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Accessibility, adaptability, and transparency of Brain-Computer Interface (BCI) tools

and the data they collect will likely impact how we collectively navigate a new digital

age. This discussion reviews some of the diverse and transdisciplinary applications of

BCI technology and draws speculative inferences about the ways in which BCI tools,

combined with machine learning (ML) algorithms may shape the future. BCIs come

with substantial ethical and risk considerations, and it is argued that open source

principles may help us navigate complex dilemmas by encouraging experimentation

and making developments public as we build safeguards into this new paradigm.

Bringing open-source principles of adaptability and transparency to BCI tools can help

democratize the technology, permitting more voices to contribute to the conversation

of what a BCI-driven future should look like. Open-source BCI tools and access to raw

data, in contrast to black-box algorithms and limited access to summary data, are critical

facets enabling artists, DIYers, researchers and other domain experts to participate in the

conversation about how to study and augment human consciousness. Looking forward

to a future in which augmented and virtual reality become integral parts of daily life,

BCIs will likely play an increasingly important role in creating closed-loop feedback for

generative content. Brain-computer interfaces are uniquely situated to provide artificial

intelligence (AI) algorithms the necessary data for determining the decoding and timing

of content delivery. The extent to which these algorithms are open-source may be critical

to examine them for integrity, implicit bias, and conflicts of interest.
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INTRODUCTION

Brain-computer interfaces (BCIs) are poised to transform the nature of human consciousness in
the 21st century. In this context, we adopt the operational definition of being conscious as having
an experience – the subjective phenomena “what it’s like” to see an image, hear a sound, conceive a
thought, or be aware of an emotion (Sandberg et al., 2010; Faivre et al., 2015; Koch et al., 2016). We
speculate based on prior research that closed-loop systems with a combination of stimuli (mixed
reality), sensing (BCI) and predictive algorithms (AI and its subsets machine learning and deep
learning) will increasingly be capable to alter the subjective experience in a manner that is tightly
coupled with changes in emotion regulation (Lorenzetti et al., 2018; Montana et al., 2020), and
cognitive augmentations such as attention improvements (Wang et al., 2019), episodic memory
enhancement (Burke et al., 2015). These transformations may not only make humanity more
productive and efficient, but also potentially more expressive, understanding, and empathetic.
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We can begin by classifying BCIs into three main groups:
(1) invasive approach (Wolpaw et al., 2000), (2) partially
invasive approach, and (3) non-invasive approach. An invasive
approach requires electrodes to be physically implanted into
the brain’s gray matter by neurosurgery, making it possible
to measure local field potentials. A partially invasive approach
(e.g., electrocorticography—ECoG) is applied to the inside of
the skull yet outside the gray matter. A non-invasive approach
(e.g., electroencephalography—EEG and functional Magnetic
Resonance Imaging—fMRI) is the most frequently used signal
capturing method. This system is placed outside of the skull on
the scalp and records the brain activities inside of the skull and
on the surface of the brain membranes. Both EEG and fMRI
give different perspectives and enable us to “look” inside the
brain (Kropotov, 2010). It is worth noting that invasive and
partially invasive approaches are prone to scar tissue, are difficult
to operate, and expensive. Although EEG signals can be prone to
noise and signal distortion, they are easily measured and have a
good temporal resolution. This and the fact that fMRI devices are
expensive and cumbersome to operatemake EEG themost widely
used method for recording brain activity in BCI systems. EEG-
based devices directly measure electrical potentials produced by
the brain’s neural synaptic activities.

While the use of EEG was originally limited to medical
imaging research labs, more compact and affordable EEG systems
have opened up opportunities for other applications to be
explored. In this paper, we discuss some of the ways that
these new technologies have been applied in areas ranging
from the arts, self-improvement and rehabilitation to gaming
and augmented reality. While consumer electronics devices
have increased the accessibility to BCI technologies, we also
discuss some of the ways in which these same devices limit
their adaptability beyond pre-defined use-cases as well as the
transparency of the data and algorithms. For the context of
this discussion, we use BCI technology to describe devices that
measure a broad array of biometric signals, not only directly
from the central nervous system (CNS), but also from the
peripheral nervous system (PNS). Because changes in cognitive
and emotional states engage sympathetic and parasympathetic
responses of the PNS, changes in heart rate, electrodermal
activity, and other biometric signals can provide a detailed
window into brain activity (Picard, 1995).

Our discussion briefly reviews the evolution of BCI devices
with examples of how they have been applied outside of
traditional research settings. Within a transdisciplinary context,
including neuroscience, computer science, health, philosophy,
art, and a rapidly developing technology landscape, we review
specific ways in which limitations to the adaptability and
transparency of BCI technology can have implications for
applications both within and outside research contexts. We
examine how applying open-source principles may help to
democratize the technology and overcome some of these
limitations, both for traditional research as well as alternative
uses. Looking forward to a future in which BCIs are likely
to become increasingly integrated into our everyday lives,
we believe that it will be important to involve more voices
from across traditional disciplinary divides contributing to the

conversation about what our future should look like and how BCI
devices and data should contribute to our lives. From public BCI
art to hackathons and K-12 education, it will likely be critical to
be asking more questions, new types of questions from different
perspectives, and starting at a younger age, to ensure that BCI
technology will serve society at large.

