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Adaptation is a key mechanism in human–human interaction. In our work, we aim at
endowing embodied conversational agents with the ability to adapt their behavior when
interacting with a human interlocutor. With the goal to better understand what the main
challenges concerning adaptive agents are, we investigated the effects on the user’s
experience of three adaptation models for a virtual agent. The adaptation mechanisms
performed by the agent take into account the user’s reaction and learn how to adapt on the
fly during the interaction. The agent’s adaptation is realized at several levels (i.e., at the
behavioral, conversational, and signal levels) and focuses on improving the user’s
experience along different dimensions (i.e., the user’s impressions and engagement). In
our first two studies, we aim to learn the agent’s multimodal behaviors and conversational
strategies to dynamically optimize the user’s engagement and impressions of the agent, by
taking them as input during the learning process. In our third study, our model takes both
the user’s and the agent’s past behavior as input and predicts the agent’s next behavior.
Our adaptation models have been evaluated through experimental studies sharing the
same interacting scenario, with the agent playing the role of a virtual museum guide. These
studies showed the impact of the adaptation mechanisms on the user’s experience of the
interaction and their perception of the agent. Interacting with an adaptive agent vs. a
nonadaptive agent tended to bemore positively perceived. Finally, the effects of people’s a
priori about virtual agents found in our studies highlight the importance of taking into
account the user’s expectancies in human–agent interaction.

Keywords: human–agent interaction, adaptation mechanisms, engagement, impressions, embodied conversational
agent (ECA)

1 INTRODUCTION

During an interaction, we communicate through multiple behaviors. Not only speech but also our
facial expressions, gestures, gaze direction, body orientation, etc. participate in the message being
communicated (Argyle, 1972). Both interactants are active participants in an interaction and adapt
their behaviors to each other. This adaptation arises on several levels: we align ourselves linguistically
(vocabulary, syntax, and level of formality), but we also adapt our nonverbal behaviors (e.g., we
respond to the smile of our interlocutor, and we imitate their posture and their gestural
expressiveness), our conversational strategies (e.g., to be perceived as warmer or more
competent), etc. (Burgoon et al., 2007). This multilevel adaptation can have several functions,
such as reinforcing engagement in the interaction, emphasizing our relationship with others,
showing empathy, and managing the impressions we give to others (Lakin and Chartrand, 2003;
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Gueguen et al., 2009; Fischer-Lokou et al., 2011). The choice of
verbal and nonverbal behaviors and their temporal realization are
markers of adaptation.

Embodied conversational agents (ECAs) are virtual entities
with a humanlike appearance that are endowed with
communicative and emotional capabilities (Cassell et al.,
2000). They can display a wide range of multimodal
expressions to be active participants in the interaction with
their human interlocutors. They have been deployed in various
human–machine interactions where they can act as a tutor (Mills
et al., 2019), health support (Lisetti et al., 2013; Rizzo et al., 2016;
Zhang et al., 2017), a companion (Sidner et al., 2018), a museum
guide (Kopp et al., 2005; Swartout et al., 2010), etc. Studies have
reported that ECAs are able to take into account their human
interlocutors and show empathy (Paiva et al., 2017), display
backchannels (Bevacqua et al., 2008), and build rapport
(Huang et al., 2011; Zhao et al., 2016). Given its relevance in
human–human interaction, adaptation could be exploited to
improve natural interactions with ECAs. It thus seems
important to investigate whether an agent adapting to the
user’s behaviors could provoke similar positive outcomes in
the interaction.

The majority of works in this context developed models learnt
from existing databases of human–human interaction and did not
consider the dynamics of adaptation mechanisms during an
interaction. We are interested in developing an ECA that
exploits how the interaction is currently going and is able to
learn in real time what the best adaption mechanism for the
interaction is.

In this article, we report three studies where an ECA adapts its
behaviors by taking into account the user’s reaction and by
learning how to adapt on the fly during the interaction.

The goal of the different studies is to answer two broad
research questions:

“Does adapting an ECA’s behavior enhance user’s
experience during interaction?”

“How does an ECA which adapts its behavior in real-
time influence the user’s perception of the agent?”

A user’s experience can involve many factors and can be
measured by different dimensions, such as the user’s
engagement and the user’s impressions about the ECA
(Burgoon et al., 2007). In our three studies that we report in
this article, we implemented three independent models where the
agent’s adaptation is realized at several levels and focuses on
improving the user’s experience along different dimensions as
follows:

1) the agent’s adaptation at a behavioral level: the ECA adapts its
behaviors (e.g., gestures, arm rest poses, and smiles) in order to
maximize the user’s impressions about the agent’s warmth or
competence, the two fundamental dimensions of social cognition
(Fiske et al., 2007). This model is described in Section 7;

2) the agent’s adaptation at a conversational level: the ECA
adapts its communicative strategies to elicit different levels

of warmth and competence, in order to maximize the user’s
engagement. This model is described in Section 8; and

3) the agent’s adaptation at a signal level: the ECA adapts its head
and eye rotation and lip corner movement in function of the
user’s signals in order to maximize the user’s engagement.
This model is described in Section 9.

Each adaptation mechanism has been implemented in the
same architecture that allows an ECA to adapt to the nonverbal
behaviors of the user during the interaction. This architecture
includes a multimodal analysis of the user’s behavior using the
Eyesweb platform (Camurri et al., 2004), a dialogue manager
(Flipper (van Waterschoot et al., 2018)), and the ECA GRETA
(Pecune et al., 2014). The architecture has been adapted to each
model and evaluated through experimental studies. The ECA
played the role of a virtual guide at the Science Museum of Paris.
The scenario used in all the evaluation studies is described in
Section 6.

Even though these three models have been implemented in the
same architecture and tested on the same scenario, they have not
been developed in order to do comparative studies. The main goal
of this paper is to frame them in the same theoretical framework
(see Section 2) and have insights into each of these different
adaptation mechanisms to better understand what the main
challenges concerning these models are and to suggest further
improvements for an adaptation system working on multiple
levels.

This article is organized as follows: in Section 2, we review the
main theories about adaptation which our work relies on, in
particular Burgoon and others’ work; in Section 3, we present an
overview of existing models that focus on adapting the ECA’s
behavior according to the user’s behavior; in Section 4, we specify
the dimensions we focused on in our adaptation models; in
Section 5, we present the general architecture we conceived to
endow our ECA with the capability of adapting its behavior to the
user’s reactions in real time; in Section 6, we describe the scenario
we conceived to test the different adaptation models; in Sections
7–9, we report the implementation and evaluation of each of the
three models. More details about them can be found in our
previous articles (Biancardi et al., 2019b; Biancardi et al., 2019a;
Dermouche and Pelachaud, 2019). We finally discuss the results
of our work and possible improvements in Sections 10, 11,
respectively.

2 BACKGROUND

Adaptation is an essential feature of interpersonal relationships
(Cappella, 1991). During an effective communication, people
adapt their interaction patterns to one another’s (e.g., dancers
synchronize their movements and people adapt their
conversational style in a conversation). These patterns
contribute to defining and maintaining our interpersonal
relationships, by facilitating smooth communication, fostering
attraction, reinforcing identification with an in-group, and
increasing rapport between communicators (Bernieri et al.,
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1988; Giles et al., 1991; Chartrand and Bargh, 1999; Gallois et al.,
2005).

There exist several adaptation patterns, differing according to
their behavior type (e.g., the modality, the similarity to the other
interlocutor’s behavior, etc.), their level of consciousness, whether
they are well decoded by the other interlocutor, and their effect on
the interaction (Toma, 2014). Cappella and others (Cappella,
1981) considered an additional characteristic, that is, adaptation
can be asymmetrical (unilateral), when only one partner adapts to
the other, or symmetrical (mutual), like in the case of interaction
synchrony.

In line with these criteria, in some examples of adaptation,
people’s behaviors become more similar to one another’s. This
type of adaptation is often unconscious and reflects reciprocity or
convergence. According to Gouldner (Gouldner, 1960),
reciprocity is motivated by the need to maintain harmonious
and stable relations. It is contingent (i.e., one person’s behaviors
are dependent upon the other’s) and transactional (i.e., it is part of
an exchange process between two people).

In other cases, adaptation can include complementarity or
divergence; this occurs when the behavior of one person differs
from but complements that of the other person.

Several theories focus on one ormore specific characteristics of
adaptation and highlight different factors that drive people’s
behaviors. They can be divided into four main classes
according to the perspective they follow to explain adaptation.

The first class of theories includes biologically based models
(e.g., (Condon and Ogston, 1971), (Bernieri et al., 1988)). These
theories state that individuals exhibit similar patterns to one
another. These adaptation patterns have an innate basis, as they
are related to satisfaction of basic needs like bonding, safety, and
social organization. Their innate bases make them universal and
involuntary, but they can be influenced by environmental and
social factors as well.

Following a different perspective, arousal-based and affect-
based models (e.g., (Argyle and Dean, 1965), (Altman et al.,
1981), (Cappella and Greene, 1982)) support the role of internal
emotional and arousal states as driving factors of people’s
behaviors. These states determine approaching or avoiding
behaviors. This group of theories explains the balance between
compensation and reciprocity.

