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The ability to discriminate and attend one specific sound source in a complex auditory

environment is a fundamental skill for efficient communication. Indeed, it allows us to

follow a family conversation or discuss with a friend in a bar. This ability is challenged

in hearing-impaired individuals and more precisely in those with a cochlear implant

(CI). Indeed, due to the limited spectral resolution of the implant, auditory perception

remains quite poor in a noisy environment or in presence of simultaneous auditory

sources. Recent methodological advances allow now to detect, on the basis of neural

signals, which auditory stream within a set of multiple concurrent streams an individual

is attending to. This approach, called EEG-based auditory attention detection (AAD), is

based on fundamental research findings demonstrating that, in a multi speech scenario,

cortical tracking of the envelope of the attended speech is enhanced compared to the

unattended speech. Following these findings, other studies showed that it is possible to

use EEG/MEG (Electroencephalography/Magnetoencephalography) to explore auditory

attention during speech listening in a Cocktail-party-like scenario. Overall, these findings

make it possible to conceive next-generation hearing aids combining customary

technology and AAD. Importantly, AAD has also a great potential in the context of

passive BCI, in the educational context as well as in the context of interactive music

performances. In this mini review, we firstly present the different approaches of AAD and

the main limitations of the global concept. We then expose its potential applications in

the world of non-clinical passive BCI.
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INTRODUCTION

The ability to discriminate and attend one specific sound source in a complex auditory environment
is of utmost importance in the animal world both in terms of avoiding dangers and finding mates.
In humans, this ability goes well-beyond survival and reproduction since it is a fundamental skill for
efficient communication. Indeed, it allows us to follow a family conversation or discuss with a friend
in a bar. In music, this ability is challenged by the simultaneous layering of several instruments
playing together, requiring sound source segregation to fully appreciate the ensemble. This ability
is also challenged in hearing-impaired individuals and more precisely in those with a cochlear
implant (CI). Indeed, due to the limited spectral resolution of the implant, auditory perception
remains quite poor in a noisy environment or in presence of simultaneous auditory sources. Thus,
being able to enhance the relevant/attended source would facilitate source separation in individuals
with CI. However, monitoring the attended auditory source is not easy, as this changes in time.
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Recent methodological advances allow now to detect, on the
basis of neural signals, which auditory stream within a set of
multiple concurrent streams an individual is attending to. This
approach, called EEG-based auditory attention detection (AAD),
is based on fundamental research findings demonstrating that,
in a multi speech scenario, cortical tracking of the envelope of
the attended speech is enhanced compared to the unattended
speech (Mesgarani et al., 2009; Ding and Simon, 2012; Mesgarani
and Chang, 2012; Pasley et al., 2012; Zion Golumbic et al.,
2013). Following these findings, other studies showed that it is
possible to use EEG/MEG to explore auditory attention during
speech listening in a Cocktail-party-like scenario (Ding and
Simon, 2012; O’Sullivan et al., 2015; Akram et al., 2016). This
field of research has grown rapidly and several new methods
and techniques were developed in the last years to improve the
first attempts.

Overall, these findings make it possible to conceive next-
generation hearing aids combining customary technology and
AAD. Importantly, AAD has also a great potential in the context
of passive BCI, in the educational context as well as in the context
of interactive music performances.

In this mini review, we firstly present the different approaches
of AAD and the main limitations of the global concept. We
then expose its potential applications in the world of non-clinical
passive BCI.

The main rationale behind this mini-review is to bridge
the EEG-based AAD and Passive BCI communities and to
provide insights about how the emerging synergy will develop.
While previous reviews have been published on technical
aspects of AAD, this mini-review attempts to briefly present
EEG-based AAD in a broader perspective and to guide the
reader to the most relevant sources. The methodology used
to find and include papers in the current mini-review was as
follows. The search was carried on using both Pubmed and
Google Scholar. Keywords included machine learning, decoding,
encoding, auditory attention, EEG, and speech. Pubmed gave 88
results and Scholar 8,460 results. These results were then filtered
with the following exclusion criteria: articles about engineering
techniques that are not directly in relation with EEG-based AAD
methodology, articles with methods that were not applied to
M/EEG data, articles that were not published in a peer-review
journal, articles that were cited <1 time. This reduced the
number of included articles to 20 (see Table 1).

