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To enable virtual reality exposure therapy (VRET) that treats anxiety disorders by gradually
exposing the patient to fear using virtual reality (VR), it is important to monitor the patient’s
fear levels during the exposure. Despite the evidence of a fear circuit in the brain as reflected
by functional near-infrared spectroscopy (fNIRS), themeasurement of fear response in highly
immersive VR using fNIRS is limited, especially in combination with a head-mounted display
(HMD). In particular, it is unclear to what extent fNIRS can differentiate users with andwithout
anxiety disorders and detect fear response in a highly ecological setting using anHMD. In this
study, we investigated fNIRS signals captured from participants with and without a fear of
height response. To examine the extent to which fNIRS signals of both groups differ, we
conducted an experiment during which participants with moderate fear of heights and
participants without it were exposed to VR scenarios involving heights and no heights. The
between-group statistical analysis shows that the fNIRS data of the control group and the
experimental group are significantly different only in the channel located close to right
frontotemporal lobe, where the grand average oxygenated hemoglobin Δ[HbO] contrast
signal of the experimental group exceeds that of the control group. The within-group
statistical analysis shows significant differences between the grand average Δ[HbO] contrast
values during fear responses and those during no-fear responses, where the Δ[HbO]
contrast values of the fear responses were significantly higher than those of the no-fear
responses in the channels located towards the frontal part of the prefrontal cortex. Also, the
channel located close to frontocentral lobe was found to show significant difference for the
grand average deoxygenated hemoglobin contrast signals. Support vector machine-based
classifier could detect fear responses at an accuracy up to 70% and 74% in subject-
dependent and subject-independent classifications, respectively. The results demonstrate
that cortical hemodynamic responses of a control group and an experimental group are
different to a considerable extent, exhibiting the feasibility and ecological validity of the
combination of VR-HMD and fNIRS to elicit and detect fear responses. This research thus
paves a way toward the a brain-computer interface to effectively manipulate and
control VRET.
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1 INTRODUCTION

Exposure therapy is a form of therapy that treats anxiety disorders
by gradually and repeatedly exposing the client to his/her fear
(Brinkman et al., 2009) in the absence of harm. This can activate
the fear extinction process and was proven to be an effective
intervention (Hofmann, 2008). Recently, virtual reality (VR) has
been introduced to exposure therapy by the evidence that realistic
virtual circumstances can have a significant influence on a
person’s mental state (Riva et al., 2007; Martens et al., 2019),
which can pave a way to a successful exposure therapy. Among a
vast variety of VR hardware, head-mounted display (HMD) has
been shown to be effective in improving the sense of presence in a
virtual environment (VE), which is the key element of effective
application of VR in the mental health domain (Jerdan et al.,
2018). Realistic immersive VEs enable researchers to ecologically
perform experiments and invent therapy methods, leading to
effective and highly ecologically valid virtual reality exposure
therapy (VRET) systems (Martens et al., 2019). HMD-based VR
enables an immersive VRET that makes the exposure therapy
more controlled, safer, and in some cases also less expensive than
traditional exposure therapy (Teo et al., 2016; Boeldt et al., 2019;
Bălan et al., 2020). Furthermore, the exposure protocol can be
completely standardized when using VRET, which increases the
therapist’s control over the stimuli and the duration of the
exposure, as opposed to traditional in vivo exposure (Rizzo
et al., 2013). Despite the higher level of control that VRET
offers to the therapist, it is still a common practice that the
therapist monitors the fear responses of the client (Brinkman
et al., 2009). One important reason to do this is to ensure that the
gradual exposure to the fear-eliciting stimuli do not overwhelm
the client. Excessive exposure to situations that induce fear can,
for example, cause panic attacks for the client and might therefore
worsen the anxiety instead of treating it (Boeldt et al., 2019).