Social-norm models (e.g., (Gouldner, 1960), (Dindia, 1988))
do not consider the role of physiological or psychological factors
but argue for the importance of social phenomena as guiding
forces. These social phenomena are, for example, the in-group or
out-group status of the interactants, their motivation to identify
with one another, and their level of affiliation or social distance.

The last class of theories includes communication- and
cognition-based models (e.g., (Andersen, 1985), (Hale and
Burgoon, 1984)), which focus on the communicative purposes
of the interactants and on the meaning that the behavioral
patterns convey. While adaption happens mainly
unconsciously, it may happen that the process of interpersonal
adaptation may be strategic and conscious (Giles et al., 1991;
Gallois et al., 2005).

The majority of these theories have been studied by Burgoon
and others (Burgoon et al., 2007). In particular, they examined

fifteen previous models and considered the most important
conclusions from the previous empirical research. From this
analysis, they came out with a broader theory, the interaction
adaptation theory (IAT). This theory states that we alter our
behavior in response to the behavior of another person in
conversations (Infante et al., 2010). IAT takes into account the
complexities of interpersonal interactions by considering people’s
needs, expectations, desires, and goals as precursors of their
degree and form of adaptation. IAT is a communication
theory made of multiple theories, which focuses on the
sender’s and the receiver’s process and patterns.

Three main interrelated factors contribute to IAT.
Requirements (Rs) refer to the individual beliefs about what is
necessary in order to have a successful interaction. Rs are mainly
driven by biological factors, such as survival, safety, and
affiliation. Expectations (Es) refer to what people expect from
the others based on social norms or knowledge coming from
previous interactions. Es are mainly influenced by social factors.
Finally, desires (Ds) refer to the individual’s goals and preferences
about what to get out of the interaction. Ds are mainly influenced
by person-specific factors, such as temperament or cultural
norms. These three factors are used to predict an individual’s
interactional position (IP). This variable derives from the
combination of Rs, Es, and Ds and represents the individual’s
behavioral predisposition that will influence how an interaction
will work. The IP would not necessarily correspond to the
partner’s actual behavior performed in the interaction (A).
The relation between the IP and A will determine the type of
adaptation during the interaction. For example, when the IP and
A almost match, IAT predicts behavioral patterns such as
reciprocity and convergence. When A is more negatively
valenced than the IP, the model predicts compensation and
avoiding behaviors.

In the work presented in this article, we rely on Burgoon’s IAT.
Indeed, our adapting ECA has an interactional position (IP),
resulting from its desires (Ds) and expectations (Es). In particular,
the agent’s desire (D) is to maximize the user’s experience, and its
expectations (Es) are about the user’s reactions to its behaviors. In
our different models of adaptation mechanisms, the agent’s desire
(D) refers either to giving the best impression to the user or to
maximizing the user’s engagement (see Section 4). Consequently,
the expectations (Es) refer to the user’s reaction reflecting their
impressions or engagement level in response to the agent’s
behavior. The behavior that will be performed by the ECA
depends on the relation between the agent’s IP and the user’s
reaction (actual behavior A).

In addition, we explore different ways in which the ECA can
adapt to the user’s reactions. On one hand, we focus on theories
that consider adaptive behaviors more broadly than a mere
matching, that is, adaptation as responding in appropriate
ways to a partner. The ECA will choose its behaviors
according to the effect they have on the user’s experience (see
Section 7). In Study 2 (see Section 8), our adaptive agent follows
the same perspective but by adapting its communicative
strategies. On the other hand, we try to simulate a more
unconscious and automatic process working at a motoric level;
the agent adapts at a signal level (see Study 3, Section 9).
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3 STATE OF THE ART

In this section, we present an overview of existing models that
focused on adapting ECAs’ behavior according to the user’s
behavior in order to enhance the interaction and the user’s
experience along different dimensions such as engagement,
rapport, interest, liking, etc. These existing models predicted
and generated different forms of adaptation, such as
backchannels, mimicry, and voice adaptation, and were
applied on virtual agents or robots.

Several works were interested in understanding the impact of
adaptation on the user’s engagement and rapport building. Some
of them did so through the production of backchannels. Huang
et al. (2010) developed an ECA that was able to produce
backchannels to reinforce the building of rapport with its
human interlocutor. The authors used conditional random
fields (CRFs) (Lafferty et al., 2001) to automatically learn
when listeners produce visual backchannels. The prediction
was based on three features: prosody (e.g., pause and pitch),
lexical (spoken words), and gaze. Using this model, the ECA was
perceived as more natural; it also created more rapport with its
interlocutor during the interaction. Schröder et al. (2015)
developed a sensitive artificial listener that was able to produce
backchannels. They developed a model that predicted when an
ECA should display a backchannel and with which intention. The
backchannel could be either a smile, nod, and vocalization or an
imitation of a human’s smile and head movement. Participants
who interacted with an ECA displaying backchannels were more
engaged than they were when no backchannels were shown.

Other works focused on modeling ECAs that were able to
mimic their interlocutors’ behaviors. Bailenson and Yee (2005)
studied the social influence of mimicry during human–agent
interaction (they referred to this as the chameleon effect). The
ECA mimicked the user’s head movements with a delay of up to
4 s. An ECA showing mimicry was perceived as more persuasive
and more positive than an ECA showing no mimicry at all.
Raffard et al. (2018) also studied the influence of ECAsmimicking
their interlocutors’ head and body posture with some delay
(below 4 s). Participants with schizophrenia and healthy
participants interacted with an ECA that either mimicked
them or not. Both groups showed higher behavior
synchronization and reported an increase in rapport in the
mimicry condition. Another study involving mimicry was
proposed by (Verberne et al., 2013) in order to evaluate if an
ECA mimicking the user’s head movements would be liked and
trusted more than a non-mimicking one. This research question
was investigated by running two experiments in which
participants played a game involving drivers handing over the
car control to the ECA. While results differed depending on the
game, the authors found that liking and trust were higher for a
mimicking ECA than for a non-mimicking one.

Reinforcement learning methods for optimizing the agent’s
behaviors according to the user’s preference have been used in
different works. For example, Liu et al. (2008) endowed a robot
with the capacity to detect, in real time, the affective states (liking,
anxiety, and engagement) of children with autism spectrum
disorder and to adapt its behavior to the children’s preferences

of activities. The detection of children’s affective states was done
by exploiting their physiological signals. A large database of
physiological signals was explored to find their interrelation
with the affective states of the children. Then, an SVM-based
recognizer was trained to match the children’s affective state to a
set of physiological features. Finally, the robot learned the
activities that the children preferred to do at a moment based
on the predicted liking level of the children using QV-learning
(Wiering, 2005). The proposed model led to an increase in the
reported liking level of the children toward the robot. Ritschel
et al. (2017) studied the influence of the agent’s personality on the
user’s engagement. They proposed a reinforcement learning
model based on social signals for adapting the personality of a
social robot to the user’s engagement level. The user’s
engagement was estimated from their multimodal social
signals such as gaze direction and posture. The robot adapted
its linguistic style by generating utterances with different degrees
of extroversion using a natural language generation approach.
The robot that adapted its personality through its linguistic style
increased the user’s engagement, but the degree of the user’s
preference toward the robot depended on the ongoing task. Later
on, the authors applied a similar approach to build a robot that
adapts to the sense of humor of its human interlocutor (Weber
et al., 2018).

Several works have been conducted in the domain of
education where an agent, being physical as a robot or virtual
as an ECA, adapted to the learner’s behavior. These works
reported that adaptation is generally linked with an increase in
the learner’s engagement and performance. For example, Gordon
et al. (2016) developed a robot acting as a tutor for children
learning a second language. To favor learning, the robot adapted
its behaviors to optimize the level of the children’s engagement,
which was computed from their facial expressions. A
reinforcement learning algorithm was applied to compute the
robot’s verbal and nonverbal behavior. Children showed higher
engagement and learned more second-language words with the
robot that adapted its behaviors to the children’s facial expression
than they did with the nonadaptive robot. Woolf et al. (2009)
manually designed rules to adapt the facial expressions of a virtual
tutor according to the student’s affective state (e.g., frustrated,
bored, or confused). For example, if the student was delighted and
sad, respectively, the tutor might look pleased and sad,
respectively. Results showed that when the virtual tutor
adapted its facial expressions in response to the student’s ones,
the latter maintained higher levels of interest and reduced levels
of boredom when interacting with the tutor.