EEG-BASED AUDITORY ATTENTION
DETECTION METHODS

There are many different AAD methods based on EEG
measures. Identifying the attended speaker using cortical activity
measurement is possible because the amplitude envelope of the
speech stream (a crucial feature for speech comprehension) is
represented in the theta and gamma oscillatory activity in the
human auditory cortex (Nourski et al., 2009; Giraud and Poeppel,
2012; Kubanek et al., 2013). Attending a source thus results in
greater coupling between the envelope of the source and the
envelope of neural activity in these bands.

The vast majority of the studies that explored EEG-based AAD
performances used two concurrent spatially separated talkers but
some of them have explored the impact of speaker number and
their location in auditory scene (Schäfer et al., 2018), background
noise (Das et al., 2018), reverberation (Fuglsang et al., 2017),
number of EEG electrodes (Mirkovic et al., 2015; Bleichner
et al., 2016), or even their location (Fiedler et al., 2017) on the
performance of AAD algorithms.

One can distinguish two main categories of approaches
to detect auditory attention: linear and non-linear models
(see Geirnaert et al., 2020 for a comprehensive review of
AAD Algorithms).

Linear Models
In the community of linear models, two main “philosophies” are
in competition (see Alickovic et al., 2019 for a complete review
on linear models): forward, or encoding (encoding because these
models are a description of how the system encodes information),
and backward, or decoding, models.

The objective of the forward strategy is to predict the
neural response in the neural data (i.e., EEG channels) from
the representation of the audio signal via a temporal response
function (i.e., an encoder) that describes the linear relationship
between a set of neural data and an audio stimulus at certain time
points (Crosse et al., 2016). In the simplest case (i.e., one audio
signal) a unique representation of the audio signal is created. This
representation can be the amplitude envelope (O’Sullivan et al.,
2015), the spectrogram of speech signal (O’Sullivan et al., 2017),
or the Mel spectrogram for a music signal (Cantisani et al., 2019).
Depending on the type of the chosen representation the analysis
can be either univariate (an amplitude envelope is a univariate
stimulus feature) or multivariate (a spectrogram is a multivariate
stimulus feature). Although it is possible to use multivariate TRF
with the forward approach, this strategy is, by nature, univariate
(Crosse et al., 2016). Afterward, the audio representation is
convolved with an unknown channel-specific TRF. To estimate
the TRF (i.e., fit the model parameters), an error minimization is
performed between the neural response and the one predicted by
the convolution (e.g., Mean-Squared Error) using assumptions
about noise distribution (Holdgraf et al., 2017). Once the model’s
parameters have been estimated, the model is validated on new
data. These new data could be from the same dataset used to
estimate the parameters (leave-n-out procedure) or from data
recorded separately. The validation step is crucial because, to
be interpretable, the model should be compatible with new data
and make accurate predictions (generalization ability). Finally,
the rationale of the forward strategy, in auditory research, is to
predict neural data on the basis of the sound’s features.

Backward models work similarly but by predicting the
auditory representation based on neural data (Alickovic et al.,
2019). A pre-trained neural linear decoder is applied to the
neural data to reconstruct the chosen representation (this is
the reason why this type of approach is sometimes called
“stimulus reconstruction”). The reconstructed representation is
compared to the original representations. A high similarity
(correlation) indicates a good performance of the model. Two
other approaches can also be mentioned: Canonical Correlation
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TABLE 1 | Table describing main important characteristics of AAD reviewed articles.