As BCIs move beyond siloed research labs toward new
and more diverse use cases, the accessibility, adaptability, and
transparency of BCI tools and data will significantly impact how
we collectively navigate this new digital age. Technology and the
self are becoming increasingly coupled, allowing us to learn faster,
create new ways to express ourselves and share information like
never before. The extent to which these technologies are open
and accessible for more people to engage with them and examine
their integrity may shape the nature of our consciousness and the
future of humanity.

CHANGE IN PERSPECTIVE

Artists and do-it-yourself-ers (DIYers) have been exploring novel
BCI applications since before BCI was an acronym. Artists and
DIYers often adopt new technologies to modify their original
condition and purpose beyond the “intended” use. Going back 60
years, artists proposed novel experiments such as the sonification
of alpha waves to excavate untapped musical imaginations or
subconscious musicality. There was especially a great interest by
composers in the use of feedback, both acoustic and electronic,
as a fundamental musical process. In 1965, physicist Edmond
Dewan and composer Alvin Lucier collaborated on Music for
the Solo Performer, shown in Figure 1. This piece is generally
considered to be the first musical work to use brain waves and
directly translate them into musical sound. Lucier’s work remains
a pioneering and important piece of 20th-century music, as well
as one of the touchstones of early “live” electronic music. Classic
feedback pieces such as David Behrman’s WaveTrain (Behrman,
1998), Max Neuhaus’ Public Supply (Max, 1977), and Terry
Riley’s tape delay feedback (Sitsky, 2002) were also created in this
new wave of exploration. These early artists were often found

FIGURE 1 | Physicist Edmond Dewan and composer Alvin Lucier collaborated

on music for the solo performer.
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building BCIs and synthesizers from scratch using basic electrical
components (resistors, capacitors, amplifiers, etc.), which gave
them a very high degree of flexibility to create and adapt their
circuits to do strange and wonderful things but also posed a high
barrier of entry to create and use the technology.

The explosion of consumer electronics during the 80 and
90’s resulted in substantial moves in the BCI space in the
late 2000’s and early 2010’s. NeuroSky, Emotiv, and Zeo Sleep
Coach among others developed consumer EEG devices and
BodyMedia, Polar, Fitbit and other devices measured signals
from the autonomic nervous system (Nijboer et al., 2011).
This increase in accessibility of BCI technologies has enjoyed
a commensurate blossoming of BCI-driven art. Emotiv’s EPOC
headset has been utilized in a number of artistic contexts
including measuring the Magic of Mutual Gaze (Abramovic
et al., 2014), a durational performance art piece by Marina
Abramovic that utilized the Emotiv EPOC to visualize and neuro-
contextualize the synchrony of two people engaged in mutual
gaze (as shown in Figure 2). Noor: A Brain Opera (Pearlman,
2016) turned brainwave data into an immersive audio-visual
experience in which the internal state of the performers drives
the operatic performance. Vessels (Leslie, 2020) is a brain-body
performance piece that combines flute improvisation with live,
sonified brain and body data from a Muse headband. Polar
handheld devices similarly became the springboard for a number
of artworks including Pulse Spiral (Lozano-Hemmer, 2008) and
Emergence, as shown in Figure 3 (Montgomery et al., 2011),
measuring viewer’s heartbeats to reflect on the nature of their
internal state and the human-computer interface.

While this consumer electronics explosion made BCI
technology more accessible, the resulting devices (including the
combination of hardware, firmware, and required software) often
place limits on the adaptability and extensibility of the device.
In many cases raw data is made completely inaccessible or is
only offered at high price points, tending to confine the resulting
artistic applications into more pre-defined use-cases.

Around the same time as the advent of consumer-grade
BCI devices, the DIY maker movement began to take root
in the 2000’s, in part to break down the dichotomy between
accessibility and flexibility/extensibility. One of the movement’s
cornerstones was born when a group of Italian postgraduate
students and a lecturer at the Interaction Design Institute in
Ivrea created the first version of what would go on to become
the Arduino project (Banzi et al., 2015). The OpenEEG project
(Griffith, 2006) quickly became an early go-to open-source
circuit for everything from academic tutorials and clothing
that lights up with brain activity to increase the expressiveness
of the wearer (Montgomery, 2010) to adaptive drone piloting
(Ossmann et al., 2014), but the volume-pricing of consumer
electronics quickly became an attractive opportunity for artists
and DIYers alike (Montgomery and Laefsky, 2011) to find
“alternative uses” for the devices. Hacking of theMattel MindFlex
(How to Hack Toy EEGs | Frontier Nerds, 2010) to extract
derivative EEG power-band data and of the Zeo Sleep Coach to
extract raw EEG data (Dan, 2011) enabled a multiplicity of art
installations such as Telephone Rewired, using rhythmic visual
and audio patterns to alter endogenous brain oscillations and
create an immersive aesthetic experience and altered subjective
state (Produce Consume Robot and LoVid, 2013) and Teletron
by the band Apples in Stereo, an instrument which allows the
user to play an analog synth completely through brain activity
(Schneider, 2010). These projects leveraged the wearability of
consumer-grade EEG devices to break down barriers between
artistic expression and scientific research.