Other works looked at adapting the activities undertaken by an
agent during an interaction to enhance knowledge acquisition
and reinforce engagement. In the study by (Ahmad et al., 2017), a
robot playing games with children was able to perform three
different types of adaptations, game-based, emotion-based, and
memory-based, which relied, respectively, on the following: 1) the
game state, 2) emotion detection from the child’s facial
expressions, and 3) face recognition mechanisms and
remembering the child’s performance. In the first category of
adaptation, a decision-making mechanism was used to generate a
supporting verbal and nonverbal behavior. For example, if the
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child performed well, the robot said “Wow, you are playing extra-
ordinary” and showed positive gestures such as a thumbs-up. The
emotion-based adaptation mapped the child’s emotions to a set of
supportive dialogues. For example, when detecting the emotion of
joy, the robot said, “You are looking happy, I think you are
enjoying the game.” For memory adaptation, the robot adapted
its behavior after recognizing the child and retrieving the child’s
game history such as their game performance and results. Results
highlighted that emotion-based adaptation resulted in the highest
level of social engagement compared to memory-based
adaptation. Game adaptation did not result in maintaining
long-term social engagement. Coninx et al. (2016) proposed
an adaptive robot that was able to change activities during an
interaction with children suffering from diabetes. The aim of the
robot was to reinforce the children’s knowledge with regard to
managing their disease and well-being. Three activities were
designed to approach the diabetes-learning problem from
different perspectives. Depending on the children’s motivation,
the robot switched between the three proposed activities.
Adapting activities in the course of the interaction led to a
high level of children’s engagement toward the robot.
Moreover, this approach seemed promising for setting up a
long-term child–robot relationship.

In a task-oriented interaction, Hemminahaus and Kopp
(2017) presented a model to adapt the social behavior of an
assistive robot. The robot could predict when and how to guide
the attention of the user, depending on the interaction contexts.
The authors developed a model that mapped interactional
functions such as motivating the user and guiding them onto
low-level behaviors executable by the robot. The high-level
functions were selected based on the interaction context and
the attentive and emotional states of the user. Reinforcement
learning was used to predict the mapping of these functions onto
lower-level behaviors. The model was evaluated in a scenario in
which a robot assisted the user in solving a memory game by
guiding their attention to the target objects. Results showed that
users were able to solve the game faster with the adaptive robot.

Other works focused on voice adaptation during social
interaction. Voice adaptation is based on acoustic–prosodic
entrainment that occurs when two interactants adapt their
manner of speaking, such as their speaking rate, tone, or
pitch, to each other’s. Levitan (2013) found that voice
adaptation improved spoken dialogue systems’ performance
and the user’s satisfaction. Lubold et al. (2016) studied the
effect of voice adaptation on social variables such as rapport
and social presence. They found that social presence was
significantly higher with a social voice-adaptive speech
interface than with purely social dialogue.

In most previous works, the adaptation mechanisms that have
been implemented measured their influence on the user’s
engagement through questionnaires. They did not include
them as a factor of the adaptation mechanisms. In our first
two studies reported in this article, we aimed to learn the
agent’s multimodal behaviors and conversational strategies to
dynamically optimize the user’s engagement and their
impressions of the ECA, by taking them as input during the
learning process.

Moreover, in most existing works, the agent’s predicted
behavior depended exclusively on the user’s behavior and
ignored the interaction loop between the ECA and the user.
In our third study, we took into account this interaction loop,
that is, our model takes as input both the user’s and the
agent’s past behavior and predicts the agent’s next behavior.
Another novelty presented in our work is to include the
agent’s communicative intentions along with its adaptive
behaviors.

4 DIMENSIONS OF STUDY

In our studies, we focused on adaptation in human–agent
interaction by using the user’s reactions as the input
for the agent’s adaptation. In particular, we took into
account two main dimensions, which are the user’s
impressions of the ECA and the user’s engagement
during the interaction.

These two dimensions play an important role during
human–agent interactions, as they influence the
acceptability of the ECA by the user and the willingness to
interact with it again (Bergmann et al., 2012; Bickmore et al.,
2013; Cafaro et al., 2016). In order to engage the user, it is
important that the ECA displays appropriate socio-emotional
behaviors (Pelachaud, 2009). In our case, we were interested in
whether and how the ECA could affect the user’s engagement
by managing the impressions it gave to them. In particular, we
considered the user’s impressions of the two main dimensions
of social cognition, that is, warmth and competence (Fiske
et al., 2007). Warmth includes traits like friendliness,
trustworthiness, and sociability, while competence includes
traits like intelligence, agency, and efficacy. In human–human
interaction, several studies have showed the role of nonverbal
behaviors in conveying different impressions of warmth and
competence. In particular, communicative gestures, arm rest
poses, and smiling behavior have been found to be associated
with different degrees of warmth and/or competence
(Duchenne, 1990; Cuddy et al., 2008; Maricchiolo et al.,
2009; Biancardi et al., 2017a). In the context of
human–agent interaction, we can control and adapt the
nonverbal behaviors of the ECA during the flow of the
interaction.

Following Burgoon’s IAT theoretical model, our adapting
ECA thus has the desire D to maintain the user’s engagement
(or impressions) during the interaction. Since the ECA aims to be
perceived as a social entity by its human interlocutor, the agent’s
expectancy E is that adaptation can enhance the interaction
experience. In our work, we are interested in whether adapting
at a behavioral or conversational level (i.e., the agent’s warmth
and competence impressions) and/or at a low level (i.e., the
agent’s head and eye rotation and lip corner movement) could
affect the user’s engagement. Even though the impact of the
agent’s adaptation on the user’s engagement has already been the
object of much research (see Section 3), here we use the user’s
engagement as a real-time variable given as input for the agent’s
adaptation.
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5 ARCHITECTURE

In this section, we present the architecture we conceived to endow
the ECA with the capability of adapting its behavior to the user’s
reactions in real time. The architecture consists of several
modules (see Figure 1). One module extracts information
about the user’s behaviors using a Kinect and a microphone.
This information is interpreted in terms of speech (what the user
has uttered) and the user’s state (e.g., their engagement in the
interaction). This interpreted information is sent to a dialogue
manager that computes the communicative intentions of the
ECA, that is, what it should say and how. Finally, the
animation of the ECA is computed on the fly and played in
real time. The agent’s adaptation mechanisms are also taken into
account when computing its verbal and nonverbal behaviors. The
architecture is general enough to allow for the customization of its
different modules according to the different adaptation
mechanisms and goals of the agent.

In more detail, the four main parts of the architecture are as
follows:

1) User’s Analysis: the EyesWeb platform (Camurri et al., 2004)
allows the extraction in real time of the following: 1) the user’s
nonverbal signals (e.g., head and trunk rotation), starting from

the Kinect depth camera skeleton data; 2) the user’s facial
muscular activity (action units or AUs (Ekman et al., 2002)),
by running the OpenFace framework (Baltrušaitis et al., 2016);
3) the user’s gaze; and 4) the user’s speech, by executing
Microsoft Speech Platform1.

These low-level signals are processed using EyesWeb and
other external tools, such as machine learning pretrained
models (Dermouche and Pelachaud, 2019; Wang et al.,
2019), to extract high-level features about the user, such as
their level of engagement.

2) Dialogue Model: in this module, the dialogue manager
Flipper (van Waterschoot et al., 2018) selects the dialogue
act that the agent will perform and the communicative
intention of the agent (i.e., how to perform that
dialogue act).

3) Agent’s Behavior: the agent’s behavior generation is
performed using GRETA, a software platform
supporting the creation of socio-emotional embodied
conversational agents (Pecune et al., 2014). The Agent’s
Behavior module is made of two main modules: the
Behavior Planner receives the communicative intentions
of the ECA from the Dialogue Model module as input and
instantiates them into multimodal behaviors and the
Behavior Realizer transforms the multimodal behaviors
into facial and body animations to be displayed on a
graphics screen.

4) Adaptation Mechanism: since the ECA can adapt its
behaviors at different levels, the Adaptation Mechanism
module is implemented in different parts of the
architecture, according to the type of adaptation that
the ECA performs. That is, the adaptation can affect
the communicative intentions of the ECA, or it can
occur during the behavior realization at the animation
level. In the first two models presented in this article, the
Adaptation Mechanism module is connected to the
Dialogue Model module, while for the third model, it is
connected to the Agent’s Behavior module.

FIGURE 1 | System architecture: in the User’s Analysis module, the user’s nonverbal and verbal signals are extracted and interpreted and the user’s reaction is sent
to the Dialogue Model module, which computes the dialogue act to be communicated by the ECA. The Agent’s Behavior module instantiates the dialogue act into
multimodal behaviors to be displayed by the ECA. The Adaptation Mechanism module adapts the agent’s behavior to the user’s behavior. Its placement in the
architecture depends on the specific adaptation mechanism that is implemented.

FIGURE 2 | Interaction space in the experiment room. The participants
were sitting in front of the TV screen displaying the ECA. On the left, two
screens separated the interaction space from the control space.

1https://www.microsoft.com/en-us/download/details.aspx?id�27225
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6 SCENARIO

Each type of adaptation has been investigated by running
human–agent interaction experiments at the Science Museum
of Paris. In the scenario conceived for these experiments, the
ECA, called Alice, played the role of a virtual guide of the
museum.

The experiment room included a questionnaire space,
including a desk with a laptop and a chair; an interaction
space, with a big TV screen displaying the ECA, a Kinect Two
placed on the top of the TV screen, and a black tent behind the
chair where the participant sat; and a control space, separated
from the rest of the room by two screens, including a desk with
the computer running the system architecture. The interaction
space is shown in Figure 2.

