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Millions of unsolicited medical inquiries are received by pharmaceutical companies every
year. It has been hypothesized that these inquiries represent a treasure trove of
information, potentially giving insight into matters regarding medicinal products and the
associated medical treatments. However, due to the large volume and specialized nature
of the inquiries, it is difficult to perform timely, recurrent, and comprehensive analyses.
Here, we combine biomedical word embeddings, non-linear dimensionality reduction, and
hierarchical clustering to automatically discover key topics in real-world medical inquiries
from customers. This approach does not require ontologies nor annotations. The
discovered topics are meaningful and medically relevant, as judged by medical
information specialists, thus demonstrating that unsolicited medical inquiries are a
source of valuable customer insights. Our work paves the way for the machine-
learning-driven analysis of medical inquiries in the pharmaceutical industry, which
ultimately aims at improving patient care.
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INTRODUCTION

Every day pharmaceutical companies receive numerous medical inquiries related to their drugs from
patients, healthcare professionals, research institutes, or public authorities from a variety of sources
(e.g., websites, e-mail, phone, social media channels, company personnel, telefax). These medical
inquiries may relate to drug-drug-interactions, availability of drugs, side effects of pharmaceuticals,
clinical trial information, product quality issues, comparison with competitor products, storage
conditions, dosing regimen, and the like. On the one hand, a single medical inquiry is simply a
question of a given person searching for a specific information related to a medicinal product. On the
other hand, a plurality of medical inquiries from different persons may provide useful insight into
matters related to medicinal products and associated medical treatments. Examples of these insights
could be early detection of product quality or supply chain issues, anticipation of treatment trends and
market events, improvement of educational material and standard answers/frequently asked question
coverage, potential changes in treatment pattern, or even suggestions on new possible indications to
investigate. From a strategic perspective, this information could enable organizations to make better
decisions, drive organization results, and more broadly create benefits for the healthcare community.
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However, obtaining high-level general insights is a
complicated task since pharmaceutical companies receive
copious amounts of medical inquiries every year. Machine
learning and natural language processing represent a
promising route to automatically extract insights from these
large amounts of unstructured (and noisy) medical text.
Natural language processing and text mining techniques have
been widely used in the medical domain (Allahyari et al., 2017;
Luque et al., 2019), with emphasis on electronic health records
(Sun et al., 2017; Landi et al., 2020; Mascio et al., 2020;
Kormilitzin et al., 2021). In particular, deep learning has been
successfully applied to medical text, with the overwhelming
majority of works in supervised learning, or representation
learning (in a supervised or self-supervised setting) to learn
specialized word vector representations (i.e. word embeddings)
(Alsentzer et al., 2019; Beltagy et al., 2019; Neumann et al., 2019;
Weng and Szolovits, 2019; Wu et al., 2019). Conversely, the
literature on unsupervised learning for medical text is scarce
despite the bulk of real-world medical text being unstructured,
without any labels or annotations. Unsupervised learning from
unstructured medical text is mainly limited to the development of
topic models based on latent Dirichlet allocation (LDA) (Blei
et al., 2003). Examples of applications in the medical domain are
clinical event identification in brain cancer patients from clinical
reports (Arnold and Speier, 2012), modeling diseases (Pivovarov
et al., 2015) and predicting clinical order patterns (Chen et al.,
2017) from electronic health records, or detecting cases of
noncompliance to drug treatment from patient forums
(Abdellaoui et al., 2018). Only recently, word embeddings and
unsupervised learning techniques have been combined to analyze
unstructured medical text to study the concept of diseases (Shah
and Luo, 2017), medical product reviews (Karim et al., 2020), or
to extract informative sentences for text summarization (Moradi
and Samwald, 2019).