In the 2010’s, Pulse Sensor, OpenBCI, EmotiBit, and other
fully open-source products with full data access further broke
down the barriers to accessibility and extensibility that gave
artists and creative technologists as well as researchers and
educators access to high-quality BCI platforms beyond the
confines of specific intended uses (Hoffman and Bast, 2017;
Montgomery, 2018a; Gupta et al., 2020; Masui et al., 2020; Vujic
et al., 2020). Ever since, developers have been fascinated with

FIGURE 2 | Measuring the magic of mutual gaze & the artist is present. Left: Measuring the magic of mutual gaze at the garage museum for contemporary art,

Moscow in 2011. Photograph by Maxim Lubimov © Garage center for contemporary culture. Video: www.youtube.com/watch?v=Ut9oPo8sLJw&t=73s Right:

Marina Abramović, the artist is present, performance, 3 months, the museum of modern art, New York, NY (2010), photography by Marco Anelli. Courtesy of the

Marina Abramović Archives.
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FIGURE 3 | Emergence installation at open house gallery, New York City (left) and digital memories triggered by successive heartbeats and uploaded to Flickr (right).

Left image by Sean Montgomery. Right images by Emergence courtesy of Sean Montgomery. Web: http://produceconsumerobot.com/emergence/; Leonardo

Electronic Almanac Vol 18 No 5 p 6–9.

the possibility of enhancing the gaming experience via BCIs
(Lécuyer et al., 2008). Games tailored to the user’s affective state—
immersion, flow, frustration, surprise, etc.—like the famous
World of Warcraft, allow an avatar’s appearance to reflect the
gamer’s cognitive state instead of being controlled through
keyboarding (Nijholt et al., 2009). It is not unrealistic to believe
that the first mass application of non-medical BCIs will be in
the gaming and entertainment field. Standalone examples already
have a market, and extensions to console games are likely to
follow soon (Nijboer et al., 2011). Other projects like Emotional
Beasts allowed the exploration of the user’s self-expression in
VR space by transforming the appearance of the avatar in an
artistic way based on the user’s affective state, thereby pulling
the avatar design away from the uncanny valley problem and
making it more expressive and more relatable (Bernal and Maes,
2017). Through the use of VR headsets that have been altered
to accommodate physiological sensors (Bernal et al., 2018),
the system collects and integrates physiological data to enable
the perception of human affect. Bernal et al. showed how the
PhysioHMD system can be used to help develop personalized
phobia treatment by creating a closed loop experience. The
images (insect sprites) spawned through the particle system can
be modified (speed, size, the rate of spawn, movement) in the
Unity inspector to increase or decrease the arousal level of
the user.

As we look forward to the 2020’s and beyond, it’s reasonable to
expect that BCI technology will become a greater part of everyday

life for humanity and that these technologies may integrate
with and potentially change aspects of human cognition. The
extent to which artists and makers are enabled to be a part
of the conversation about what this future should look like
and where there are potential dystopian hazards, may play a
pivotal role in shaping that future (Flisfeder, 2018; Montgomery,
2018b). The level of engagement and dialog will depend on
the accessibility made possible through volume production
of consumer electronics, the adaptability and flexibility made
possible through open-source technology, and granular access to
raw data that allows for going beyond pre-baked intended uses
to ask new questions about brains, computers and the interfaces
that increasingly connect them.

MY DATA, THEIR DATA?

Looking Behind the Curtain
As availability of consumer-grade BCI and biometric
technologies has grown, the application of these technologies
in research, serious games, and rehabilitation has surged
(View Research, 2019). Instead of costing tens of thousands of
U.S. dollars and requiring participants to wear saline-soaked
headgear entangled with dozens of wires, it is now possible
to get meaningful BCI data from devices costing < US$1,000
in wireless and relatively easy to wear form factors, as shown
in Figure 4. The result has vastly opened up possibilities for
more people around the world to ask more and new types of
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FIGURE 4 | Consumer-grade BCI devices substantially improved the comfort

and wearability, permitting devices to be used in new contexts and new types

of questions to be asked. Top left, a standard wet EEG system, earlier systems

were very susceptible to movement artifacts. Top right, a wireless headset by

Emotiv, still uses wet electrodes but the setup is much quicker and wearability

much improved compared to earlier systems. Bottom left, ECG setup found in

most clinics, the setups commonly use 10 sticky electrodes to monitor cardiac

activity. Bottom right, today’s wrist-worn smartwatches can report user’s ECG

from the press of a button.

questions. For rehabilitation, that means it is easier to bring
devices into people’s homes or care facilities, allowing for many
more people to be served and for exploring new treatments
and methodologies (Sung et al., 2012). Bringing consumer BCI
technologies into the workplace has led to rapid development
ranging from serious games, to flight simulators and warehouse
safety training (Marshall et al., 2013; Huang et al., 2020) and
research labs can now ask new questions about the neuroscience
of interpersonal and classroom dynamics (Dikker et al., 2017,
2019a).