The experiments were completed in three phases as follows:

1) before the interaction began, the participant sat at the
questionnaire space, read and signed the consent form, and
filled out the first questionnaire (NARS, see below). Then they
moved to the interaction space, where the experimenter gave
the last instructions [5 min];

2) during the interaction phase, the participant stayed right in
front of the TV screen, between it and the black tent. They
wore a headset and were free to interact with the ECA as they
wanted. During this phase, the experimenter stayed in the
control space, behind the screens [3 min]; and

3) after the interaction, the participant came back to the
questionnaire space and filled out the last questionnaires about
their perception of the ECA and of the interaction. After that, the
experimenter proceeded with the debriefing [5min].

Before the interaction with the ECA, we asked participants to
fill out a questionnaire about their a priori about virtual
characters (NARS); an adapted version of the NARS scale
from the study by Nomura et al. (2006) was used. Items of the
questionnaire included, for example, how much participants
would feel relaxed talking with a virtual agent, or how much
they would like the idea that virtual agents made judgments.

The interaction with the ECA lasted about 3 min. It included
26 steps. A step included one dialogue act played by the ECA and
the participant’s potential reaction/answer. The dialogue scenario

was built so that the ECA drove the discussion. The virtual guide
provided information on an exhibit that was currently happening
in the museum. It also asked some questions about participants’
preferences. Purposely, we limited the possibility for participants
to take the lead in the conversation as we wanted to avoid any
error due to automatic speech understanding. More details about
the dialogue model can be found in the study by (Biancardi et al.,
2019a).

7 STUDY 1: ADAPTATION OF AGENT’S
BEHAVIORS

At this step, we aim to investigate adaptation at a high level,
meant as convergence of the agent’s behaviors according to the
user’s impressions of the ECA.

The goal of this first model is to make the ECA learn the verbal
and nonverbal behaviors to be perceived as warm or competent
by measuring and using the user’s impressions as a reward.

7.1 Architecture
The general architecture described in Section 5 has beenmodified
in order to contain a module for the detection of the user’s
impressions and a specific set of verbal and nonverbal behaviors
from which the ECA could choose.

The modified architecture of the system is depicted in
Figure 3. In the following section, we give more details about
the modified modules.

7.1.1 User’s Analysis: User’s Impression Detection
The user’s impressions can be detected from their nonverbal
behaviors, in particular, their facial expressions. The User’s
Analysis module is integrated with a User’s Impression
Detection module that takes as input a stream of the user’s
facial action units (AUs) (Ekman et al., 2002) and outputs the
potential user’s impressions about the level of warmth (or
competence) of the ECA.

A trained multilayer perceptron (MLP) regression model is
implemented in this module to detect the impressions formed by
users about the ECA. The MLP model was previously trained
using a corpus including face video recordings and continuous
self-report annotations of warmth and competence given by

FIGURE 3 |Modified system architecture used in Study 1. In particular, the User’s Analysis module contains the model to detect the user’s impressions from facial
signals. The Impressions Management module contains the Q-learning algorithm.
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participants watching the videos of the NoXi database (Cafaro
et al., 2017). The self-report annotations being considered
separately, the MLP model was trained twice, one for warmth
and one for competence. More details about this model can be
found in the study by (Wang et al., 2019).

7.1.2 Adaptation Mechanism: Impression
Management
In this model, the adaptation of the ECA concerns the
impressions of warmth and competence given to the user. The
inputs of the Adaptation Mechanism module are the dialogue act
to be realized (coming from the Dialogue Model module) and the
user’s impression of the agent’s warmth or competence (coming
from the User’s Analysis module). The output is a combination of
behaviors to realize the dialogue act, chosen from a set of possible
verbal and nonverbal behaviors to perform.

To be able to change the agent’s behavior according to the
detected participant’s impressions, a machine learning algorithm
is applied. We follow a reinforcement learning approach to learn
which actions the ECA should take (here, verbal and nonverbal
behaviors) in response to some events (here, the user’s detected
impressions). We rely on a Q-learning algorithm for this step.
More details about it can be found in the study by (Biancardi
et al., 2019b).

The set of verbal and nonverbal behaviors, from which the
Q-learning algorithm selects a combination to send to the
Behavior Planner of the Agent’s Behavior module, includes the
following:

• Type of gestures: the ECA could perform ideational
(i.e., related to the content of the speech) or beat
(i.e., marking speech rhythm, not related to the content
of the speech) gestures or no gestures.

• Arm rest poses: in the absence of any kind of gesture, these
rest poses could be performed by the ECA: akimbo
(i.e., hands on the hips), arms crossed on the chest, arms
along its body, or hands crossed on the table.

• Smiling: during the animation, the ECA could decide
whether or not to perform smiling behavior,
characterized by the activation of AU6 (cheek raiser) and
AU12 (lip puller-up).

• Verbal behavior: the ECA could modify the use of you- and
we-words, the level of formality of the language, and the
length of the sentences. These features have been found to
be related to different impressions of warmth and
competence (Pennebaker, 2011; Callejas et al., 2014).

7.2 Experimental Design
The adaptation model described in Subsection 7.1.2 has been
evaluated by using the scenario described in Section 6. Here, we
describe the experimental variables manipulated and measured
during the experiment.

7.2.1 Independent Variable
The independent variable manipulated in this experiment, called
Model, concerns the use of the adaptation model and includes
three conditions:

• Warmth: when the ECA adapts its behaviors according to
the user’s impressions of the agent’s warmth, with the goal
to maximize these impressions;

• Competence: when the ECA adapts its behaviors according
to the user’s impressions of the agent’s competence, with the
goal to maximize these impressions; and

• Random: when the adaptation model is not exploited and
the ECA randomly chooses its behavior, without
considering the user’s reactions.

7.2.2 Measures
The dependent variables measured after the interaction with the
ECA are as follows:

• User’s perception of the agent’s warmth (w) and
competence (c): participants were asked to rate their level
of agreement about how well each adjective described the
ECA (4 adjectives concerning warmth and four concerning
competence, according to Aragonés et al. (2015)). Even
though only one dimension was manipulated at a time,
we measured the user’s impressions about both of them in
order to check whether the manipulation of one dimension
can affect the impressions about the other (as already found
in the literature (Rosenberg et al., 1968; Judd et al., 2005;
Yzerbyt, 2005)).

• User’s experience of the interaction (exp): participants were
asked to rate their level of agreement about a list of items
adapted from the study by (Bickmore et al., 2011).

7.2.3 Hypotheses
We hypothesized the following scenarios:

H1: when the ECA is in the Warmth condition, that is, when it
adapts its behaviors according to the user’s impressions of the
agent’s warmth, it will be perceived as warmer than it is in the
Random condition;
H2: when the ECA is in the Competence condition, that is,
when it adapts its behaviors according to the user’s
impressions of the agent’s competence, it will be perceived
as more competent than it is in the Random condition;
H3: when the agent ECA adapts its behaviors, that is, in either
the Warmth or Competence conditions, this will improve the
user’s experience of the interaction, compared to that in the
Random condition.

7.3 Analysis and Results
The visitors (24 women and 47 men) of the Carrefour Numérique
of the Cité des sciences et de l’industrie of Paris were invited to
take part in our experiment. 28% of them were in the range of
18–25°years old, 18% were in the range of 25–36, 28% were in the
range of 36–45, 15% were in the range of 46–55, and 11% were
over 55°years old. Participants were randomly assigned to each
condition, with 25 participants assigned to the Warmth
condition, 27 to the Competence condition, and 19 to the
Random one.

We computed Cronbach’s alphas on the scores of the four
items about w and the four about c: good reliability was found for
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both (α � 0.85 and α � 0.81, respectively). Then, we computed
the mean of these items in order to have one w score and one
c score for each participant, and we used them for our
analyses.

Since NARS scores got an acceptable degree of reliability
(α � 0.69), we computed the overall mean of these items for
each participant and divided them into two groups, “high”
and “low,” according to whether they obtained a score
higher than the overall mean or not, respectively.
Participants were almost equally distributed into the two
groups (35 in the “high” group and 36 in the “low” group).
Chi-square tests for Model, age, and sex were run to verify
that participants were equally distributed across these
variables, too (all p> 0.5).

7.3.1 Warmth Scores
The w means were normally distributed (the Shapiro test’s
p � 0.07), and their variances were homogeneous (the Bartlett
tests’ ps for each variable were > 0.44). We run a 3 x 5 x 2 x
2 between-subjects ANOVA, with Model, age, sex, and NARS as
factors.

No effects of age or sex were found. Amain effect of NARS was
found (F(1, 32) � 4.23, p< 0.05). A post hoc test specified that the
group who got high scores in NARS gave higher ratings about the
agent’s w (M � 3.65, SD � 0.84) than the group who got low
scores in NARS (M � 3.24, SD � 0.96).

Although we did not find any significant effect, w scores were,
on average, higher in the Warmth and Competence conditions
than in the Random condition. The mean and standard error ofw
scores are shown in Table 1.