However, monitoring a person’s fear responses while using VR
has been a big challenge. The traditional option of tracking facial
expressions becomes difficult when the user is wearing a VR-
HMD. Subjective ratings suffer from the difficulty in verbalizing
current mental state indication (Hill and Bohil, 2016) and
memory bias (Rodríguez et al., 2015). Neuroimaging
techniques have been recently proposed to objectively and
unobtrusively measure fear response during virtual fear
exposure but are limited to the use of electroencephalogram
(EEG) (Hu et al., 2018; Peterson et al., 2018; Bălan et al.,
2020). However, the disadvantages of EEG include
susceptibility to motion artifacts and electrical signal
interference which can be anticipated when a user interacts
with VR technology. On the other hand, functional near-
infrared spectroscopy (fNIRS) offers a recording of cortical
activity in a natural mobility setting with higher spatial
resolution than EEG, less susceptibility to motion artifacts and
electrical noises, portability, and lightweight characteristic. These
advantages substantiate the great potential for the combination of
VR-HMD and fNIRS, which has been recently demonstrated in a
bisection task (Seraglia et al., 2011), the assessment of prospective
memory (Dong et al., 2017; Dong et al., 2018), the processing of
racial stereotypes (Kim et al., 2019), performance monitoring

during training (Hudak et al., 2017), and a neurofeedback system
to support attention (Aksoy et al., 2019). However, the feasibility
and ecological validity of using fNIRS to measure fear response
during virtual fear exposure is still unexplored.

The neural mechanisms underpinning the fear circuit have
been widely researched. The majority of fNIRS studies on cortical
responses to fear-invoking stimuli report an increase in cortical
activations in the parietal cortex (Köchel et al., 2013; Zhang et al.,
2017) or the prefrontal cortex (PFC) (Glotzbach et al., 2011; Roos
et al., 2011; Ma et al., 2013; Landowska, 2018; Rosenbaum et al.,
2020) during fearful stimulation. PFC areas in which significant
activations were found include the left PFC (Ma et al., 2013),
dorsolateral PFC (dlPFC), anterior PFC (Landowska, 2018), left
dlPFC, and left ventrolateral PFC (vlPFC) (Rosenbaum et al.,
2020). The studies that found activations in the parietal cortex
presented subjects to fearful and neutral sounds. Decreased
chromophores deoxygenated hemoglobin (HbR) concentration
changes (Köchel et al., 2013) and higher oxygenated hemoglobin
(HbO) concentration changes (Zhang et al., 2017) were found
when subjects were listening to fearful sounds as compared to
neutral sounds. The areas with significant activations include the
(right) supramarginal gyrus and the right superior temporal
gyrus. The studies that found an increased cortical activation
in the PFC exposed their subjects to spiders (Rosenbaum et al.,
2020), fearful faces (Glotzbach et al., 2011; Roos et al., 2011), or a
fear-learning experiment based on shocks (Ma et al., 2013). A
recent fNIRS study observed decreased HbO concentration
changes in the dlPFC and anterior PFC when participants
with moderate acrophobia were exposed to a cave VE that
displayed artificial heights (Landowska et al., 2018). The effect
was intense during the first exposure session, but the learning
process on coping with fear responses affected the following
sessions. In general, the majority of fNIRS studies reported
increased HbO concentration changes in the PFC when
subjects were exposed to the fearful stimuli as compared to
the control situations and occasionally reported the
complementary decrease in HbR concentration changes
(Glotzbach et al., 2011). The increment of HbO concentration
changes is also in line with other neuroimaging studies beyond
fNIRS that found increased cortical activity in the PFC as fearful
responses (Lange et al., 2003; Nomura et al., 2004) of healthy
subjects, while the activity in the amygdala is inversely related
(Nomura et al., 2004). In contrast, patients with anxiety disorder
show decreased activity in the PFC in response to fearful stimuli
and increased activity in the amygdala (Etkin and Wager, 2007;
Shin and Liberzon, 2010; Price et al., 2011). It is thus evident that
the PFC plays an important role in mediating fear responses
(Landowska et al., 2018) and is known as a major component of
the cognitive control network (Rosenbaum et al., 2020).