In this work, we combine biomedical word embeddings and
unsupervised learning to discover topics from real-world medical
inquiries received by Bayer™. A real-world corpus of medical
inquiries presents numerous challenges. From an inquirer (e.g.
healthcare professional or patient) perspective, often the goal is to
convey the information requested in as few words as possible to
save time. This leads to an extensive use of acronyms and
abbreviations, sentences with atypical syntactic structure,
occasionally missing verb or subject, or inquiries comprising
exclusively a single noun phrase. Moreover, since medical
inquiries come from different sources, it is common to find
additional (not relevant) information related to the text
source; examples are references to internal computer systems,
form frames (i.e. textual instructions) alongside with the actual
form content, lot numbers, email headers and signatures, city
names. The corpus contains a mixture of layman and medical
language depending (mostly) on the inquirer being either a
patient or a healthcare professional. Style and content of
medical inquiries vary quite substantially according to which
therapeutic areas (e.g. cardiovascular vs oncology) a given
medicinal drug belongs to.

As already mentioned, medical inquiries are short. More
specifically, they comprise less than fifteen words in most

cases. Standard techniques for topic modelling based on LDA
(Blei et al., 2003) do not apply, since the main assumption - each
document/text is a distribution over topics - clearly does not hold
given that the text is short (Qiang et al., 2019). Approaches based
on pseudo-documents (Mehrotra et al., 2013) or using auxiliary
information (Phan et al., 2008; Jin et al., 2011) are also not
suitable since no meaningful pseudo-document nor auxiliary
information are available for medical inquiries. Moreover,
these models aim to learn semantics (e.g. meaning of words)
directly from the corpus of interest. However, the recent success
of pretrained embeddings (Peters et al., 2018; Devlin et al., 2019)
shows that it is beneficial to include semantics learned on a
general (and thus orders of magnitude larger) corpus, thus
providing semantic information difficult to obtain from
smaller corpora. This is particularly important for limited data
and short text settings. To this end, there has been recently some
work aimed at incorporating word embeddings into probabilistic
models similar to LDA (Dirichlet multinomial mixture model
(Yin and Wang, 2014)) and that - contrary to LDA - satisfies the
single topic assumption (i.e. one document/text belong to only
one topic) (Nguyen et al., 2015; Li et al., 2016). Even though these
models include (some) semantic information in the topic model,
it is not evident how to choose the required hyperparameters, for
example determining an appropriate threshold when filtering
semantically related word pairs (Li et al., 2016). Concurrently to
our work, document-level embeddings and hierarchical
clustering have been combined to obtain topic vectors from
news articles and a question-answer corpus (Angelov, 2020).

Here, we propose an approach - schematically depicted in
Figure 1 - to discover topics from short, unstructured, real-world
medical inquiries. Our methodology consists of the following
steps: medical inquiries are preprocessed (via lemmatization,
stopword removal) and converted to vectors via a biomedical
word embedding (scispacy (Neumann et al., 2019)), a
dimensionality reduction is then applied to lower the
dimensionality of the embedded vectors (via UMAP (McInnes
et al., 2018a; McInnes et al., 2018b)), clustering is performed in
this lower dimensional space to group together similar inquiries
(viaHDBSCAN (Campello et al., 2013; Melo et al., 2016; McInnes
et al., 2017)). These clusters of similar inquiries are then merged
based on semantic similarity: we define these (merged) clusters as
topics. Topics are then quantitatively evaluated via two novel
quantities: topic semantic compactness and name saliency,
introduced in this work. Finally, for visualization purposes,
another dimensionality reduction is applied to visualize topics
in a topic map. This methodology is used to discovery topics in
medical inquiries received by Bayer™ Medical Information
regarding the oncology drug regorafenib.