With these benefits of consumer-grade BCI devices, however,
has also come a challenge of transparency. Most of the consumer-
electronics world, including BCI devices, lives and dies by a
closed-source ethos. While patents can serve as a mechanism to
maintain transparency as well as a competitive advantage, it is
often difficult or impossible to patent BCI circuits and algorithms
because they are either not sufficiently novel or can be modified
slightly to avoid infringement claims, and yet, omitting specific
details (e.g., filter frequencies and other signal conditioning) can
bothmake it harder for others to simply rip off the product as well
as limit the ways the end-user can utilize and interpret the data.
The patent system is also rather slow and somewhat overrun, so
in a fast-moving technology landscape the competitive advantage
of a patent might be somewhat irrelevant by the time a patent is
actually granted. In addition to limiting access to raw data and
only providing end-users with summary statistics, a competitive

advantage is commonly maintained by creating a moat of closed-
source trade-secrets and datasets that prevent competitors from
moving into the space. On the other hand, essential to the world
of science is the principle of reproducibility, and in a number
of areas the scientific method and the closed-source veil stand
on different sides of the table propelling the stalwart march of
human knowledge (McNutt, 2014; Höller et al., 2017).

One way closed-source/closed-data ecosystems limit research
is in the scope of questions that are possible to ask. For example,
when examining EEG data, if only power-band statistics (alpha,
beta, gamma, etc.) are made available (as for example is the
case for the standard Emotiv license), much of the information
about synchrony in the brain is lost. Specifically, it is impossible
to investigate whether two regions of the brain are exhibiting
coherence or phase-locking with one another. There is wide
consensus among neuroscientists (Uhlhaas et al., 2009) that
synchrony is important in determining the efficacy of neuronal
communication, plasticity, and learning, and possibly even for
governing aspects of consciousness (Buzsaki, 2006). For example,
the phase-locking of EEG oscillations has been shown to increase
between different regions of the medial-temporal lobe during
successful memory formation (Miltner et al., 1999; Fries, 2015)
suggesting an important role in memory encoding or selective
attention (Fries, 2015). Similarly, increased coherence has been
associated with memory retrieval (Kaplan et al., 2014; Meyer
et al., 2015) and binding together of multi-modal representations
spanning different areas of the brain (Gray et al., 1989; Llinás
et al., 1998; Engel et al., 2001). In the context of this research,
it is likely that timing and synchrony in the brain are important
for some of the most interesting cognitive functions—memory
encoding and retrieval, associative learning, attention, and likely
others. However, when EEG data is reduced to power-band
statistics, the phase relationships and cycle-by-cycle timing
information is inherently lost. In doing so, it is possible that
some of the most important information about the operation
of the brain and how it relates to cognition may be lost in
an irreversible way. Similarly, as we increasingly apply machine
learning to EEG data, if only power-band data or other potentially
impoverished derivative metrics are used as inputs, this may
fundamentally limit the effectiveness of the resulting machine
learning models. In some cases the resulting models may lack
statistical power to make reliable predictions and in other cases
the models may overfit the power-band data and be unable to
adequately generalize and replicate the results in other contexts.
As the field of neuroscience continues working to understand
what the most important parameters of brain function are that
derive cognitive processes, having access to the raw EEG data will
likely be critical to unlock the true potential of this technology.

Further limitations can come when deriving metrics from
data preprocessed with closed-source algorithms. For example,
using heart rate (HR) data from common wrist-worn devices
(e.g., FitBit or Apple Watch) to calculate pulse rate variability
(PRV) can be substantially problematic. Similar to heart
rate variability (HRV), PRV is a metric that is particularly
dialed into the sympathetic/parasympathetic axis of the
autonomic nervous system (Berntson et al., 1997). By looking
at the relationship between fast and slow changes in HR it
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is possible to mathematically relate heart rate changes to
levels of epinephrine governing sympathetic “fight or flight”
responses and levels of acetylcholine governing parasympathetic
“rest and digest” responses (Appelhans and Luecken, 2006).
However, PRV calculations require long periods (typically 10+
min) of clean data, to accurately estimate the low frequency
(LF) and high frequency (HF) components used to assess
the sympathetic/parasympathetic ratio. While measuring
photoplethysmography (PPG) from the wrist is convenient, one
of the limitations is that it can be subject to substantial movement
artifacts depending on a host of factors (Biswas et al., 2019).
To deal with movement-related noise, consumer-grade devices

typically employ heavy-handed smoothing and interpolation
in order to give consumers a “best guess” HR value even when
the signal quality is low. While this interpolation can improve
the HR estimation and the consumer experience overall, as is
illustrated in Figure 5, the resulting PPG estimation can be very
substantially distorted (Morelli et al., 2018). Without access to
the original raw PPG data, researchers are simply stuck with
the HR estimates coming off the device with no path by which
to improve the HR detection as new algorithms are developed,
for example, based on recent research using a sensor fusion
approach combining PPG and accelerometer data (Kos et al.,
2017; Biswas et al., 2019). In contrast, open-source products