Despite evidence of PFC activity due to the fear circuit as
reflected by fNIRS signals, little is known about fear responses in
highly immersive VR, especially when using HMD. The current
study investigates the possibility of inducing and detecting fear
responses in VR-HMD using fNIRS. Specifically, we are
interested in inducing and detecting a fear of heights response,
which is one of the most prevailing types of human fear which can
be reproduced in VR, alongside (Garcia-Palacios et al., 2002;
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Miloff et al., 2019; Lindner et al., 2020), fear of flying (Rothbaum
et al., 2000; Maltby et al., 2002; Rothbaum et al., 2006), fear of
driving (Wald and Taylor, 2000), and even post-traumatic stress
disorders (Rothbaum et al., 2001; Difede and Hoffman, 2002;
Gerardi et al., 2008; Rothbaum et al., 2014). Brain studies on fear
of heights using fNIRS have been done in VE (Emmelkamp et al.,
2001; Donker et al., 2018; Freeman et al., 2018; Gromer et al.,
2018), but the previous works recruited participants either with or
without fear of heights. The study in VR-HMD remains
unexplored and is the main objective in this study, where we
aimed to recruit participants both with and without fear of
heights to allow a comparison between groups. Our first
research question is as follows:

1) To what extent do the fNIRS signals captured from
participants with a fear of heights response and
participants without it differ?

To answer this question, we invited both participants with fear
of heights (experimental group) and participants without fear of
heights (control group) to participate in our experiment, during
which they were exposed to virtual height and virtual ground
conditions. It was hypothesized that the virtual heights will cause
a fear response for the experimental group but does not cause a
fear response for the control group. Furthermore, it was
hypothesized that the ground condition does not cause a fear
response for any of the groups.

In addition, we aimed to train simple machine learning
classifiers to automatically detect fear responses of the
experimental group from fNIRS signals, which has not been
done in previous works. Our second research question is as
follows:

2) To what extent can a person’s fear of heights response to a
virtual reality environment be detected by a simple machine
learning model using fNIRS data?

To answer this question, we trained and tested linear classifiers
in subject-dependent and subject-independent ways on the data
of the experimental group and evaluated the performance in
distinguishing ground-condition and height-condition data. Our
first attempt to achieve a successful classification of different
fNIRS responses to fear of heights elicited in VR-HMD would
exhibit ecological validity of combining both components,
serving as a baseline toward a practical and effective VRET in
the future improvement.

2 MATERIALS AND METHODS

2.1 Participants
Two different groups of participants were recruited and pre-
screened by the Acrophobia Questionnaire (AQ), consisting of 20
items that are rated on a seven-point Likert scale, ranging from
not anxious at all to extremely anxious (Cohen, 1977; Antony,
2001). Only participants with fear of heights who scored higher
than 35 were invited to participate as the experimental group. On

the other hand, only participants without fear of heights who
scored lower than 20 were invited to participate as the control
group (Gromer et al., 2018). Accordingly, 20 participants (nine
females, age � 26.10 ± 10.47 years) in the experimental group
reported a high AQ score (52.40 ± 11.47), and 21 other
participants (nine females, age � 22.95 ± 2.11 years) in the
control group reported a low AQ score (9.71 ± 5.89). None of
the participants suffered from anxiety disorders.

2.2 Tasks and Procedure
The study was approved by the institutional ethics committee of
University of Twente (reference number: RP 2020-76). All
procedures were in accordance with the Helsinki Declaration.
After confirming the eligibility of the participants and obtaining
written informed consent, the participants were introduced to the
Oculus Rift S 1, which is a VR-HMD with six degrees of freedom
enabling tracking of head rotations and translations (forward/
backward, left/right, up/down). Therefore, the participants were
able to look around in the VEs by simply rotating their head and
to walk around by moving their body in the physical world. The
researcher demonstrated how the VR-HMD should be adjusted
to fit the head. Hand-held controllers were given to be held during
the experiment to make the tracking of the VR-HMD more
reliable, but the participants were not allowed to use the
controllers. To familiarize the participants with the VE, the
HMD, and holding the controller, a practice round with an
example VE similar to the ground condition was included and
continued until the participant indicated satisfactory familiarity.
Then, the VR-HMD was removed, and the participants were
fitted with the fNIRS headset. The fNIRS system was calibrated,
and the signal quality was assessed visually by the researcher.
Afterwards, the participants were asked to stand in a designated
place and to fit the VR-HMD themselves. The straps of the VR-
HMD were loosened as much as possible to reduce the risk of
optode displacement. Figure 2 shows a participant wearing both
the fNIRS headset and the VR-HMD. After preparation, the
participants were asked to perform the task. The researcher
instructed the participants about the maximum level of
movement which they were allowed to perform in order to
minimize the motion artifacts in the fNIRS signal. Although
the VR-HMD provides the possibility to walk around in the VE,
the participants were instructed to refrain. Instead of moving,
they were asked to gently look around in the VE, while preventing
large head movements. Additionally, they were allowed to bend
forward slightly during the height condition but were asked to
return to the original position after bending forward.