METHODS

Machine Learning Approach to Discover
Topics in Medical Inquiries
Text Representation
One of the main challenges of topic discovery in short text is
sparseness: it is not possible to extract semantic information from
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word co-occurrences because words rarely appear together
since the text is short. In our case, the sparseness problem is
exacerbated by two following aspects. First, the amount of data
available is limited: most medicinal products receive less than
4,000 medical inquiries yearly. Second, medical inquiries are
sent by patients as well as healthcare professionals (e.g.
physicians, pharmacists, nurses): this leads to inquiries with
widely different writing styles, containing a mixture of
common and specialized medical text. The sparsity problem
can be tackled by leveraging word embedding models trained
on large corpora; these embeddings have been shown to learn
semantic similarities directly from data, even for specialized
biomedical text (Alsentzer et al., 2019; Beltagy et al., 2019; Lee
et al., 2019; Neumann et al., 2019). Specifically, we use the
scispaCy word embedding model (Neumann et al., 2019),
which was trained on a large corpus containing scientific
abstracts from medical literature (PubMed) as well as web
pages (OntoNotes 5.0 corpus (Pradhan et al., 2013)). This
assorted training corpus enables the model to treat specialized
medical terminology and layman terms on the same footing, so
that medical topics are discovered regardless of the
writing style.

One of the main disadvantages of word vector (word2vec)
models - like the (scispaCy) model used in this work - is their
inability to handle out-of-vocabulary (oov) words: if a word
appearing in the text is not included in the model vocabulary,
it is effectively skipped from the analysis (i.e. a vector of all zeros is
assigned to it). To tackle this issue, several models have been
proposed, initially based on chargram level embeddings (FastText

(Bojanowski et al., 2017)), and more recently contextual
embeddings based on character (ELMO (Peters et al., 2018)),
or byte pair encoding (Sennrich et al., 2016) representations
(BERT (Devlin et al., 2019)). Even though other advancements
- namely word polysemy handling and the use of attention
(Vaswani et al., 2017) - were arguably the decisive factors,
improvements in oov word handling also contributed in
making ELMO and BERT the de facto gold standard for
natural language processing, at least for supervised learning tasks.

Even though the use of contextual word embeddings is
generally beneficial and can be readily incorporated in our
approach (simply substituting the word representation), we
notice that - given the large amount of noise present and the
purely unsupervised setting - a word2vec model is actually
advantageous for the task of extracting medical topics from
real-word medical inquiries. Indeed, using a model with a
limited yet comprehensive vocabulary (the scispaCy model
used in this work includes 600 k word vectors) constitutes a
principled, data-driven, efficient, and effective way to filter
relevant information from the noise present in the corpus.
This filtering is principled, and data driven because the words
(and vectors) included in the model vocabulary are automatically
determined in the scispaCy training procedure by optimizing the
performance on biomedical text benchmarks (Neumann et al.,
2019). This also leads to harmonization of the medical inquiry
corpus by eliminating both non-relevant region-specific terms,
and noise introduced by machine translation (words or
expressions are sometimes not translated but simply copied
still in the original language (Knowles et al., 2018)). Clearly, in

FIGURE 1 | From medical inquiries to medical topics via natural language processing and machine learning.
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this context it is of paramount importance to use specialized
biomedical embeddings so that the word2vec model has a
comprehensive knowledge of medical terms despite its
relatively limited vocabulary.

Table 1 presents a qualitative comparison of a standard
embedding (en core web lg, trained on the Common Crawl)
and a specialized biomedical embedding (scispaCy en core sci lg,
trained also on PubMed). Specifically, for a given probe word (i.e.
leukemia, carcinoma, blood), the words most semantically similar
to it - measured by the cosine similarity between word vectors -
are retrieved, together with their similarity with the probe word
(shown in parenthesis, 1.0 being the highest possible similarity). It
is evident that the biomedical embedding returns much more
relevant and medically specific terms. For instance, given the
probe word leukemia, the standard embedding returns generic
terms like cancer, tumor, chemotherapy which are broadly related
to oncology, but not necessarily to leukemia. In contrast, the
biomedical embedding returns more specialized (and medically
relevant) terms like lymphoblastic,myelomonocytic,myelogenous,
myeloid, promyelocytic: acute lymphoblastic, chronic
myelomonocytic, chronic myelogenous, adult acute myeloid,
and acute promyelocytic are all types of leukemia.