Article Data Method Subject Audio features AV model goodness AV classification

accuracy

Decision

window

Akram et al., 2016 MEG Non-linear (SSM) 11 Amp Env – 74% (Not sure) 60 s (Not

sure)

Bleichner et al., 2016 EEG (+

cEEGrid)

ERP classification 20 – – 70% (EEG)−66%

(cEEGrid)

–

Cantisani et al., 2019 EEG Linear (SR) 8 Amp Env (AE),

Magnitude Spec

(MAG), Mel Spec (MEL)

r = 0.054 (AE), r =

0.215 (MAG), r =

0.119 (MEL)

F1 score = 51 (AE), 72

(MAG), 73 (MEL)

24 s

Ciccarelli et al., 2019 EEG Linear (SR) and

Non-linear (DNN)

11 Amp Env – 66% (Linear), 81%

(Non-linear)

10 s

Das et al., 2018 EEG Linear (SR) 28 Amp Env r = ∼0.06 (Speaker

separation = 10◦,

SNR = −7.1dB)–r =

∼0.14 (Speaker

separation = 180◦,

SNR = −1.1 dB)

[Attended speaker]

97% (Speaker

separation = 180◦,

SNR = −1.1 dB)−59%

(Speaker separation =

10◦, SNR = −7.1 dB)

30 s

de Cheveigné et al.,

2018

EEG Linear (CCA) 8 Amp Env r = ∼0.3 ∼95–∼75% (Best CC

pairs)

60–10 s

de Taillez et al., 2017 EEG Non-linear (NN) 20 Amp Env – 97.6–67.8% 60–2 s

Vandecapelle et al.,

2020

EEG Non-linear (CNN:D,

CNN:S+D, CCN:S)

16 Amp Env – 87% (CNN:S+D), 78%

(CNN:D), 70.5%

(CNN:S) [subject

specific]

10 s

Ding and Simon, 2012 MEG Linear (SR) 20 Amp Env r = ∼0.2 – –

Fiedler et al., 2017 EEG (+ in-

Ear-EEG)

Linear (forward) 7 Amp Env r = 0.04 70% 60 s

Fuglsang et al., 2017 EEG Linear (SR) 26 Amp Env r = ∼0.07 87.1% 40–50 s

Mesgarani and Chang,

2012

ECoG Linear (SR) 3 Amp Env r = ∼0.60 93.0% NC

Miran et al., 2018a,b EEG and

MEG

Linear (SSM) 3

(EEG)−9

(MEG)

Amp Env – 70% (MEG data), 80%

(EEG data)

1.5 s

Mirkovic et al., 2015 EEG Linear (SR) 12 Amp Env – 88.02% –

O’Sullivan et al., 2015 EEG Linear (SR) 40 Amp Env r = 0.054

(Subject-specific

decoder)

89% [Subject-specific] 60 s

O’Sullivan et al., 2017 ECoG Non-linear (DNN) 6 Spec r = ∼0.4 (Attended

speaker)

>70% (3 Subjects) 15 s

Pasley et al., 2012 ECoG Linear (SR) and

Non-linear ()

15 Spec r = 0.2–0.3 – –

Schäfer et al., 2018 EEG Linear (SR) 10 Amp Env – 61.1% 30 s

Vandecapelle et al.,

2020

EEG Non-linear (CNN) 16 Pre-processed EEG

signal

– 85.1–80.8% [Subject

specific]

10–1 s

Zion Golumbic et al.,

2013

ECoG Linear (SR) 6 Amp Env r = ∼0.15 – –

Articles are sorted by alphabetical order. The method row indicates the type of model used in the article. Amp Env, Amplitude Envelope; Spec, spectrogram; AV, Average; SR, Stimulus

Reconstruction; SSM, State-Space Model; DNN, Deep Neural Network; CNN, Convolutional Neural Network; CCA, Canonical Correlation Analysis; s, second.

Analysis (CCA) and Bayesian state-space modeling. Canonical
Correlation Analysis is a hybrid model that combines a decoding
and an encoding model. This approach, developed by de
Cheveigné et al. (2018), aims to minimize the irrelevant variance
in both neural data and stimulus by a linear transformation.
Concerning Bayesian state-space modeling (Miran et al., 2018b),
it is composed of three modules: a dynamic encoder/decoder
estimation module, an attention marker extraction module, and

a real-time state-space estimator module (see Miran et al.,
2018a for a complete description of the model) and this
approach was developed in the purpose of real-time decoding of
auditory attention.