All participants were tested under the same procedure. There
were two conditions of VEs: ground condition and height
condition. Each condition was presented alternately for five
trials, each of which lasted 30 s and was preceded with a
baseline period of 20 s, in which neither visual nor auditory
stimuli were presented and the participants were instructed to
relax and avoid active thinking. In the ground condition, the
participants were virtually standing on a sidewalk or square in

1https://www.oculus.com/rift-s/
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the middle of a city in the VE, while in the height condition, the
participants were virtually standing by the rooftop of a high
building. The VEs were created using the Unity development
platform 2. See Figure 1 for examples of the scenes. Both
conditions were accompanied by city sounds, to increase the
immersiveness of the experience.

After the experiment, the participants were asked to rate
their perceived feelings of distress or fear using the Subjective
Units of Distress Scale (SUDS) (Wolpe, 1969) during ground
and height conditions on an 11-point Likert scale ranging
from 0 (no distress/anxiety) to 100 (worst distress/anxiety that
you have ever felt). The SUDS questionnaire is often used to
assess exposure settings during cognitive behavioral treatment
(Benjamin et al., 2010). Additionally, the participants were
asked to fill out 14 items of the IGroup Presence Questionnaire
(IPQ), which measures a person’s sense of presence in VR
(Schubert et al., 2001), to test if the participants felt sufficiently
present in the VEs for a fear response to emerge. After that, the
participants were asked to fill out the AQ to confirm the group

membership; median � 0.82 (Cohen, 1977) indicates adequate
test–retest reliability, suggesting that pre- and post-experiment
AQ scores should be similar. Finally, a structured interview by
the researcher was held to ask the participants if and when they
felt fearful or any other emotions during the experiment to
gather extra feedback.

2.3 fNIRS Data Acquisition
Changes in HbO and HbR concentrations were measured
using the Artinis Brite 24 3. The Brite is a wireless continuous
wave fNIRS device that can measure up to 27 channels. The
near-infrared light is emitted at two nominal wavelengths:
760 and 850 nm. Cortical hemodynamic responses were
measured at a sampling rate of 10 Hz. The optodes were
arranged to cover a large region of the PFC, including the
dlPFC, anterior PFC, and part of the vlPFC. Every
emitter–detector pair had a maximum distance of 3 cm
between the optodes. Figure 2 shows the positioning of
the optodes and channels on the scalp, with an overview

FIGURE 1 | The experimental design showing the exemplified VE scenes of the ground condition and height condition.

2https://unity.com/ 3https://www.artinis.com/brite
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of the 10–20 system as a reference. In order to prevent near-
infrared light being absorbed by hair, the researcher used a
narrow, oblong tool to move the participant’s hair to the side
when it fell between an optode and the participant’s scalp.
Signal quality was visually validated by confirming the
presence of cardiac cycles in the fNIRS signals (Hocke
et al., 2018).

2.4 Data Processing
2.4.1 fNIRS Pre-processing
The fNIRS data were recorded using the Artinis Oxysoft
software4. The raw data were converted to Δ(HbO) and

FIGURE 2 | The experimental setting; (A) a participant wearing the fNIRS headset and the VR-HMD during the experiment; (B) the positioning of the optodes
projected on the layout of the 10–20 system, showing the detectors (blue), emitters (yellow), and the channels indicated by a circle with a number in it; (C) the overview of
statistical analysis.