FIGURE 5 | Illustrative example of heart rate variability derivation and how smoothing heart rate data can lead to variability detecting changes in the

sympathetic/parasympathetic nervous system. Figure plots are based on data presented in Electrophysiology (1996). (A) shows the raw tachogram fluctuations in

heart rate during supine rest and (C) shows the derivative power spectral density (PSD) of the supine rest heart rate data to calculate the VLF, LF, and HF frequency

bands that can be used to assess autonomic nervous system balance. (B,D) show the raw heart rate tachogram and derived PSD plot after a 90 degree head-up tilt

physiological perturbation that increases the sympathetic nervous system response. Smoothing or interpolation algorithms acting on the raw rest tachogram data can

potentially generate tachogram data similar to the tilt condition in (B), leading to a spurious shift in the observed LF/HF ratio. In the context of wearable consumer

devices with potential data gaps and heavy-handed closed-source smoothing/interpolation algorithms, it is thereby possible to misinterpret smoothed or interpolated

data as a shift in the sympathetic/parasympathetic nervous system responding, even when no such shift has occurred.
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like OpenBCI (Murphy and Russomanno, 2013), Pulse Sensor
(WorldFamousElectronicst, 2011) and EmotiBit (https://www.
emotibit.com/, Montgomery 2020) provide access to the raw
data as well as the electrical specifications and source code to
understand the data collection and derivatives.

Worse than the data distortion itself is that the algorithms
performing the interpolation on consumer-grade devices are
closed-source and it is often unclear when data is being
interpolated and when it is faithfully reflecting the physiological
activity of the wearer. As a result, it can be very difficult to assess
when the data distortion may be leading to interpretations that
are overstated, understated, or even opposite of the truth in any
given experimental paradigm. Potentially even more problematic
for the use in scientific contexts is that the algorithms deriving
biometrics can change without notice any time the company
chooses to push new code onto the device, phone or remote
servers. These quickly evolving algorithms are especially difficult
to reveal and protected with patents, and algorithm changes
with different firmware and software releases are thus always a
potential caveat when a result fails to replicate from one study
to the next or even if an effect shows up, disappears, or changes
in the midst of a single study (Shcherbina et al., 2017). When
it comes to developing new therapeutic approaches, training
protocols and serious game applications, these kinds of errors
can have real-world consequences that can potentially affect
people’s lives.

When technological tools are developed out in the open,
anyone can verify if a vendor is actively pursuing accurate
validation metrics, appropriately managing security and privacy,
or handling issues in a timely and professional manner. The
ability to examine the process followed and the source code
developed makes it so that anyone can perform an independent
audit. This is true not only for the code itself, but also themethods
and testing processes used in the development and the history of
changes. The transparency of open-source tools and the access to
raw data is similarly important for BCI applications in research
as it is for gaming, therapy, and rehabilitation. As state-of-the-art
technology endeavors to make sense of signals from the body, it is
often critical to understand important details of how the data was
collected, conditioned, and transformed into derivative metrics.
Particularly as derivative metrics become building blocks and
inputs for downstream analysis andmachine learning algorithms,
transparency becomes essential for the ability to replicate and
understand results and unlock the mysterious inner workings of
the human brain.

Looking Into the Black Box
Stepping forward from simple derivative metrics, the recent wave
of machine learning commonly utilizes deep neural network
models, which often behave like black boxes because the
relationship between the input and output can be difficult to
ascertain.Whenwe look into the number of journal articles about
ML in neuroscience, we find that its adoption has continuously
grown over the last 30 years (Figure 6). This rise occurred
because Neuroscience has experienced a revolution in the volume
of data and datasets that researchers are able to gather from a
large number of neurons that researchers can record from, and

the size of the datasets is rising rapidly. Researchers increasingly
need machine learning methods to wrangle this data and try to
gain insight into it. Deep learning, a subset from ML, has given
researchers methods for relating high-dimensional neural data to
high-dimensional behavior. In addition to their ability to model
complex, intelligent behaviors, Deep neural networks (DNNs)
excel at predicting neural responses to novel sensory stimuli with
accuracy beyond any other currently available model type. DNNs
can have millions of parameters required to capture the domain
knowledge needed for successful task performance regression
models. These parameters are not meant to capture what
features of neural activity relate to what features of behaviors,
but rather what features of neural activity display information
about the behavior or sensory stimuli. If these models aren’t
made transparent so that BCI experts can interpret the model’s
decisions based on key model features, it can be challenging
to predict the reliability and transferability to new contexts.
Current state-of-the-art performance in multi-class EEG ranges
from detection of epilepsy (Acharya et al., 2018), to cognitive-
workload recognition (Almogbel et al., 2018), to bullying incident
identification within an immersive environment (Baltatzis et al.,
2017). However, relatively little work in the field of AI or BCI
has been done to analyze the interpretability of such models.
We define interpretability as the degree to which humans can
consistently predict the model’s decision (Kim et al., 2016).