Clustering Similar Medical Inquiries via Hierarchical
Clustering
We have shown in the previous section that word embeddings
provide a natural way to include semantic information (i.e.
meaning of individual words) in the modeling. Medical
inquiries comprise multiple words, and therefore a semantic
representation for each inquiry needs to be computed from
the word-level embeddings. We accomplish this by simply
averaging the embeddings of the words belonging to the
inquiry, thus obtaining one vector for each inquiry. Since
these vectors capture semantic information, medical inquiries
bearing similar meaning are mapped to nearby vectors in the
high-dimensional embedding space. To group similar inquiries,

clustering is performed in this embedding space, and for each
medicinal product separately.

Before clustering is performed, a non-linear dimensionality
reduction is applied to lower the dimensionality of the text
representation, similar to Ref. 29. We utilize the UMAP
algorithm (McInnes et al., 2018a; McInnes et al., 2018b)
because of its firm mathematical foundations from manifold
learning and fuzzy topology, ability to meaningfully project to
any number of dimensions (not only two or three like t-SNE (van
der Maaten and Hinton, 2008)), and computational efficiency.
Reducing the dimensionality also considerably improves the
clustering computational performance, greatly easing model
deployment to production, especially for drugs with more than
5,000 inquiries.

Usually, it is not conducive to define an appropriate number of
clusters a priori. A reasonable number of clusters depends on
various interdependent factors: number of incoming inquiries,
therapeutic area of the medicine, time frame of the analysis, and
intrinsic amount of information (i.e. variety of the medical
inquiries). For a given medicinal product, typically a handful
of frequently asked questions covers a large volume of inquiries,
accompanied by numerous low-volume and less cohesive inquiry
clusters. These low-volume clusters often contain valuable
information, which might not even be known to medical
experts: their low volume makes it difficult to detect them via
manual inspection. To perform clustering in the embedding
space, we use the hierarchical, density-based clustering
algorithm HDBSCAN (Campello et al., 2013; Melo et al., 2016;
McInnes et al., 2017). As customary in unsupervised learning
tasks, one needs to provide some information on the desired
granularity, i.e. how fine or coarse the clustering should be. In
HDSBCAN, this is accomplished by specifying a single, intuitive
hyper-parameter (min cluster size). In our case, the objective is to
obtain approximately 100 clusters so that the results can be easily
analyzed by medical experts. Thus, the main factor in defining
min cluster size is the number of inquiries for a given medicinal

TABLE 1 | Illustrative comparison between standard and biomedical word embeddings.

Probe word Most similar words
(standard embedding)

Most similar words
(biomedical embedding)

leukemia cancer (0.68), cancers (0.65), tumor (0.65) leukaemia (0.97), leukemias (0.88), lymphoblastic (0.80)
tumors (0.64), chemotherapy (0.63), marrow (0.63) myelomonocytic (0.80), myelogenous (0.80), myeloid (0.80)
prognosis (0.61), malignant (0.61), anemia (0.60) promyelocytic (0.73), leukaemic (0.73), leukemic (0.72)
diagnosed (0.60), pancreatic (0.59), ovarian (0.59) blastic (0.67), blasts (0.67), therapy-related (0.66)

blood urine (0.63), bleeding (0.62), liver (0.61) hematocrit (0.60), haematocrit (0.59), whole-blood (0.58)
bloodstream (0.59), glucose (0.59), kidney (0.58) Arterial (0.57), pressure (0.55), heparinized (0.54)
heart (0.58), kidneys (0.57), cholesterol (0.57) oncotic (0.53), hemoglobin (0.53), haemoglobin (0.52)
stomach (0.56), saliva (0.56), disease (0.56) venous (0.52), peripheral (0.52), venipuncture (0.51)

carcinoma tumors (0.78), tumor (0.76), malignant (0.75) carcinomas (0.90), adenocarcinoma (0.88), adenocarcinomas (0.79)
cancers (0.74), ovarian (0.71), pancreatic (0.69) squamous (0.76), well-differentiated (0.70), metastasizing (0.68)
lesions (0.67), cancer (0.66), prognosis (0.66) urothelial (0.68), tumours (0.68), cancers (0.68)
lung (0.65), prostate (0.64), leukemia (0.60) cancer (0.68), non-metastatic (0.67), tumors (0.66)