4https://www.artinis.com/oxysoft
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Δ(HbR) signals (Chen, 2016; Pinti et al., 2019) using the modified
Beer–Lambert law (Delpy et al., 1988; Scholkmann et al., 2014).
After that, the data were exported to Matlab using
Oxysoft2Matlab script and visually inspected. Channels with
severe motion artifacts (usually with an amplitude of 5 μM)
and channels that did not show cardiac cycles (evident by the
repetitive alternation of around 0.10 μM of the amplitude) were
excluded from further analysis. Motion correction was applied to
the remaining channels, using the Temporal Derivative
Distribution Repair procedure (Fishburn et al., 2019). After
that, the correlation coefficients of every channel’s Δ(HbO)
and Δ(HbR) signals were calculated. Channels with a positive
correlation coefficient were removed, following a previous fNIRS
study suggesting that a negative correlation can be expected when
the amount of motion artifacts in the signals is low (Cui et al.,
2010). Then, a third-order Butterworth band-pass filter (Hocke
et al., 2018; Pinti et al., 2019) with low cut-off frequency 0.01 Hz
and high cut-off frequency 0.1 Hz was applied to remove
physiological noise arising from breath cycles (∼0.2–0.3 Hz),
cardiac cycles (∼1 Hz), and Mayer waves (∼0.1 Hz) (Naseer
and Hong, 2015; Pinti et al., 2019). The filtered signals were
separated into trials and adjusted with a baseline, yielding five
ground-condition trials and five height-condition trials. The
main duration of trials was set from 0 to 30 s after the
stimulus presentation onset, covering the entire task period of
each trial. The 5-s period preceding the stimulus presentation was
used as a baseline period. For each participant and each channel,
the signals were grand averaged across trials in each condition.

2.5 Data Analysis
A between-group analysis was performed by investigating the
significant differences of fNIRS signals between the control group
and the experimental group. In order to investigate the effect of
height on participants with fear of heights, a within-group
analysis was performed on the data of ground-condition trials
and height-condition trials of merely the experimental group to
investigate significant difference of fNIRS signals in the two
conditions. Statistical testing was conducted using Matlab
2020a, and the overview of the statistical analysis performed is
illustrated in Figure 2.

2.5.1 Between-Group Analysis
To mitigate the inter-subject variability issue, we computed a
contrast between the ground-condition and the height-condition
grand average Δ[HbO] signals and Δ[HbR] signals for all
channels and all participants. The contrast was computed by
subtracting the grand average ground condition signal from the
grand average height condition signal. For all of these signals, the
mean over the window from 3 to 15 s post-stimulus onset was
computed, following the evidences that the hemodynamic
response only starts to become visible after 3 s [2.8-s lag was
found (Lachert et al., 2017)] and that the hemodynamic response
is most intense in the first 5–17 s after the stimulus onset (Khan
et al., 2020). For every channel, a permutation test with 50,000
permutations was used to test for significant differences between
the contrast signal means of the control group and the
experimental group, at the significance level α � 0.05. The

permutation test was chosen as it is a non-parametric test that
can be used on small sample sizes and makes no assumptions
about the distribution of the data.

2.5.2 Within-Group Analyses
Similar to the between-group analysis, the grand average ground
condition Δ(HbO) and Δ(HbR) signals and the grand average
height condition Δ(HbO) and Δ(HbR) signals were averaged over
the 3–15 s window. For every channel, a permutation test with
50,000 permutations was used to test for significant differences
between the ground-condition trial means and the height-
condition trial means over the 3–15 s window, at the
significance level α � 0.05.

2.5.3 Correction for Multiple Comparisons
Four statistical analyses were executed on the fNIRS data
(between/within group analysis on the Δ[HbO]/Δ[HbR] data)
per channel, yielding a total of 4 × 27 � 108 hypothesis tests from
all channels. False discovery rate correction, as suggested by
Genovese et al. (2002) for neuroimaging data, was executed on
the 108 p-values that resulted from the statistical analyses to
correct for multiple comparisons. The rate q was set to 0.05.