7.3.2 Competence Scores
The c means were normally distributed (the Shapiro test’s
p � 0.22), and their variances were homogeneous (the Bartlett
tests’ ps for each variable were > 0.25). We run a 3 x 5 x 2 x
2 between-subjects ANOVA, with Model, age, sex, and NARS
scores as factors.

We did not find any effect of age, sex, or NARS. A significant
main effect of Model was found (F(2, 32) � 3.22, p � 0.047,
η2 � 0.085). In particular, post hoc tests revealed that
participants in the Competence condition gave higher scores
about the agent’s c than participants in the Random condition
(MC � 3.3,MR � 2.76, p-adj � 0.05).

7.3.3 User’s Experience Scores
The exp items’ means were not normally distributed, but their
variances were homogeneous (the Bartlett tests’ ps for each
variable were > 0.17). We run nonparametric tests for each
item and each variable.

Even if we did not find any statistically significant effect, on
average, items’ scores tended to be higher in the Warmth and
Competence conditions than in the Random condition.

7.3.4 Performance of the Adaptation Model
The Q-learning algorithm ended up selecting (for each
participant) one specific combination of verbal and nonverbal
behaviors from the 84% ± 7 and 82% ± 7 of the interaction, for
the Warmth and Competence conditions, respectively. In the
Warmth condition, the rest pose Akimbo was the most selected
one (χ2 � 8.05, p< 0.01), and we found a tendency to use
Ideational gestures (p> 0.05). In the Competence condition,
the Verbal Behavior aiming at eliciting low warmth and high
competence (formal language, long sentences, and use of you-
words) was the most selected one (χ2 � 3.86, p< 0.01).

7.4 Discussion
The results show that participants’ ratings tended to be higher in
the conditions in which the ECA used the adaptation model than
when it selected its behavior randomly. In particular, the results
indicate that we successfully manipulated the impression of
competence when using our adaptive ECA. Indeed, higher
competence was reported in the Competence condition than
in the Random one. No a priori effect was found.

On the other hand, we found an a priori effect on warmth but
no significant effect of our conditions (just a positive trend for
both the Competence and Warmth conditions). People with high
a priori about virtual agents gave higher ratings about the agent’s
warmth than people with low a priori.

We could hypothesize some explanations for these results.
First, we did not get the effects of our experimental conditions
on warmth ratings since people were more anchored into their
a priori, and it was hard to change them. Indeed, people’s
expectancies have already been found to have an effect on the
user’s judgments about ECAs (Burgoon et al., 2016; Biancardi
et al., 2017b; Weber et al., 2018). The fact that we found this
effect only for warmth judgments could be related to the
primacy of warmth judgments over competence (Wojciszke
and Abele, 2008). Then, it could have been easier to elicit
impressions of competence since we found no a priori effect on
competence. This could be explained as follows: people might
expect that it is easier to implement knowledge in an ECA
rather than social behaviors.

The user’s experience of the interaction was not affected by the
agent’s adaptation. During the debriefing, many participants
expressed their disappointment about the agent’s appearance,
the quality of the voice synthesizer and the animation, described
as “disturbing” and “creepy,” and the limitations of the
conversation (participants could only answer the ECA’s
questions). These factors could have reduced any other effect
of the independent variables. Indeed, the agent’s appearance and
the structure of the dialogue were the same across conditions. If
participants mainly focused on these elements, they could have
paid less attention to the ECA’s verbal and nonverbal behavior
(the variables that were manipulated and that we were interested
in), which thus did not manage to affect their overall experience
of the interaction.

TABLE 1 |Mean and standard deviation ofw and c scores for each level of Model.

Model Warmth Competence

Warmth 3.48 ± 0.8 3.2 ± 0.75
Competence 3.51 ± 0.96 3.3 ± 0.69
Random 3.26 ± 0.93 2.76 ± 0.73
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8 STUDY 2: ADAPTATION OF
COMMUNICATIVE STRATEGIES

At this step, we investigate adaptation at a higher level than the
previous one, namely, the communicative strategies of the ECA.
In particular, we focus on the agent’s self-presentational
strategies, that is, different techniques to convey different
levels of warmth and competence toward the user (Jones and
Pittman, 1982). Each strategy is realized in terms of the verbal and
nonverbal behavior of the ECA, according to the studies by
(Pennebaker, 2011; Callejas et al., 2014; Biancardi et al., 2017a).

While in the previous study, we investigated whether and how
adaptation could affect the user’s impressions of the agent, we
here focus on whether and how adaptation can affect the user’s
engagement during the interaction.

The goal of this second model is thus to make the ECA learn the
communicative strategies that improve the user’s engagement, by
measuring and using the user’s engagement as a reward.

8.1 Architecture
The general architecture described in Section 5 has beenmodified
in order to contain a module for the detection of the user’s
engagement and a communicative intention planner for the
choice of the agent’s self-presentational strategy.

The modified architecture of the system is depicted in
Figure 4. In the following subsection, we give more details
about the modified modules.

8.1.1 User’s Analysis: User’s Engagement Detection
The User’s Analysis module is integrated with a User’s
Engagement Detection module that continuously computes
the overall user’s engagement at the end of every speaking turn.
The computational model of the user’s engagement is based on
the detection of facial signals and head/trunk signals, which
are indicators of engagement. In particular, smiling is usually
considered an indicator of engagement, as it may show that the
user is enjoying the interaction (Castellano et al., 2009).
Eyebrows are equally important: for example, Corrigan
et al. (2016) claimed that “frowning may indicate effortful
processing suggesting high levels of cognitive engagement.”
Head/trunk signals are detected in order to measure the user’s
attention level. According to Corrigan et al. (2016), attention is

a key aspect of engagement; an engaged user continuously
gazes at relevant objects/persons during the interaction. We
approximate the user’s gaze using the user’s head and trunk
orientation.

8.1.2 Adaptation Mechanism: Communicative
Intention Management
During its interaction with the user, the agent has the goal of
selecting its self-presentational strategy (e.g., to communicate
verbally and nonverbally a given dialogue act with high warmth
and low competence). The agent can choose its strategy from a
given set of four strategies inspired from Jones and Pittman’s
taxonomy (Jones and Pittman, 1982):

• Ingratiation: the ECA has the goal to convey positive
interpersonal qualities and elicit impressions of high
warmth toward the user, without considering its level of
competence;

• Supplication: the ECA has the goal to present its
weaknesses and elicit impressions of high warmth and
low competence;

• Self-promotion: the ECA has the goal to focus on its
capabilities and elicit impressions of high competence,
without considering its level of warmth; and

• Intimidation: the ECA has the goal to elicit impressions of
high competence by decreasing its level of warmth.

The verbal behavior characterizing the different strategies is
inspired by the works of Pennebaker (2011) and Callejas et al.
(2014). In particular, we took into account the use of you- and we-
words, the level of formality of the language, and the length of the
sentences.

The choice of the agent’s nonverbal behavior is based on our
previous studies (Biancardi et al., 2017a; Biancardi et al., 2017b).
So, for example, if the current agent’s self-presentational strategy
is Supplication and the next dialogue act to be spoken is
introducing a topic, then the agent would say “I think that
while you play there are captors that measure tons of stuffs!”
accompanied by smiling and beat gestures. Conversely, if the
current agent’s self-presentational strategy is Intimidation and
the next dialogue act to be spoken is the same, then the agent
would say “While you play at video games, several captors

FIGURE 4 |Modified system architecture used in Study 2. In particular, the User’s Analysis module contains the model to detect the user’s engagement from facial
and head/trunk signals. The Communicative Intention module uses reinforcement learning to select the agent’s self-presentational strategy.
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measure your physiological signals,” accompanied by ideational
gestures without smiling.

To be able to change the agent’s communicative strategy
according to the detected participant’s engagement, we
applied a reinforcement learning algorithm to make the
ECA learn what strategy to use. Specifically, a multiarmed
bandit algorithm (Katehakis and Veinott, 1987) was applied.
This algorithm is a simplified setting of reinforcement
learning which models agents evolving in an environment
where they can perform several actions, each action being
more or less rewarding for them. The choice of the action
does not affect the state (i.e., what happens in the
environment). In our case, the actions that the ECA could
perform are the verbal and nonverbal behaviors
corresponding to the self-presentational strategy that the
ECA aims to communicate. The environment is the
interaction with the user, while the state space is the set of
dialogue acts used at each speaking turn. The choice of the
action does not change the state (i.e., the dialogue act used
during the actual speaking turn), but rather, it acts on how
this dialogue act is realized by verbal and nonverbal behavior.
More details about the multiarmed bandit function used in
our model can be found in the study by (Biancardi et al.,
2019a).

8.2 Experimental Design
The adaptation model described in Section 8.1.2 was evaluated
by using the scenario described in Section 6. Here, we describe
the experimental variables manipulated and measured during the
experiment.