The most similar words to the probe words blood, carcinoma, and leukemia are shown for a standard and a biomedical word embedding. Values in parenthesis indicate the similarity with
the corresponding probe word (maximum similarity is 1). The biomedical embedding model returns more specific and more medically relevant terms. The standard and biomedical
embedding models are spaCy en core web lg and scispaCy en core sci lg, respectively.
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drug: the larger the medical inquiry volume, the larger the
parameter min cluster size. Note that min cluster size is not a
strict controller of cluster size (and thus how many clusters
should be formed), but rather a guidance provided to the
algorithm regarding the desired clustering granularity. It is
also possible to combine different min cluster size for the same
dataset, i.e. using a finer granularity for more recent inquiries,
thus enabling the discovery of new topics when only few inquiries
are received, at a price however of an increase in noise given the
low data volume. Moreover,min cluster size is very slowly varying
with data (medical inquiry) volume, which facilitate its
determination (see Supplementary Material). At the end of
this step, for each drug a set of clusters is returned, each
containing a collection of medical inquiries. A given medical
inquiry is associated to one topic only, in accordance with the
single topic assumption.

In order to convey the cluster content to users, a name (or
headline) needs to be determined for each cluster. To this end, the
top-five most recurring words for each cluster are concatenated,
provided that they appear in at least 20% of the inquiries
belonging to that cluster; this frequency threshold is set to
avoid to include in the topic name words that appear very
infrequently but are still in the top-five words. Thus, if a word
does not fulfill the frequency requirement, it is not included in the
topic name (resulting in topic names with less than five words).
By such naming (topic creation), the clusters are represented by a
set of words, which summarize their semantic content.

Topic Merging and Topic Map Calculation
From this list of candidate topics, the vector representation for
each word in the topic name is calculated; the topic name vector is
then obtained by averaging the word vectors of the words present
in the topic name. Topics are merged if their similarity evaluated
as cosine similarity between their topic name vectors - is larger
than a threshold. Threshold values range between 0.8 and 0.95
depending on the drug considered. This is done to limit the
number of topics to be presented to medical experts. We favor
this simple method over applying again HDSBCAN because the
clustering would have to operate on very few datapoints (∼100
topics). We also notice that HDBSCAN tends to group topics
quite aggressively (even with min cluster size � 2), which would
result in potentially loosing important information.

After the topics are merged, new topic names are generated
according to the procedure outlined above. The final result is a list
of topics defined by a given name, each containing a set of similar
medical inquiries. The list of discovered topics is then outputted
and presented to medical experts.

Since the goal is to extract as much knowledge as possible from
incoming medical inquiries, a relatively large number of topics
(typically around 100) is returned to medical experts for each
medicinal product. To facilitate topic exploration and analysis,
topics are visualized on a map that reflects the similarity between
topics (Figure 2A): topics close to each other in this map are
semantically similar. To obtain this semantic map, first topic
vectors are computed by averaging the text representation of all
inquiries belonging to a given topic; then, a dimensionality
reduction to two dimensions via UMAP is performed.

Topic Evaluation: Topic Semantic
Compactness and Name Saliency
Once topics are discovered, it is desirable to provide medical
experts with information regarding the quality of a given topic.