2.6 Classification
2.6.1 Feature Extraction
We used data from all channels that are not corrupted by
movement artifacts and hardware malfunctions (as explained
in Section 2.4.1) for classification, where the number of available
channels differs across participants. Instead of extracting features
per channel, we first calculated the averages of Δ[HbO] and
Δ[HbR] measurements over the remaining channels, yielding the
Δ[HbO] and Δ[HbR] respectively, and then extracted the
features from them in the period within 3–15 s after stimulus
onset. A 1-s sliding window was applied without overlap between
consecutive windows in order to gain more data from the signals.
Following the study of Derosière et al. (2014), the averages of
Δ[HbO] and Δ[HbR] were then computed per window to
represent the data of that 1-s window. Short histories of the
averaged Δ[HbO] and Δ[HbR] signals of every second were also
computed, such that the information arising from the changes in
the signal over time could be utilized as additional features for
classification, similar to Hu et al. (2012). For every observation,
the current observation and the observations of the x seconds
preceding the current observation were extracted (yielding a total
of x + 1 features for each chromophore (Δ[HbO] and Δ[HbR])).
In order to investigate the effect of the length of the histories, the
classifiers were trained and tested on three different histories,
similar to Hu et al. (2012): 1 s, 3 s, and 5 s. Note that the duration
of histories to look back leads to different number of features, but
the number of training and test instances are identical.

2.6.2 Subject-Dependent and Subject-Independent
Classification
Subject-dependent classifiers were trained and tested only for the
experimental group due to the clear distinction of fear responses
between height-condition trials and ground-condition trials,
labeled as fear response and no fear response, respectively. All
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1-s windowed data from the first six trials (consisting of three
ground-condition trials and three height-condition trials) were
used as training data, and the remaining windowed data from
four trials were the test data. As data were extracted from 3 to 15 s
after stimulus onset, this resulted in 12 × 6 � 72 training data
instances and 12 × 4 � 48 test data instances from each
participant. In this study, linear discriminant analysis (LDA)
and support vector machines (SVM) with linear kernel,
implemented in Matlab 2020a, were trained with the standard
hyper-parameter settings. Specifically, a linear coefficient
threshold of 0 was used with regularized LDA. Sequential
minimal optimization was applied to the linear-SVM and
without feature scaling. The performance in the modes of 1-,
3-, and 5-s history was measured by the accuracy. Similarly,
subject-independent classifiers were trained and tested with the
experimental group using leave-one-subject-out cross-validation.
It can be useful in real-life VRET settings to classify unseen data
from an unknown participant (Bălan et al., 2020). In order to
compare the subject-dependent classification with a random
classifier (50% accuracy), the 95% confidence interval is
calculated for each classifier. The lower (bl) and upper bounds
(bu) of the 95% confidence interval are based on the Wilson score
interval (Wilson, 1927) and are given by the formula

bl, bu( ) � 1

1 + z2

n

p̂ + z2

2n
( ) ± z

1 + z2

n

�������������
p̂ 1 − p̂( )

n
+ z2

4n2

√
(1)

where p̂ is the estimated performance, n is the number of test
samples, and z the value corresponding to the desired confidence
interval. In case of the 95% confidence interval, z � 1.96. The
advantage of theWilson score interval is that it is asymmetric and
has no overshoot or zero-width intervals unlike the traditional
normal approximation.

3 RESULTS

3.1 Behavioral Results
Three participants withdrew from the experiment due to motion
sickness caused by the VR-HMD. SUDS threshold at 30 was used
to distinguish the feeling of relaxation and fear, where
participants should report higher than this threshold when
feeling fear during the experimental condition. As a result, two
participants were excluded from each group due to the mismatch
between the reported SUDs score and the expected range. In
addition, the threshold of IPQ was set at 3 as the minimum for the

feeling of presence in the VR, leaving two participants, whose
scores did not surpass the threshold, out from the experimental
group. Besides, the AQ scores were used to reconfirm the group
membership after the experiment, resulting in one and two
participants removed from the control and experimental
groups, respectively. Consequently, a total of 15 participants
(nc � 15) remained to be part of the control group and 14
participants (ne � 14) were part of the experimental group.
Table 1 shows the mean scores and standard deviations of the
questionnaire results for both groups; it suggests a clear
distinction between the two groups in terms of AQ scores
(pre-experimental as well as post-experimental) and SUDS for
the height condition. The two groups scored similarly for SUDS
in ground condition and for the experienced presence in the VEs.

