervision information. It

can also be concluded from the previously mentioned figure:

(1) Although the proposed WS-ARL is not optimal in some initial

stages of the “valve degradation,” “internal pump leakage,”

and “accumulator leakage,” the performance has been rapidly

improved as the number increases. This may be due to the fact

that the initial stage is to increase the category of an anomaly;

more noises lead to the unstable performance of each model.

However, WS-ARL still achieved an improvement rate of 26, 30,

77, and 33% after gaining more prior knowledge.

(2) The final detection of the proposed model is optimal in four

datasets. Compared with other models, the proposed model

obtained about a 1–5% improvement in the AUC-PR.

4.3.3. Comparison of the fault sample observed
under di�erent similarity measures

In the article, a special dist formula (refer to Formula 9) is used

to select observation samples for the detection agent. Especially, in

the unsupervised environment, it relies on a similarity measurement

algorithm to ensure that agents focus on fault samples, that is,

provide more fault samples for agents to learn. Therefore, we

studied the sampling rates of fault samples by different similarity

measurement algorithms under different conditions. The results

are given in Figure 7, which shows the number of fault samples

obtained by the environment agent using two efficient similarity

measurement algorithms under different output dimensions

during training.

In Figures 7A, B, we use Euclidean distance and cosine similarity

to select samples when the output dimensions are 2, 3, and 4 where

the horizontal axis is the training batch, and the vertical axis is the

number of fault samples collected. It can also be concluded from the

previously mentioned figure:

(1) In this dataset, the result of cosine similarity is not as stable as

Euclidean distance, especially when the dimension is 3 or 4, it

cannot provide stable fault sample output. This may be due to

the fact that numerical value is an important criterion for fault

analysis, and the cosine similarity is not sensitive to the absolute

value of the specific value.

Frontiers inComputer Science 10 frontiersin.org

https://doi.org/10.3389/fcomp.2022.1007665
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org


Junhuai et al. 10.3389/fcomp.2022.1007665

(2) Euclidean distance shows excellent sample selection

performance when the dimension is 2 or 3, especially when the

dimension is 3, the highest number of fault sample selections is

obtained, which is consistent with the study by Tenenbaum et al.

(2000). Meanwhile, it should be noted that with the increase

of dimension, the sample selection performance of Euclidean

distance is gradually unstable, which will directly affect the

learning effect of the detection agent.

4.3.4. Ablation experiment
To verify the rationality and effectiveness of the module in WS-

ARL, we remove the adversarial learning module of WS-ARL and

leave the other modules unchanged (e.g., reward function rdt , distance

metric function dis), that is to say, the detection agent is used for both

fault detection and sample selection. Experiments are conducted on

originalWS-ARL andWS-ARL without adversarial learning (Table 3,

which is referred to as w/o AL).

In Table 3, we can see that WS-ARL is better than WS-ARL

without adversarial learning. This result is consistent with our

former analysis since adversarial learning can provide more effective

observation samples for the detector, which enables WS-ARL to have

a more stable detection performance across multiple datasets.

5. Discussion and conclusion

To address the problem of effective utilization of a small

number of labeled anomalies in industrial fault detection, we propose

a fault detection framework based on adversarial reinforcement

learning. The main idea is to train anomaly detection agents with

unlabeled rewards by abnormal data in large batches of unlabeled

data discovered by the iForest and labeled rewards by a small

batch of labeled abnormal data. At the same time, an environment

agent is introduced to guide the collection process of observation

samples, which significantly improves the ability of the model to

acquire abnormal knowledge and achieve better performance on

fault detection.

In the future, we will consider improving the way in which the

model obtains the unlabeled abnormal rewards to achieve better

detection accuracy.
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