The most popular topic evaluation metrics for topic modelling
on long text are UCI (Newman et al., 2010) and UMass (Mimno
et al., 2011). However, both UCI and UMass metrics are not good
indicators for quality of topics in short text topic modelling due to
the sparseness problem (Quan et al., 2015). In Ref. 44, a purity
measure is introduced to evaluate short text topic modelling;
however, it requires pairs of short and long documents (e.g.
abstract and corresponding full text article), and thus it is not
applicable here because there is no long document associated to a
given medical inquiry. Indeed, evaluation of short text topic
modelling is an open research problem (Qiang et al., 2019).
An additional challenge is the absence of labels. Performing
annotations would require substantial manual effort by
specialized medical professionals and would be of limited use
because one of the main goals is to discover previously unknown
topics as new inquiries are received. The absence of labels
precludes the use of the metrics based on purity and
normalized mutual information proposed in Ref. Rosenberg
and Hirschberg (2007), Huang et al. (2013), Yin and Wang
(2014), Aletras et al. (2013). bring forward the valuable idea of
using distributional semantic to evaluate topic coherence,
exploiting the semantic similarity learned by word2vec models.
Topic coherence is assessed by calculating the similarity among
the top n-words of a given topic: semantically similar top n-words
lead to higher topic coherence. If this might be in general
desirable, in the case of discovering medical topics it is
actually detrimental: interesting (and potentially previously
unknown) topics are often characterized by top n-words
which are not semantically similar. For example, a medical
topic having as top 2-words rivaroxaban (an anticoagulant
medication) and gluten is clearly relevant from a medical topic
discovery standpoint. However, rivaroxaban and gluten are not
semantically similar, and thus the metric proposed in Ref. 47
would consider this as a low coherence (and thus low quality)
topic, in stark contrast with human expert judgment. Analogous
considerations apply to the indirect confirmation measures in
Roeder et al. (2015): words emerging in novel topics would have
rarely appeared before in a shared context. For this reason, we
introduce a new measure of topic compactness which takes into
account the semantics of the inquiries, and does not require any
labeled data. Specifically, we compute the similarity of all
inquiries belonging to a given topic with each other (excluding
self-similarity), sum the elements of the resulting similarity
matrix, and divide by the total number of elements in this
matrix. The topic semantic compactness cα of topic α reads

cα � ∑
|Cα |

i�1
∑
|Cα |

j�1
i≠ j

S(qi, qj)
|Cα|(|Cα| − 1) (1)

where |Cα| is the cardinality of topic α (how many inquiries are
in topic α), qi (and qj) is the word vector representing inquiry i
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(j), and S is a function quantifying the semantic similarity
between inquiry qi and qj, taking values between 0 and 1 (S � 1
when qi and qj are identical, and S � 0 being the lowest possible
similarity). Given the chosen normalization factor (i.e. the
denominator in Eq. 1), 0 ≤ cα ≤ 1 and thus cα can be directly
used as (a proxy for) topic quality score. The topic compactness
maximum (cα � 1) is attained if and only if every sentence (after
preprocessing) contains exactly the same words. It is important to
point out that cα automatically takes semantics into account:
different but semantically similar medical inquiries would still
have high similarity score, and thus would lead (as desired) to a

high topic semantic compactness, despite these inquiries using
different words to express similar content. Contrary to Ref. 47, the
topic semantic compactness cα introduced in Eq. 1 does not
artificially penalize novel topics just because they associate
semantically different words appearing in the same inquiry. To
come back to the previous example, if numerous inquiries in
a discovered topic contain the words rivaroxaban and gluten,
the topic semantic compactness would be high (as desired),
regardless from the fact that the top 2-words are not
semantically similar since the similarity is evaluated at the
inquiry level (by S (qi,qj) in Eq. 1).

FIGURE 2 | Topic discovery for medical inquiries on regorafenib. (A) Topic semantic map. Axis are the non-linear dimensionality components and thus are not
shown. (B) Wordclouds for selected topics.
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The topic name is one of the main information shown to the
users to summarize the semantic content of a discovered medical
topic. It is therefore of interest to quantify how representative the
name is for a given medical topic. This is tackled by answering the
following question: how similar is the name with the inquiries
grouped in the topic it represents? To this end, we calculate the
name saliency τα for medical topic α by calculating the similarity
of the word vector representing the topic name with the word
vectors representing the inquiries in the topic, sum these
similarity values, and divide by the total number of inquiries
in the topic. This reads

τα � ∑
|Cα |

i�1

S(tα, qi)
|Cα| (2)

where |Cα| is the cardinality of topic α (how many inquiries are in
topic α), tα is the word vector representing the name of topic α,
and qi is the vector representing inquiry i. This returns a score (0
≤ τα ≤ 1) which quantifies how representative (salient) the name
is for the topic it represents. As in the case of the topic semantic
compactness, the name saliency τα takes natively semantics (e.g.
synonyms) into account via S (tα, qi) in Eq. 2. In both Eqs. 1,2, the
cosine similarity is used as similarity measure.