As mentioned before, in the context of AAD, linear models
are generally used with two (or more) concurrent speech streams
in order to determine which stream the listener is attending
to. In this case, a representation of each auditory source is
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created (e.g., speaker 1 and speaker 2). Once the model has
been fitted, no matter which approach was chosen, a two-
class classifier is used to decide which of the two streams the
participant was focused on. To do so, the classifier compares
the correlation coefficients between the model output and
the original model input representations (e.g., the correlation
between the reconstructed envelope and the original audio
signals envelopes in backward strategy) over a certain portion of
data (decision time windows). The highest correlation indicates
which stream the participant was attending to. The length of the
decision time window is a crucial parameter because correlation-
based measures need a certain amount of information to perform
well. However, short decision time windows (<2 s of data) are of
interest in BCI for real-time classification.

Generally, AAD performances are assessed with two accuracy
metrics: regression accuracy and classification accuracy (Wong
et al., 2018). Regression accuracy evaluates the goodness of fit of
the model and it is expressed in terms of correlation coefficient
(Pearson’s correlation, often ranging 0.1–0.2) between the output
of themodel and the real value (e.g., speech envelope is correlated
with reconstructed envelope for backwardmodels). Classification
accuracy, on the other hand, evaluates the ability of the classifier
to correctly identify the attended stream for a given decision time
window and it is generally expressed in terms of percentage of
good classification. Classification accuracy is generally high for
long decision time windows (around 85% for 60 s of data) but
drops drastically for shorter decision time windows no matter
which approach is used.

Recently, Wong et al. (2018) showed that decoding models
outperform encodingmodels in terms of classification accuracies.
One of the best classification results obtained so far was 85%
with 20-s decision time windows, with the CCA (Geirnaert et al.,
2020).

Non-linear Models
Similarly to linear models, several non-linear model architectures
are in competition. But non-linear models are still overlooked
because they are more complex to implement and interpret.
Nevertheless, they were used by a few studies to explore
AAD. Vandecapelle et al. (2020) used two convolutional neural
networks to determine the attended speaker in a multi-speaker
scene by using the direction of the locus of auditory attention.
Their method allows them to decode auditory attention with
very short decision time windows and with a good classification
accuracy (around 80% for 2 s of data). In another study the
authors used a fully-connected neural network to reconstruct
the speech envelope and estimate the attended speaker (de
Taillez et al., 2017). The classification accuracy obtained with this
method appears to be similar to the performance obtained in
Vandecapelle et al. (2020) even though the comparison between
studies is not straightforward due to differences in experimental
and model parameters or accuracy measures (Ciccarelli et al.,
2019). However, non-linear models outperform linear models
in terms of decision time window/performance ratio. One other
potential advantage of this type of model is that it seems more
realistic insofar as it may capture the neuronal non-linearity
underlying speech perception (O’Sullivan et al., 2015, Mirkovic
et al., 2015, de Taillez et al., 2017).

Limitations of Linear and Non-linear
Models
Linear and non-linear models yet suffer from several limitations
with respect to AAD. The major problem of linear models lies
in the fact that their classification accuracy is strongly influenced
by the duration of the decision window. Long windows yield
good classification (>80%) while short ones (e.g., 2 s) yield much
poorer performance (∼60%). This is due to the fact that (1)
short decision windows contain less information (Vandecapelle
et al., 2020), (2) EEG signals contain a mixture of several
physiological and neural processes. Thus, correlations between
predicted and actual data are rather weak (between 0.05 and
0.2) and short decision time windows are particularly sensitive
to noise (Geirnaert et al., 2020). Moreover, a huge amount of data
is needed to fit the model properly. Therefore, these models are
difficult to use in real time situations where the selection of the
attended speaker must be performed as fast as possible.