8.2.1 Independent Variable
The design includes one independent variable, called
Communicative Strategy, with six levels determining the
way in which the ECA chooses the strategy to use:

1) Adaptation: the ECA uses the adaptation model and thus
selects one self-presentational strategy at each speaking
turn, by using the user’s engagement as a reward;

2) Random: the ECA chooses a random behavior at each
speaking turn;

3) Ingr_static: the ECA always adopts the Ingratiation strategy
during the whole interaction;

4) Suppl_static: the ECA always adopts the Supplication strategy
during the whole interaction;

5) Self_static: the ECA always adopts the Self-promotion strategy
during the whole interaction; and

6) Intim_static: the ECA always adopts the Intimidation strategy
during the whole interaction.

8.2.2 Measures
The dependent variables measured after the interaction
with the ECA are the same as those described in
subsection 7.2.2.

In addition to these measures, during the interaction, for
people who agreed with audio recording of the experiment, we
collected quantitative information about their verbal
engagement, in particular, the polarity of the user’s answer
when the ECA asked if they wanted to continue to discuss and
the number of any verbal feedback produced by the user during
a speaking turn.

8.2.3 Hypotheses
We hypothesized that each self-presentational strategy would
elicit the right degree of warmth and competence, in particular,
the following:

H1ingr: the ECA in the Ingr_static condition would be
perceived as warm by users;
H1supp: the ECA in the Suppl_static condition would be
perceived as warm and not competent by users;
H1self: the ECA in the Self_static condition would be
perceived as competent by users; and
H1intim: the ECA in the Intim_static condition would be
perceived as competent and not warm by users.

Then, we hypothesized the following scenarios:

H2a: an ECA adapting its self-presentational strategies
according to the user’s engagement would improve the
user’s experience, compared to a non-adapting ECA and
H2b: the ECA in the Adaptation condition would influence
how it is perceived in terms of warmth and competence.

8.3 Analysis and Results
75 participants (30 females) took part in the evaluation, equally
distributed among the six conditions. The majority of them were
in the 18–25 or 36–45 age range and were native French speakers.
In this section, we briefly report the main results of our analyses.

TABLE 2 |Mean and standard deviation values of warmth scores for each level of
Communicative Strategy. The mean score for Intim_static is significantly lower
than that for all the other conditions.

Communicative Strategy Warmth

Ingr_static 3.77 ± 0.57
Supp_static 3.54 ± 0.999
Self_static 3.81 ± 0.70
Intim_static 2.63 ± 0.93
Random 3.71 ± 0.80
Adaptation 3.89 ± 0.38

TABLE 3 | Mean and standard deviation values of competence scores for each
level of Communicative Strategy. No significant differences among the
conditions were found.

Communicative Strategy Competence

Ingr_static 3.6 ± 0.62
Supp_static 2.98 ± 0.77
Self_static 3.75 ± 0.63
Intim_static 3.65 ± 0.79
Random 3.5 ± 0.70
Adaptation 3.43 ± 0.76
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A more detailed report can be found in the study by (Biancardi
et al., 2019a).

8.3.1 Warmth Scores
A 4 × 2 between-subjects ANOVA revealed a main effect of
Communicative Strategy (F(5, 62) � 4.75, p< 0.001, η2 � 0.26)
and NARS (F(1, 62) � 5.74, p< 0.05, η2 � 0.06). The w ratings
were higher from participants with a high NARS score (M � 3.74,
SD � 0.77) than from those with a low NARS score
(M � 3.33, SD � 0.92).

Table 2 shows the mean and SD of w scores for each level of
Communicative Strategy. Multiple comparisons t-test using
Holm’s correction shows that the w mean for Intim_static is
significantly lower than that for all the others. As a consequence,
the other conditions are rated as warmer than Intim_static.
H1ingr and H1supp are thus validated, and H1intim and H2b
are validated for the warmth component.

8.3.2 Competence Scores
No significant results emerged from the analyses. When looking at
the means of c for each condition (see Table 3), Supp_static is the
one with the lower score, even if its difference with the other scores
does not reach statistical significance (all p-values > 0.1). H1supp
and H1intim (for the competence component) are not validated.

8.3.3 User’s Experience of the Interaction
Participants in the Ingr_static condition were more satisfied from
the interaction than those in Suppl_static (z � 2.88, p-adj < 0.05)
and in Intim_static (z � 2.56, p-adj< 0.05). Participants in the
Ingr_static condition also liked the ECA more than participants
in the Intim_static condition (z � 2.87, p-adj < 0.05). No
differences were found between the scores of the participants
in the Adaptation condition and those of the other participants
for any of the items measuring exp.

The exp scores are also affected by participants’ a priori about
virtual agents (measured through the NARS questionnaire). In
particular, participants who got high scores in the NARS
questionnaire were more satisfied by the interaction
(U � 910.5, p< 0.05), were more motivated to continue the
interaction (U � 998, p � 0.001), and perceived the agent as
less closed to a computer (U � 1028, p< 0.001) than people
who got low scores in the NARS questionnaire.

Another interesting result concerns the effect of age on
participants’ satisfaction (H(4) � 15.05, p< 0.01); people in the
age range of 55+ were more satisfied than people of any other age
range (all p-adj < 0.05).

On the whole, these results do not allow us to validate H2a, but
the agent’s adaptation was found to have at least an effect on its
level of warmth (H2b).

8.3.4 Verbal Cues of Engagement
During each speaking turn, the user was free to reply to the agent’s
utterances. We consider as a user’s verbal feedback any type of verbal
reply to the ECA, froma simple backchannel (e.g., “ok” and “mm”) to a
longer response (e.g., giving an opinion about what the ECA said). In
general, participants who did not give much verbal feedback (i.e., less

than 13 replies to the agent’s utterances over all the speaking turns)
answered positively to the ECA when it asked whether they wanted to
continue to discuss with it, compared to the participants who gave
more verbal feedback (OR � 4.27, p< 0.05). In addition,we found that
the participants who did not give much verbal feedback liked the ECA
more than those who talked a lot during the interaction (U � 36.5,
p< 0.05). However, no differences in any of the dependent variables
were found according to Communicative Strategy.

8.4 Discussion
First of all, regarding H1, the only statistically significant results
concern the perception of the agent’s warmth. The ECA was rated
as colder when it adopted the Intim_static strategy than when it
adopted the other conditions. This supports the thesis of the
primacy of the warmth dimension (Wojciszke and Abele, 2008),
and it is in line with the positive–negative asymmetry effect
described by (Peeters and Czapinski, 1990), who argued that
negative information generally has a higher impact on person
perception than positive information. In our case, when the ECA
displayed cold (i.e., low warmth) behaviors (i.e., in the
Intim_static condition), it was judged by participants with
statistically significant lower ratings of warmth. Regarding the
other conditions (Ingr_static, Supp_static, Self_static,
Adaptation, and Random), they elicited warmer impressions in
the user, but there was not one strategy that was better than the
others in this regard. The fact that Self_static also elicited the
same level of warmth as the others reflected a halo effect
(Rosenberg et al., 1968); the behaviors displayed to appear
competent influenced its warmth perception in the same
direction.

Regarding H2, the results do not validate our hypothesis (H2a)
that the interaction would be improved when the ECA managed its
impressions by adapting its strategy according to the user’s
engagement. When analyzing scores for exp items, we found that
participants were more satisfied by the interaction and they liked the
ECA more when the ECA wanted to be perceived as warm (i.e., in
the Ingr_static condition) than when it wanted to be perceived as
cold and competent (i.e., in the Intim_static condition). A hypothesis
is that since the ECA was perceived warmer in the Ingr_static
condition, it could have positively influenced the ratings of the other
items, like the user’s satisfaction. Concerning H2b with regard to a
possible effect of the agent’s adaptation on the user’s perception of its
warmth and competence, it is interesting to see that when the ECA
adapted its self-presentational strategy according to the user’s overall
engagement, it was perceived as warm. This highlights a link between
the agent’s adaptation, the user’s engagement, and a warm
impression; the more the ECA adapted its behaviors, the more
the user was engaged and the more she/he perceived the ECA
as warm.

9 STUDY 3: ADAPTATION AT A SIGNAL
LEVEL

At this step, we are interested in low-level adaptation at the signal
level. We aim to model how the ECA can adapt its signals to the
user’s signals. Thus, we make the ECA predict the signals to
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display at each time step, according to those displayed by
both the ECA and the user during a given time window. For
the sake of simplicity, we consider a subset of signals, namely,
lip corner movement (AU12), gaze direction, and head
movement. To reach our aim, we follow a two-step
approach. At first, we need to predict which signals that
are due to adaptation to the user’s behaviors should be
displayed by the ECA at each time step. The prediction of
signal adaptation is learned on human–human interaction.
The ECA ought to communicate its intentions to adapt to the
user’s signals. Then, the second step of our approach consists
in blending the predicted signals linked to the adaptation
mechanism with the nonverbal behaviors corresponding to
the agent’s communicative intentions. We describe our
algorithm in further detail in subsection 9.1.2.