RESULTS

A Real-World Example of Topic Discovery:
The Oncology Drug Regorafenib
As a real-world example of topic discovery, we present the results for
medical inquiries on the oncology drug regorafenib (Bekaii-Saab et
al., 2019). Regorafenib is an oral multikinase inhibitor which inhibits
various signal pathways responsible for tumor growth.

In this work, all unsolicited medical inquiries received by
Bayer™ worldwide in the time frame July 2019-June 2020 are
considered (3,880 medical inquiries, see Figure 3). All non-
English inquiries are translated to English using machine
translation. These inquiries are then pre-processed: acronyms
and abbreviations are resolved; non-informative phrases, words
or patterns are removed; text is tokenized and lemmatized.
Additional details are provided in Supplementary Material.
Then, the topic discovery algorithm introduced above is
applied with min cluster size � 6 and the UMAP
dimensionality reduction to 100 components.

The semantic map with the discovered topics is shown in
Figure 2A. These topics span a relatively large variety of themes,
ranging from interactions with food and adverse drug reactions to
purchase costs and literature requests. The topics are judged as
meaningful and medically relevant by medical information
specialists, based on their expert knowledge of the medicinal product.

Topics are also specific: the unsupervised learning approach
allows information to emerge directly from the data, without
recurring to predefined lists of keywords or classes, as required
when using ontologies or supervised learning. An example of a
very specialized topic for inquiries on scientific literature is
treatment role bruix grothey evolve: 12 requests related to the
review article on the treatment of advanced cancer with
regorafenib published on February 2020 (Grothey et al., 2020).
Other examples are the five topics fat diet high meal low, eat
breakfast day drink, precaution diet, eat time, contraindication
diet. Even though all these topics relate to nutrition, they are
addressing different aspects. It is quite advantageous that they are
identified as distinct since medical recommendations will likely
differ across these five topics.

Thanks to the inclusion of semantics via word embedding, the
algorithm is able to group together inquiries having similarmeaning,

FIGURE 3 | Length distribution of medical inquiries on regorafenib. The dataset contains 3,880 medical inquiries; most of the inquiries (∼90%) contains less than
fifteen words after preprocessing.
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even though the actual words in them are distinct. For instance, the
topic pain side effect foot fatigue comprises 21 inquiries on medical
issues (which may or may not be related with the medicine), in
which the following words appear: pain (seven times), side effect (six
times) nausea (three times), fatigue (five times), dysphonia (two
times). The algorithm is able to cluster these inquiries together
because similar inquiries are mapped close to each other in the high
dimensional semantic space where clustering is performed. This is
corroborated by the relatively high similarity score between the
terms appearing in these inquiries (pain-nausea: 0.66, nausea-
fatigue:0.61, pain-fatigue:0.71, dysphonia-pain:0.55, dysphonia-
fatigue:0.49), scores much higher than zero, zero being the score
expected for unrelated terms(cf. pain-day:0.05, nausea-sun:0.08).
Conversely, if there is a moderate number of inquiries on a
specific medical matter, the algorithm is generally able to detect
that signal, as in the case of mucositis and hoarse in the two topics
daily care method rash mucositis, and daily care method rash hoarse.