3.2 Statistical Analysis
3.2.1 Between-Group Analysis
Figure 3 shows the grand average Δ[HbO] traces of the
contrast between the ground condition and the height
condition for the two groups for every channel, with the
standard error given around every trace. It is apparent that
only channel 3 (p � 0.000 8) generated a significant difference
between the contrast Δ[HbO] means of both groups using
statistical testing with the false discovery rate (FDR)
correction. Meanwhile, the results from Δ[HbR] traces, as
also shown in Figure 3, suggested that there are some
channels (i.e., channels 15, 23, 24, and 27), where the
grand average trace of the control group has a different
pattern than that of the experimental group. However,
none of them are significant after the corrected statistical
testing.

3.2.2 Within-Group Analysis
Figure 4 shows the grand average Δ[HbO] traces of the ground
condition and the height condition for the experimental group,
with the standard error given around every trace. Apparently, the
difference between the two conditions can be clearly observed,
especially on the salient increase of Δ[HbO] during 3–15 s after
stimulus compared to the rather constant trace in ground
condition. FDR-corrected permutation test shows that the
distinct patterns are significantly different in channels
1 (p � 0.002 2), 2 (p � 0.002 2), 3 (p � 0.000 01), 4 (p � 0.000
3), 6 (p � 0.002 2), 11 (p � 0.001 6), 12 (p � 0.004 1), 14 (p � 0.001
6), 18 (p � 0.000 9), 20 (p � 0.000 02), 23 (p � 0.000 02),
25 (p � 0.000 1), and 26 (p � 0.002 2). In contrast, Δ[HbR]
traces, as also shown in Figure 4, are rather flat for both
conditions, whereas only the difference in channel
23 (p � 0.001 7) is significant after the corrected statistical testing.

3.3 Classification
Due to motion artifacts and hardware malfunctions, some
channels were excluded from the analyses in some
participants; i.e., features were extracted from the remaining
uncorrupted channels per participant (see Section 2.4.1). In
this study, we trained and tested the subject-independent
classifiers with the data from only of the uncorrupted Δ[HbO]
channels, as many corrupted Δ[HbR] channels were excluded for

TABLE 1 | Mean scores and standard deviations of the questionnaire results for
the control group and the experimental group.

Questionnaire Control
group mean (±SD)

Experimental
group mean (±SD)

Pre-experiment AQ 10.80 (±5.66) 56.07 (±11.20)
Post-experiment AQ 10.73 (±6.41) 50.36 (±11.85)
SUDS ground condition 3.00 (±4.55) 6.43 (±6.02)
SUDS height condition 11.53 (±8.08) 69.86 (±11.55)
IPQ presence 4.20 (±0.86) 4.21 (±0.97)
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many participants, which makes it unfeasible to train and test
classifiers on these data.

3.3.1 Subject-Dependent Classification
Table 2 shows the accuracies of the subject-dependent
classification and the 95% confidence interval, calculated
using Eq. 1. The mean accuracy computed across all
participants suggests that the SVM on the 3-s history
performs best, with a mean accuracy of 69.69% (SD 16.94).
However, the mean accuracies of the other classifiers are close to
that of the 3-s history SVM, with a maximal difference of
roughly 1.4%. Therefore, the amount of history taken into
account in the classification seems to have a minimal effect
on this metric. LDA and linear SVM achieved similar
performance with a maximum of 1.2% in accuracy difference.
From Eq. 1 one can easily deduce that if the estimated
performance is above 64.5% then the lower bound of the
95% confidence interval is higher than 50%. Recall that a
subject-dependent classifier is tested on 48 samples; hence,
n � 48. This implies that for most types of classifiers
considered, only 7 out of the 14 subject-dependent classifiers
perform significantly better than random. In order to show that
the mean of the different subject-dependent classification is
significantly higher than the mean of a random classifier for