For non-linear models, the principal issue is the risk of
overfitting, in particular with small datasets (Vandecapelle et al.,
2020). Moreover, comparing performances of several non-linear
models on different datasets pointed to a low reproducibility of
these algorithms (Geirnaert et al., 2020). Besides fitting issues
and physiological noise (and non-relevant neural signal), another
source of performance variability resides in inter-individual
differences at the cognitive level, such as for instance in working
memory (WM) (Ciccarelli et al., 2019), attentional control,
cognitive inhibition, but also motivation.

FUTURES PLAUSIBLE APPLICATIONS FOR
AUDITORY ATTENTION DETECTION
METHODS

Plausible Applications for AAD-Passive
Brain Computer Interfaces Systems
Classical active Brain Computer Interfaces (aBCI) exploit the
user’s voluntary brain activity to control applications or devices.
Several years ago, a new category of BCI, named passive Brain
Computer Interfaces (pBCI), emerged. Unlike aBCI, pBCI use
involuntary brain activity (e.g., cognitive state) to implicitly
modify human-machine interactions (Zander and Kothe, 2011;
Clerc et al., 2016). passive Brain Computer Interfaces are
generally used to monitor attention, fatigue, or workload in
real life situations such as driving situations (Haufe et al.,
2014) or air traffic control (Aricò et al., 2016) but they can
also be used in less operational contexts. For example, pBCI
can be used to provide translation of unknown read words
(Hyrskykari, 2006) or to display information on the screen
when the user needs it (Jacob, 1990). passive Brain Computer
Interfaces also have applications in the field of virtual reality
and video gaming (Lécuyer et al., 2008; George and Lécuyer,
2010).

Auditory attention detection algorithms could be coupled
with passive BCI to extend the usefulness of such methods to
more concrete applications. In the next section, we will describe
some possible future applications for AAD-pBCI systems.
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FIGURE 1 | Schematic representation of a sustained attention enhancement AAD-pBCI system based on a serious game. While the user is concentrating on a

specific auditory source among several others, brain activity is recorded, and preprocessed in real time. Based on this recorded EEG data, the attended auditory

source is continuously tracked by the AAD device. The pBCI device collects the AAD performances continuously (i.e., regression accuracy), estimates if a certain

threshold has been exceeded, adapts, in real-time, the game parameters (e.g., instructions, auditory scene complexity), and gives feedback to the user.

AAD-pBCI in Education
Since a few years, studies that explore the relationship between
children’s attention abilities and screen access have shown
that precocious screen access may go along with attentional
problems (Christakis et al., 2004; Ponti et al., 2017; Tamana
et al., 2019, but see Kostyrka-Allchorne et al., 2017 for
a systematic review on the relationship between television
exposure and children’s cognition). AAD-pBCI systems could
be used to improve children’s attention ability. Such an attempt
was made by Cho et al. (2002) who developed an attention
enhancement system for ADHD children using EEG biofeedback
and a virtual classroom environment. They showed that it
is possible to use pBCI to enhance attention in children
with ADHD in a school context. An advantage of real-
time AAD applications is that they may allow monitoring
children’s attention. Moreover, they could be of use in serious
game applications aiming at enhancing sustained auditory
attention (see for instance Figure 1). Importantly, one can
hypothesize that, because sustained attention in a complex
auditory scene requires segregation and integration abilities but

also inhibition and WM, these functions may also benefit from
such applications.

Such a tool could also benefit musicians who must be able
to sustain attention for long periods of time (Bergman Nutley
et al., 2014). Interestingly, for musicians, this approach could also
enhance the ability to share auditory attention across multiple
sources, since this is of great importance in ensemble music
making. As for the SustainedAttention Enhancement AAD-pBCI
System mentioned above, a Divided Attention Enhancement
AAD-pBCI System could also take the form of a musical serious
game wherein the player has to learn to switch the focus of
attention from one source to another and to share attention
across multiple sources.