9.1 Architecture
The general architecture described in Section 5 has beenmodified
in order to contain a module for predicting the next social signal
to be merged with the agent’s other communicative ones. The
modified architecture of the system is depicted in Figure 5. In the
following subsection, we explain the modified modules. More
details about these modules can be found in the study by
(Dermouche and Pelachaud, 2019).

9.1.1 User’s Analysis: User’s Low-Level Features
Low-level features of the user are obtained from the User’s
Analysis module using EyesWeb of the general architecture. In
this model, we consider a subset of these features, namely, the
user’s head direction, eye direction, and AU12 (upper lip corner
activity). At every frame, the EyesWeb module extracts these
features and sends the last 20 analyzed frames to the Adaptation
Mechanism module IL-LSTM (see Section 9.1.2). It also sends
the user’s conversational state (speaking or not) computed from
the detection of the user’s voice activity (done in EyesWeb) and
from the agent-turn information provided by the dialogue
manager Flipper.

9.1.2 Adaptation Mechanism: Interaction Loop–LSTM
In this version of the architecture, the adaptation mechanism is
based on a predictive model trained on data of human–human
interactions.We used the NoXi database (Cafaro et al., 2017) to train

a long short-term memory (LSTM) model that takes as input
sequences of signals of two interactants over a sliding window of
n frames to predict which signal(s) should display one participant at
time n+1. We call this model IL-LSTM, which stands for interaction
loop–LSTM. LSTM is a kind of recurrent neural network. It is
mainly used when “context” is important, that is, decisions from the
past can influence the current ones. It allows us to model both
sequentiality and temporality of nonverbal behaviors.

We apply the IL-LSTM model to the human–agent
interaction. Thus, given the signals produced by both, the
human and the ECA, over a time window, the model outputs
which signals should display the ECA at the next time step (here,
a frame). The predicted signals are sent to the Behavior Realizer of
the Agent’s Behavior module where they are merged with the
behaviors of the ECA related to its communicative intents.

9.1.3 Agent’s Behavior: Behavior Realizer
We have updated the Behavior Realizer so that the ECA not only
communicates its intentions but also adapts its behaviors in real
time to the user’s behaviors. This module blends the predicted
signals linked to the adaptation mechanism with the nonverbal
behaviors corresponding to its communicative intentions that
have been outputted using the GRETA agent platform (Pecune
et al., 2014). More precisely, the dialogue module Flipper sends
the set of communicative intentions to the Agent’s Behavior
module. This module computes the multimodal behavior of the
ECA and sends it to the Behavior Realizer that computes the
animation of the ECA’s face and body. Then, before sending each
frame to be displayed by the animation player, the animation
computed from the communicative intentions is merged with the
animation predicted by the Adaption Mechanism module. This
operation is repeated at every frame.

9.2 Experimental Design
The adaptation model described in the previous section was
evaluated by using the scenario described in Section 6. Here,
we describe the experimental variables manipulated and
measured during the experiment.

9.2.1 Independent Variable
We manipulated the type of low-level adaptation of the ECA by
considering five conditions:

FIGURE 5 | Modified system architecture used in Study 3. In particular, the User’s Analysis module detects the user’s low-level signals such as head and eye
rotations and lip corner activity. The Adaptation Mechanism module exploits the IL-LSTM model for selecting the agent’s low-level signals. In the Agent’s Behavior
module, the Behavior Realizer is customized in order to take into account the agent’s communicative behaviors and signals coming from the IL-LSTMmodule in real time.
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• Random: when the ECA did not adapt its behavior;
• Head: when the ECA adapted its head rotation according to
the user’s behavior;

• Lip Corners: when the ECA adapted its lip corner puller
movement (AU12) according to the user’s behavior;

• Eyes: when the ECA adapted its eye rotation according to
the user’s behavior; and

• All: when the ECA adapted its head and eye rotation and lip
corner movement, according to the user’s behavior.

We tested these five conditions using a between-subjects
design.

9.2.2 Measures
The dependent variables measured after the interaction with the ECA
were the user’s engagement and the perceived friendliness of the ECA.

The user’s engagement was evaluated using the I-PEFiC
framework (van Vugt et al., 2006) that encompasses the user’s
engagement and satisfaction during human–agent interaction.
This framework considers different dimensions regarding the
perception of the ECA (in terms of realism, competence, and
relevance) as well as the user’s engagement (involvement and
distance) and the user’s satisfaction. We adapted the
questionnaire proposed by Van Vugt and others to measure
the behavior of the ECA along these dimensions (van Vugt
et al., 2006). The perceived friendliness of the ECA was
measured using the adjectives kind, warm, agreeable, and
sympathetic of the IAS questionnaire (Wiggins, 1979).

As for the other two studies, we also measured the a priori attitude
of participants towards virtual agents using the NARS questionnaire.

9.2.3 Hypotheses
Previous studies (Liu et al., 2008; Woolf et al., 2009; Levitan, 2013)
have found that users’ satisfaction about their interaction with an
ECA is greater when the ECA adapts its behavior to the user’s one.
From these results, we could expect that the user would be more
satisfied about the interaction when the ECA adapted its low-level
signals according to their behaviors. We also assumed that the ECA
adapting its lip corner puller (that is related to smiling) would be
perceived as friendlier. Thus, our hypotheses were as follows:

H1Head: when the ECA adapted its head rotation, the users
would be more satisfied with the interaction than the users
interacting with the ECA in the Random condition.

H2aLips: when the ECA adapted its lip corner movement
(AU12), the users would be more satisfied with the interaction
than the users interacting with the ECA in the Random
condition.
H2bLips: when the ECA adapted its lip corner movement
(AU12), it would be evaluated as friendlier than the ECA in the
Random condition.
H3Eyes: when the ECA adapted its eye rotation, the users
would be more satisfied with the interaction than the users
interacting with the ECA in the Random condition.
H4aAll: when the ECA adapted its head and eye rotations and
lip corner movement, the users would be more satisfied with
the interaction than the users interacting with the ECA in the
Random condition.
H4bAll: when the ECA adapts its head and eye rotations and
lip corner movement, it would be evaluated as friendlier than
the ECA in the Random condition.

9.3 Analysis and Results
101 participants (55 females), almost equally distributed among
the five conditions, took part in our experiment. 95% of
participants were native French speakers. 32% of them were in
the range of 18–25°years old, 17%were in the range of 25–36, 21%
were in the range of 36–45, 18% were in the range of 46–55, and
12% were over 55°years old. For each dimension of the user’s
engagement questionnaire, as well as for that about the perceived
friendliness of the ECA, Cronbach’s αs were > 0.8; we then
computed the mean of the scores in order to have one score
for each dimension. The mean and standard deviation of each
measured dimension for each of the five conditions are shown in
Table 4.

As our data were not normally distributed (the Shapiro test’s
p< 0.5), we used the unpaired Wilcoxon test (equivalent to t-test)
to measure how participants’ ratings differed between the
Random condition and each of the other conditions.

In the Head condition, we could not find differences with the
Random condition. We conclude that the hypothesis H1Head is
rejected.

In the Lip Corners condition, compared to participants in the
Random condition, participants were more involved (W � 98.5, p-
adj< .05). We can also note that the ECA was evaluated as more
positive on the relevance dimension (W � 104.5, p-adj< .05). We
can conclude that the hypotheses H2aLips and H2bLips are not
validated, but the adaptation of lip cornermovement still has a positive
effect on other dimensions related to the user’s engagement.

TABLE 4 | Mean ± standard deviation of each dimension of the questionnaires (each row of the table), for each of the five conditions (each column).

Random Head Lip Corners Eyes All

Competence 2.98 ± 1.22 3.45 ± 0.81 3.73 ± 0.73 3.65 ± 1.06 3.61 ± 1.12
Distance 2.5 ± 1.12 2.6 ± 1.03 1.76 ± 0.97 2 ± 1.12 1.47 ± 1.03
Friendliness 3.03 ± 1.12 3.22 ± 0.86 3.80 ± 0.83 3.33 ± 0.86 4.09 ± 0.90a

Involvement 2.65 ± 1.22 2.65 ± 1.15 3.52 ± 1.00a 2.83 ± 1.33 3.60 ± 1.07
Realism 1.7 ± 0.92 1.95 ± 0.82 2.52 ± 1.12 2.08 ± 0.90 1.73 ± 0.86
Relevance 2.95 ± 1.38 3.86 ± 0.72 3.97 ± 0.79a 3.5 ± 1.24 3.80 ± 1.01
Satisfaction 2.46 ± 1.21 2.84 ± 0.77 3.39 ± 0.06 3.27 ± 1.08 3.39 ± 0.93

aindicates that the score is significantly different compared to that in the Random condition (p − adj < .05).
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In the Eyes condition, participants were satisfied with the ECA
as they were with the ECA in the Random condition. Thus, the
hypothesis H3Eyes is rejected.

In the All condition, the ECA was evaluated as friendlier
(W � 104.5, p-adj< .05) than the ECA in the Random condition.
So, H4aAll is supported, while H4bAll is rejected.