It is in this context that the concepts of explain ability and
interpretability have taken on new urgency. They will likely
only become more important moving forward as discussions
around artificial intelligence, data privacy, and ethics continue.
The open-source community’s recent efforts to support methods
and applications that can lead to better trust in AI systems
are already producing results. Two open-source methods are
available to the public and kept on GitHub to decompose a
neural network’s output prediction on specific inputs. LIME
(Ribeiro et al., 2016) and SHAP (Lundberg and Lee, 2017) are
two projects providing novel techniques that explain a classifier’s
predictions in an interpretable and reliable manner, by learning
an interpretable model locally around the prediction. These
techniques produce “visual explanations” for decisions from
a large class of Convolution Neural Network-based models,
making them more transparent and accessible to a human
expert by comparing the amount and degree of overlap between
identified inputs.

Leveraging the open-source community can help improve
trust by ensuring that any BCI-AI effort meets safe and
transparent regulations. The community can include domain
experts and set routine checks to the codebase. Beyond
transparency into the code alone, as our artificial neural network
(ANN) models continue to increase in complexity, having tools
and transparency to visualize and understand key relationships
of the models will be important in understanding when the
data and decisions can be trusted and used in research and
real-life applications. A closed approach to sophisticated BCI
systems can lead to inadequate feature design choices that are not
relevant to the current needs of the community and society. Such
features can be harmful to the system; for example, if a medical
system’s patient diagnostic function has poor accuracy due to lack
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FIGURE 6 | Here we plot the proportion of neuroscience papers that have used machine learning over the last three decades. That is, we calculate the number of

papers involving both neuroscience and machine learning, normalized by the total number of neuroscience papers. Neuroscience papers were identified using a

search for “EEG + fMRI” on semantic scholar. Papers involving neuroscience and machine learning were identified with a search for “machine learning” and “EEG +

fMRI” on semantic scholar.

of testing, then this will mean more human intervention and,
ultimately, less trust.

NEW REALITIES AND AUGMENTED
COGNITION

Closed Loops
Looking forward to a future in which augmented and virtual
reality become an integral part of daily life, BCIs will likely play
an increasingly important role in creating closed-loop feedback
for generative content. As one physical reality transforms into
a multiplicity of mixed realities, brain-computer interfaces will
be uniquely situated to provide necessary feature selections to
determine the decoding and timing of content delivery.

A closed-loop system that monitors the user’s reactions to
the content of a virtual environment enables the generation
of personalized virtual reality experiences. Demonstrations like
those shown by Bernal et al. in Figure 7 use arousal levels to
provide real-time, reliable information about the user’s reception
of the content and can help the system adapt the content
seamlessly (Bernal et al., 2018). In a 360 video demo player
scene, they used gaze data and Skin Conductance Response
(SCR) data to increase the user’s arousal levels by modulating
a shader’s occlusion superimposed on the 360 scene in order
to create the fear of the unknown. Figure 8 shows how the
demo takes standard footage from people in a basement and
creates a pulsating shadow effect, and therefore a more dramatic
360 captured video, similar to those seen in horror movies.
To direct the user’s focus to the people within the video, a
surface shader is modulated dynamically to occlude areas that
are not of interest to the user; locations informed by the
point of regard (POR) data from the gaze tracking system. The

detected SCR peak values are used to pulse the occlusion shader
with modulation.

Sourina et al. proposed a real-time approach for feature
extraction in EEG-enabled applications for serious games,
emotional avatars, music therapy, musicians, and storytelling
where the emotional states of the users are mapped onto avatars.
The Haptek Activex control provides functions and commands
to change the six facial expressions of 3D avatars including
fear, frustration, sadness, happiness, pleasant, and satisfaction.
In the application, emotions of the user are recognized from
EEG and visualized in real-time on the user’s avatar with
the Haptek system. For the music therapy application, the
music selection and duration is adjusted based on the current
emotional state of the user wearing the BCI, as identified by the
system (Sourina et al., 2011).

These types of scenarios don’t come without consequences if
proper guidelines are not being followed. Recently a BCI start-
up has been under scrutiny over tests on Chinese schoolchildren
after the Wall Street Journal released a video stating that teachers
at that school know exactly when students are and are not paying
attention (Wall Street Journal, 2019). In the video, children
are shown wearing an EEG headband during class with an
LED located on the forehead region that changes color based
on the children’s attention levels. At the time there were no
privacy laws regulating this type of collaboration between private
schools and companies. Even though the start-up reports that
all parties involved had given consent about taking part in the
test, concerns about whether the data was adequately secured or
potential future implications for the children led to the ban of
this device’s use in the classroom and the creation of a new law
(Chinese Primary School Halts Trial of Device That Monitors
Pupils Brainwaves, 2019; Primary School in China Suspends Use
of BrainCo Brainwave Tracking Headband, 2019).
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FIGURE 7 | An example of a closed-loop setup used in a lab setting. Physiological signals are recorded using a set of electrodes positioned over the visual cortex

while stimuli are displayed on a VR headset. Currently, the system supports deep learning model inference for high-level cognitive states.

FIGURE 8 | A 360 video scene is manipulated by the user’s gaze data and skin conductance response data to increase the users’ arousal levels. These arousal levels

create darker flashing moments making it more dramatic, similar to those seen in horror movies. To direct the user’s focus to the people within the video, the system

modulates a surface shader dynamically that occludes locations informed by the gaze tracking system’s data as areas that are not of interest to the user.