AAD-pBCI in Art
In the field of art, several attempts have been made to bridge
EEG and BCI since the 1970s (Vidal, 1973; Rosenboom, 1977;
Williams and Miranda, 2018). More recently, works have been
done to develop systems to control an instrument (Arslan et al.,
2006) or to generate melodies with brain signals (Wu et al., 2010;

Frontiers in Computer Science | www.frontiersin.org 5 April 2021 | Volume 3 | Article 661178

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Belo et al. Non-clinical Futures Applications of AAD

FIGURE 2 | Schematic representation of a real-time sound modulation AAD-pBCI system. Based on the real-time EEG data recording, the attended auditory source

is continuously tracked by the AAD device. The pBCI device analyses in real-time the user’s intentions (e.g., moving the attended source from the upper left

loudspeaker to the bottom left one), translates it into commands and sends it to an external device that will modify the loudspeaker’s parameters accordingly.
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Miranda et al., 2011) to name a few. In this sense, there is a place
for AAD-pBCI systems to create new kinds of art performances
in which brain activity induced by auditory attention could be
used to modulate different sound sources (see Figure 2). This
could be of particular interest in an immersive listening structure
composed of multiple loudspeakers (Pascal, 2020). Such a device
would allow the user to select a specific sound source and modify
its loudness, spatial location, or motion. In such a setup, the AAD
module monitors in real-time the attended source and provides
information about the source of interest to the pBCImodule. This
second module is responsible for analyzing the intentions of the
user, translating them into command, and controlling an external
device. To do so, the pBCI module classifies among several
classes of neural activity induced by different cognitive processes
(e.g., imaging a movement of the attended source). Once the
user’s intention has been detected, the pBCI module translates
it into commands that correspond to a particular parameter’s
modification (e.g., moving the attended source from the upper
central loudspeaker to the bottom central one) and sends them to
an external device.

Application in Neuro-Steered Hearing Aids
The first reason why AAD has been investigated is to enhance
hearing aids and more specifically, CI. Cochlear implant are
electronic devices that allow deaf people to partly regain
audition by converting audio signals to electrical signals directly
stimulating the auditory nerve. While they perform well when
the user is facing a unique speaker (or in quiet environment),
in presence of multiple speakers performance drops dramatically
because all speakers are amplified indistinctly (e.g., Zeng et al.,
2008).

The solution to bypass this limitation is to inform hearing aids
of the user’s attentional focus. In fact, if the hearing aid was able to
“know” which audio source the user is attending to, then it should
be able to selectively enhance it. Therefore, combining AAD
algorithms and hearing aids technologies, should lead to next-
generation hearing aids allowing good performances in complex
(or noisy) auditory environments (see for example: Das et al.,
2016, 2020; Van Eyndhoven et al., 2017; Cantisani et al., 2020;
Geirnaert et al., 2020).

Other Plausible Applications for AAD-Passive BCI

Systems
One can think about other futuristic applications for AAD,
in several distinct domains. For instance, in the entertainment

field. It is, for example, possible to develop “auditory games” in
which players, equipped with light AAD-pBCI systems, confront
each other in musical battles using their auditory attention. In
addition to being fun, this kind of game could be interesting
to develop cognitive abilities that underlie auditory sustained
attention (WM, executive control, etc.) even if it is not its main
purpose. Furthermore, such a game could be adapted to a solo or
a multiplayer environment.

AAD-pBCI systems could also find applications in the field
of domotics. Indeed, a wearable AAD-pBCI system could be
useful, in situations where ambient noise is varying constantly
(e.g., in a living room), to monitor and adapt in real-time the
loudness of the attended sound source (TV, hifi system, home
phone, etc.).

CONCLUSION

Overall, AAD, by providing real-time cues of the auditory
attentional state of an individual, opens new avenues to
several applications. After a first stage of fundamental research
to understand the links between auditory attention and
neural signals, we are now in a second stage of applied
research optimizing algorithms in terms of both classification
performance and speed. In the next few years, when real-time
decoding limitations will be overcome and wearable wireless
systems will be developed, AAD could find applications in many
domains such as education, art, health, or even domotics and
online games.
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