Results of the NARS questionnaire indicated that 40, 30, and
30% of participants, respectively, had a positive, neutral, and
negative attitude toward virtual agents. An ANOVA test was
performed to study the influence of participants’ a priori toward
virtual agents on their engagement in the interaction.
Participants’ prior attitude toward ECAs had a main effect on
participants’ distance (F(1, 93) � 5.13, p< .05)). Results of
pairwise comparisons with Bonferroni adjustment highlighted
that participants with a prior negative attitude were less engaged
(more distant (p-adj< .05) and less involved (p-adj< .05)) than
those with a prior positive attitude.

9.4 Discussion
The results of this study showed that participants’ engagement
and perception of the ECA’s friendliness were positively impacted
when the ECA adapted its low-level signals.

These results were significant only when the ECA adapted its
lip corner movement (AU12) to the user’s behavior (mainly their
smile), that is, in the Lip Corners and All conditions. In the case of head
and eye rotation adaptation, we found a trend on some dimensions but
no significant differences compared to the Random condition. These
results could be caused by the adopted evaluation settingwhere theECA
and the user faced each other. During the interaction, most participants
gazed at the ECA without doing any postural shift or even changing
their gaze and head direction. They were mainly still and staring at the
ECA. The adaptive behaviors, that is, head and eye rotation of the ECA
computed from the user’s behaviors, remained constant throughout the
interaction. They reflectedparticipants’behaviors (thatwere notmoving
much). Thus, in the Head and Eyes adapting conditions, the ECA
showed much less expressiveness and may have appeared much less
lively, which may have impacted participants’ engagement in the
interaction.

10 GENERAL DISCUSSION

In our studies, we applied the interaction adaptation theory (see Section
2) on the ECA. That is, our adapting ECAhad the requirement R that it
needed to adapt in order to have a successful interaction. Its desire D
was to maximize the user’s experience by eliciting a specific impression
toward the user or maintaining the user’s engagement. Finally, its
expectations (Es) were that the user’s experience would be better when
interacting with an adaptive ECA. All these factors rely on the general
hypothesis that the user expects to interact with a social entity.
According to this hypothesis, the ECA should adapt its behavior
like humans do (Appel et al., 2012).

We have looked at different adaptation mechanisms through
three studies, each focusing on a specific type of adaptation. In
our studies, we found that these mechanisms impacted the user’s
experience of the interaction and their perception of the ECA.
Moreover, in all three studies, interacting with an adaptive ECA

vs. a nonadaptive ECA tended to be more positively perceived.
More precisely, manipulating the agent’s behaviors (Study 1) had
an impact on the user’s perception of the ECA while low-level
adaptation (Study 3) positively influenced the user’s experience of
the interaction. Regarding managing conversational strategies
(Study 2), the ECA was perceived as warmer when it managed
those that increased the user’s engagement vs. when it did not
change them all along the interaction.

These results suggest that the IAT framework allows for
enhancing human–agent interaction. Indeed, the adaptive ECA
shows some improvement in the quality of the interaction and the
perception of the ECA in terms of social attitudes.

However, not all our hypotheses were verified. This could be
related to the fact that we based our framework on the general
hypothesis that the user expects to interact with a social entity.
The ECA did not take into account the fact that the user also had
their specific requirements, desires, and expectations, along with
the expectancy to interact with a social agent. Yet, the ECA did
not check if the user still considered it a social entity during the
interaction. It based its behaviors only on the human’s detected
engagement and impressions. Moreover, the modules to detect
engagement or impressions work in a given time window, but
they do not consider their evolution through time. For example,
the engagement module computes that participants are engaged if
they look straight at the ECA without reporting any information
stating that the participants stare fixedly at the ECA. The fact that
participants do not change their gaze direction toward the ECA
could be interpreted as participants not viewing the ECA as a
social entity with humanlike qualities (Appel et al., 2012).

Expectancy violation theory (Burgoon, 1993) could help to
better understand this gap. This theory explains how confirmations and
violations of people’s expectancies affect communication outcomes such
as attraction, liking, credibility persuasion, and learning. In particular,
positive violations are predicted to produce better outcomes than positive
confirmations, and negative violations are predicted to produce worse
outcomes than negative confirmations. Expectancy violation theory has
already been demonstrated to affect human–human interaction
(Burgoon, 1993) and when people are in front of an ECA (Burgoon
et al., 2016; Biancardi et al., 2017b) or a robot (Weber et al., 2018). In our
work, we took into account the role of expectancies as part of IAT. Our
results suggest that expectancies could play a more important role than
the one we attributed to them and that they should be better modeled
when developing human–agent adaptation. Future works in this context
should combine expectancy violation theory with IAT. In this way, the
ECA should be able to detect the user’s expectancies in terms of beliefs
and desires. It should also be able to check if those expectancies about
the interaction correspond to the expected ones and then react
accordingly. For example, in our studies, we found some effects of
people’s a priori about virtual agents: people who got higher scores in
the NARS questionnaire generally perceived the ECA as warmer than
people who got lower scores in the NARS questionnaire. This effect
could have been mitigated if the agent could detect the user’s a priori.

Even with these limits, the results of our studies show that an
adaptive model for a virtual agent inspired from IAT partiallymanaged
to produce an impact on the user’s experience of the interaction and on
their perception of the ECA. This could be useful for personalizing
systems for different applications such as education, healthcare, or
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entertainment, where there is a need of adaptation according to users’
type and behaviors and/or interaction contexts.

The different adaptation models we developed also confirm the
potential of automatic behavior analysis for the estimation of different
users’ characteristics. These methods can be used to better understand
the user’s profile and can also be applied to human–computer
interaction in general to inform adaptation models in real time.

Moreover, the use of adaptation mechanisms inspired from
IAT could help mitigate the negative effect of some interaction
problems that are more difficult to solve, due to, for example,
technological limits of the system. Indeed, adaptation acts to
enhance the agent’s perception and the perceived interaction
quality. Improving adaptation mechanisms may help to
counterbalance technological shortcomings. It may also improve
the acceptability of innovative technologies that are likely to be
part of our daily lives, in the context of work, health, leisure, etc.

11 CONCLUSION AND FUTURE WORK

In this study, we investigated adaptation in human–agent interaction.
In particular, we reported our work about three models focusing on
different levels of the agent’s adaptation (the behavioral,
conversational, and signal levels), by framing them in the same
theoretical framework (Burgoon et al., 2007). In all the adaptation
mechanisms implemented in the models, the user’s behavior is taken
into account by the ECAduring the interaction in real time. Evaluation
studies showed a tendency toward a positive impact of the adaptive
ECA on the user’s experience and perception of the ECA, encouraging
us to continue to investigate in this direction.

One limitation of our models is their reliance on the
interaction scenario. Indeed, to obtain good performances of
adaptation models using reinforcement learning algorithms, a
scenario including an adequate number of steps is required. In
our case, the agent ended up selecting a specific combination of
behaviors only during the later part of the interaction. A longer
interaction with more steps would allow an adaptive agent using
reinforcement learning algorithms to better learn. Another
possibility would be to have participants interacting more than
once with the virtual agent. This latter would require adding a
memory adaptationmodule (Ahmad et al., 2017). This would also
allow for checking whether the same user prefers the same
behavior and/or conversational strategies from the agent over
several interactions. Similarly, regarding adaptation models
reflecting the user’s behavior, the less the user moves during
the interaction, the less the agent’s expressivity level. The
interaction scenario should be designed in order to elicit the
user’s participation, including strategies to tickle users when they
become too still and nonreactive. For example, one could use a
scenario including a collaborative task where both the agent and
the user would interact with different objects. In such a setting,
although it would require us to extend our engagement detection
module to include joint attention, we expect that the participants
would also perform many more head movements that, in turn,
could be useful for a better low-level adaptation of the agent.

In the future, our work could be improved and explored along
further axes. We list three of them here. First, the three models

presented in this article were implemented and evaluated
independently from each other. It could be interesting to
merge the three adaptation mechanisms in a broader model
and investigate the impacts of the agent’s adaptation along
different levels at the same time. Second, in our studies, the
agent adapted its behaviors to the user’s ones without considering
if the relationship between the behaviors of the dyad showed any
specific interaction patterns. In particular, we have not made
explicit if the agent’s behavior should either match, reciprocate,
complement, compensate, or mirror their human interlocutor’s
behavior (Burgoon et al., 2007). Also, we have not measured any
similarities, synchronization, or imitation between the user’s and the
agent’s behavior when we analyzed the data of our studies. Since
adaptation may be signaled through a larger variety of behavior
manifestations during an interaction, more adaptation mechanisms
could be implemented. One last important direction for future work
concerns the improvement of the interactionwith the user. Thiswould
reduce possible secondary effects of uncontrolled variables, such as the
user’s expectancies, and allow for better studying of the effects of the
agent’s adaptation.We aim to improve the agent’s conversational skills
to ensure conversation repairs and interruptions and by letting the
user choose the topic of conversation (e.g., from a set of possible ones)
and drive the discussion. In addition to these improvements, the user’s
expectancies should also be better modeled by taking into account
expectancy violation theory in addition to interaction adaptation
theory.
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