New Realities
The importance of open-source transparency will likely
expand substantially as AIs increasingly become BCI-driven

coprocessors for the human mind. Whether algorithms are
designed to help homeostatically regulate stress, or to monitor
engagement and optimize learning or improve safety, these
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reality-selection algorithms will likely be critical to examine for
integrity, implicit bias, and conflicts of interest. As AIs take
on an adjunct homunculus role, their ability to make sense of
BCI data and be creatively applied to novel applications will
depend on the adaptability, extensibility, and transparency
of the BCI tools on which they are built. All this comes
with great possibilities to fundamentally transform human
consciousness in addition to extreme risks and concerns,
and open source may be one of the key factors that helps us
navigate this conversation as we build safeguards into this
new paradigm.

The issues surrounding algorithm integrity and examples
of ways in which open-source code can mitigate those issues
can be drawn from the cyber-security sector. For example,
WannaCry ransomware targeted a vulnerability in the closed-
sourceWindows operating system (Petrenko et al., 2018) that had
existed for over a decade and only came to worldwide attention
after the WannaCry crypto-worm infected ∼300,000 computers
worldwide, including the U.K.’s National Health Service which
cost the organization nearly £100M in canceled appointments
and cleanup. In contrast, the Heartbleed security bug in the
open-source OpenSSL cryptography library was discovered and
fixed in just over 2 years. While it can be hard to compare any
two vulnerabilities, data has suggested that open-source defects
are found and fixed more rapidly than closed-source projects
(Paulson et al., 2004). The integrity and security of cognition
augmenting and reality-selection algorithms is very likely to
present a host of cyber-attack opportunities for anything from
lone-wolf hackers hawking their wares, to state actors creating
individually targeted propaganda. The ability for open-source
public review of algorithm integrity may be a way to catch these
vulnerabilities in a timely manner.

Implicit bias has been documented in machine learning AI
algorithms that govern everything from filtering job applicants
to home loan approval (O’neil, 2016; Buolamwini and Gebru,
2018). The implicit bias embodied in the algorithms andmachine
learning models often ends up reflecting and reinforcing the
racial and gender inequities present in our society. As we
diversify a multiplicity of virtual and mixed realities, both the
risk to exacerbate and the opportunity to mitigate implicit bias
will be great. For example, Mel Slater and his students have
demonstrated that the embodiment of light-skinned participants
in a dark-skinned virtual body significantly reduces implicit racial
bias against dark-skinned people, in contrast to embodiment
in light-skinned or purple-skinned avatars, or ones with no
virtual body at all (Peck et al., 2013). Virtual Reality presents
a persuasive tool for potentially placing people into a different
body stereotype, particularly race or gender, by modifying the
form of their body image. This is accomplished by a setup that is
referred to as ’virtual embodiment’. The participants wear a broad
field-of-view head-mounted display and when they look down
toward themselves in the VR, they see a programmed virtual body
(VB) substituting their own real body. They also see this body
when looking at their (geometrically accurate) reflection in a
virtual mirror. These kinds of virtual reality experiences have the
potential to increase empathy and understanding. We speculate
based on prior research that as BCIs combined with machine

learning become increasingly capable to detect biometric patterns
associated with complex cognition such as implicit bias and
empathy (Hasler et al., 2017; Levsen and Bartholow, 2018; Luo
et al., 2018; Katsumi et al., 2020; Patané et al., 2020), feedback
loops between BCIs and virtual reality content will be positioned
to either diminish or amplify these internal states. Open-source
algorithms and models that can be audited may be an important
tool to ensure implicit bias is mitigated and empathy is enhanced
as we multiply reality.

Koutsouleris et al. (2020), reported that AI algorithms were
able to predict whether people would have a psychotic episode
using a combination of clinical, brain imaging, and genetic data.
The positive potential of algorithms that could help to intervene
or otherwise divert a catastrophic life event for millions of people
worldwide cannot be overstated. Looking at an example with less
devastating, but potentially broader impact, research has shown
that struggles of obesity are driven, in part, by food stimuli that
hijack the decision making centers in the brain to create an
overwhelming compulsion to eat (Stice et al., 2009; Cobb et al.,
2015; Mejova et al., 2015). To short circuit this stimulus-response
behavior we can easily imagine how a closed-loop Augmented
Reality system that occludes specific food stimuli, like donuts,
could be a great aid to those in the process of rebuilding their
relationship with food, as shown in Figure 9. And yet this
technology also presents a clear risk for mistakes and conflicts
of interest to have dire consequences. The landscape of BCI-
driven reality selection is rife with both utopian and dystopian
possibilities. Relapse into addiction, for example, is known to
be triggered by specific associative stimuli like a cigarette or a
lighter (Shiffman, 2005; Leventhal et al., 2008) and very likely
to exhibit greater susceptibility under certain neurological states
(Potvin et al., 2015; Witteman et al., 2015). It is easy to imagine
a utopian world with reduced substance abuse rates simply by
detecting susceptible states and using augmented reality to block
trigger stimuli thereby enabling people to be productive members
of society. On the contrary, it is equally easy to imagine the
dystopian world that might follow if Purdue Pharma [maker
of the highly addictive opiate, OxyContin, that drove opiate
addiction rates to all-time highs in the United States, (Knisely
et al., 2008)] were generating BCI-driven targeted advertising
into our reality feeds. We speculate that possible futures of BCI-
driven reality selection range from greater safety, health, wellness,
rates of learning, and creativity to security risks, manipulated
addiction, misinformation, and brainwashing. Transparencymay
be a critical principle to help unlock the utopian and steer clear
of the most dystopian visions of our future.