As shown in Figure 2A, the automatically generated topic names
provide a reasonably good insight into the semantic content of their
respective topics. However, one needs to be mindful that the topic
might - and usually will - contain additional information of relevance.
To convey this information in a simple yet effective way to the users,
wordclouds are generated for each topic; examples of wordcloud are
shown in Figure 2B. For example, in the wordcloud of topic
compassionate program (Figure 2B, 1st column-2nd row),
concepts not included in the topic name (e.g. assistance, interested,
access, status) appear, thus giving further insight into the topic
content. In some cases, even the wordcloud might not convey the
topicmeaning: users will then resort tomanually inspect the inquiries
belonging to the topic. For instance, the content of topic chinese is not
clear, neither from the topic name nor from the wordcloud; however,
inspection of the actual inquiries quickly reveals that they refer to the
interaction between Chinese medicine and regorafenib (the word
medicine does not appear since it is a stopword). Other examples are
al et clin and long, which group together requests for scientific articles
and product durability, respectively. Topic quality provides a useful
guidance when exploring topics. If topic quality is close to one,
medical inquiries in that topic are all very similar, and the topic name
is expected to summarize the topic content well. Conversely, topics
with low quality will contain inquiries that might differ quite
substantially yet are similar enough to be clustered together by the
algorithm. In these cases, manual inspection of the underlying
medical inquiries may be a good strategy. From Figure 2A, it
appears that smaller topics tend to have higher topic scores,
although no clear trend emerges.

Finally, in addition of having similar inquiries within topics, the
model captures semantic similarities between topics. This is apparent
from Figure 2A: similar topics tend to be close to each other in the
semantic map. Even though this feature does not influence the topic
discovered, from a user perspective it provides a clear advantagewhen
exploring topics (e.g. compared to reading them from as a simple list).

DISCUSSION

This study introduces an unsupervised machine learning
approach to automatically discover topics from medical

inquiries. After the initial (one-time) effort for preprocessing
(e.g. abbreviation definition, stopword refinement) and hyper-
parameters determination, the algorithm runs without requiring
any human intervention, discovering key topics as medical
inquiries are received. Topics can be discovered even if only a
small number of inquiries is present, and are generally specific,
thus enabling targeted, informed decisions by medical experts.
Being completely unsupervised, the algorithm can discover topics
that were neither known nor expected in advance, topics which
often are the most valuable. This is in stark contrast with ontology
or supervised based approaches, where topics need to be defined a
priori (as collections of keywords or classes), and incoming text
can be associated only to these predefined lists of topics, thus
hindering the discovery of a priori unknown topics. The machine
learning approach introduced here does not use ontologies
(which are costly and hard to build, validate, maintain, and
difficult to apply when layman and specialized medical terms
are combined), and instead it incorporates domain knowledge via
specialized biomedical word embeddings. This allows to readily
apply the topic discovery algorithm to different drugs, without the
burden of having to develop specialized ontologies for each
product or therapeutic area. Indeed, the algorithm is
periodically analyzing hundreds of thousands of medical
inquiries for sixteen Bayer™ medicinal products,
encompassing cardiology, oncology, gynecology, hematology,
and ophthalmology.

Our approach has several limitations. First, it can happen that a
small fraction of inquiries associated to a given topic are actually
extraneous to it, especially for semantically broad topics. This is
because - due to the noise present in this real-world dataset - the soft
clustering HDBSCAN algorithm must be applied with a low
probability threshold for cluster assignment to avoid the majority
of inquiries being considered as outliers (see Supplementary
Material). Second, even though the topic names are generally
quite informative, a medical expert needs to read the actual
inquiries to fully grasp the topic meaning, especially if a decision
will be made on the grounds of the discovered topics. This is however
not burdensome because inspection is limited to the inquiries
associated to a given topic (and not all inquiries). Last, some
discovered topics are judged by medical experts based on their
expert knowledge - so similar that they could have been merged
in a single topic, but are considered distinct by the algorithm. In these
cases, manual topic grouping might be required to determine the top
topics by inquiry volumes. Still, these similar topics very often appear
close to each other in the topic map.

Despite these limitations, this study demonstrates that medical
inquiries contain useful information, and that machine learning
can extract this information in an automatic way, discovering
topics that are judged by medical information specialists as
meaningful and valuable. The hope is that this will stimulate
mining of medical inquiries, andmore generally the use of natural
language processing and unsupervised learning in the medical
industry. Interesting future directions are the inclusion of a priori
expert knowledge (e.g. a list of expected topics) while at the same
time maintaining the ability to discover new and previously
unknown topics, and grouping topics in meta-topics though a
clustering hierarchy.
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