CLOSING TOPICS

As we have discussed in this paper, BCIs are moving beyond
siloed research labs to explore new use-cases ranging from
the arts and rehabilitation to gaming and augmented reality.
The accessibility, adaptability, and transparency of BCI tools
and data will significantly impact how we collectively navigate
this new digital age. It is essential that we build technologies
that are not only affordable, but that also can be used for
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FIGURE 9 | Diagram showing close-loop scenario where stimuli are removed from user perception. The trigger layer shows a stimulus that the user intends to avoid.

The recognition layer is computed on the user’s device and masks the stimuli to be blocked. The blocked stimuli layer is what the user perceives when a trigger

stimulus is shown.

diverse applications while delivering transparency of the data and
algorithms employed. Open-source principles would enable BCI
technologies to be explored from different perspectives and for
novel applications with confidence that the data is relevant and
accurately reflecting underlying physiological changes. Enabling
BCI technologies to be used in the broadest possible range of
applications will ensure that more voices can understand, utilize,
and validate the integrity of these signals as we shape a BCI-
augmented future.

Both art and technology aim to reshape the world we exist
in, re-envisioning what we perceive as real and understanding
nature’s own limits. For decades, industry has been inspiring
new technologies (3D printing, e-paper, satellites) and presenting
critical reflections like Black Mirror’s “The Entire History of
You” that gives us mental frameworks to rethink our relationship
with technology. As we move into a future that increasingly
merges technology with humanity, the artist’s role must be one
of an active partner in preparing the direction of research and
facilitating synergy between science and technology of science
and technology as a vital means for understanding the world.

We speculate that Augmented cognition driven by BCI
technology may be poised to transform humanity at a level on
par with or exceeding that of the written word. The possibilities
to learn faster through dynamic material that is individually
tuned to each person’s psychophysiology, develop strategies for
enhanced creativity and even perhaps bootstrap our biology into
new forms of distributed or collective consciousness, may have
profound implications for the ability of humanity to understand
the universe and its place therein. And yet, much as with
any powerful tool, part and parcel with the potential benefits
come potential risks. Whether it is the possibility for a future
in which we can create reality filters based on physiological
responses or read the cataloged memories of alleged criminals
(Flisfeder, 2018), there are very real risks as we look forward into
a world powered by BCI-driven augmented cognition. Despite
these risks, the benefits are too profound and the advantages

too immediate to imagine a reverse course. If someone can save
themselves or a family member from addiction or a psychotic
break (Koutsouleris et al., 2020), or if a driver or pilot can be safer
(Healey and Picard, 2005; Zepf et al., 2019), or if a day-trader
can be the smartest person in the room, the unrelenting force of
progress will likely overpower any attempts to outright halt it.
Instead, we may consider building a future based on open-source
principles including adaptability, extensibility, and transparency
so as to democratize the conversation with different perspectives,
deliver the openness needed to conduct replicable science, and
understand the algorithms and models that will play increasingly
important roles in creating our realities and world views.

Setting up the technical as well as ethical and societal
norms of a BCI-driven future will require a diversity of
transdisciplinary perspectives. Sitting at the nexus of biology,
electrical engineering, and computer science, BCIs are
transdisciplinary by their nature, and they also present an
opportunity to bring perspectives ranging from psychology,
health, and physical education to history, philosophy, and the
arts. Bringing together a diversity of ideas and viewpoints can
help ensure that this transformative technology is set up to
serve not only the most privileged members of society, but
also enable individual ingenuity to go beyond preconceived
use-cases to solve issues that transcend physical, economic,
and cultural boundaries. Even more than the sum of siloed
individual perspectives, creating transdisciplinary conversations
that explore the intersections between different points of view
can multiply the information and ideas to imagine our future
realities (Nijholt et al., 2018; Dikker et al., 2019b). Those
conversations might become more common and start at a
younger age, by bringing BCIs into K-12 project-based curricula
and into hackathons that promote diverse teams including
artists and philosophers as well as engineers and scientists. By
building BCI tools that are adaptable and transparent as well
as accessible, the resulting applications and conversations can
go beyond preconceived use-cases to explore the widest scope
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of possibilities that BCIs may unlock for the future. Greater
openness may require some reframing of the solution space
in the context of principles including those of adaptability,
extensibility and transparency. Developing BCI tools that are
adaptable and extensible can democratize the development of
new ideas and applications to imagine beyond the board-room
developed use-cases. Cultivating more transparency, with greater
access to raw data, source code, and visibility into black-box
models can facilitate creating replicable scientific knowledge, and
a trust that future realities will be secure and serve the interests
of all.
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