each participant, we take a somewhat different approach. Since
the mean over all subject-dependent classification is not the
outcome of a Bernoulli experiment (it is the mean over different
Bernoulli experiments) we cannot apply the Wilson score
interval. But the mean performance of 14 subject-dependent
random classifiers is equivalent to an estimated performance of
a Bernoulli experiment with 14 × 48 trials. Since the success rate
of a random classifier is known and equal to 50%, we can
estimate the 99% confidence interval (z � 2.576) using Eq. 1 and
is given by (45%, 55%). This means that in 99% of the cases, the
observed mean of the random classification will be in this
interval.

The performance also varies considerably among the different
participants; while classification in participants 1, 2, and 9
achieved low accuracy, classification for participants 7 and 10
was almost perfect. In some participants, the accuracy also
changed by classification methods and history by an amount
of almost 15% (participant 1), while these factors had minimal
impact on the accuracy in other participants (e.g., participants 7
and 10). This led us to the analysis of data distribution and its
effect on the classification performance.

We investigated the data distribution in feature space of
representative participants: participants 2 and 9 with relatively
low classification accuracy and participant 7 with high

FIGURE 3 | Grand average Δ(HbO) and Δ(HbR) traces of the contrast between ground condition and height condition for the two groups: control group (black
traces) and experimental group (red traces for Δ(HbO) and blue traces for Δ(HbR)), with standard deviation. The gray shaded area (3–15 s post-stimulus) is the window
over which the means were taken that were used for the permutation tests. The horizontal axis represents time in seconds, ranging from 0 to 30, and the vertical axis
represents concentration change in μM, ranging from −0.4 to 0.6. The plots are corresponding to channel labels, which are arranged in accordance with the optode
layout that was used during the experiment, as presented in Figure 2. Channel numbers are labeled in every plot. The plots surrounded by the border shows the channel
where a significant difference was found between the means of the control group and the experimental group. The graphs are arranged according to the optode layout
that was used during the experiment, as presented in Figure 2.
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classification performance. Specifically, principal component
analysis (PCA) was applied to 1-s history data, and we
visualized the distribution of data projected on the first and

second principal components (PCs) to investigate if the
training and test data are identically distributed as shown in
Figure 5. Training and test data are represented in different

FIGURE 4 | Overview of the grand average Δ(HbO) and Δ(HbR) traces of the ground condition (green traces for Δ(HbO) and blue traces for Δ(HbR)) and height
condition (orange traces for Δ(HbO) and purple traces for Δ(HbR)) of the experimental group, with standard deviation. The gray shaded area is the window over which the
means were taken that were used for the permutation tests. The horizontal axis represents time in seconds, ranging from 0 to 30, and the vertical axis represents
concentration change in μM, ranging from −0.4 to 0.6. The plots are corresponding to channel labels, which are arranged in accordance with the optode layout that
was used during the experiment, as presented in Figure 2. The plots surrounded by boarders show the channels where a significant difference was found between the
means of the ground condition and the height condition for the experimental group.

TABLE 2 | Accuracies and confidence intervals [lower bound, upper bound] of the subject-dependent classification.

Participant 1s history 3s history 5s history

LDA SVM LDA SVM LDA SVM

1 41.67 (28.85,55.72) 56.25 (42.27,69.30) 41.67 (28.85,55.72) 56.25 (42.27,69.30) 54.17 (40.29,67.43) 50.00 (36.39,63.61)
2 52.08 (38.33,65.53) 54.17 (40.29,67.43) 43.75 (30.70,57.73) 52.08 (38.33,65.53) 43.75 (30.70,57.73) 52.08 (38.33,65.53)
3 58.33 (44.28,71.15) 64.58 (50.44,76.56)* 56.25 (42.27,69.30) 58.33 (44.28,71.15) 50.00 (36.39,63.61) 58.33 (44.28,71.15)
4 85.42 (72.84,92.75)* 85.42 (72.84,92.75)* 77.08 (63.46,86.69)* 83.33 (70.42,91.30)* 77.08 (63.46,86.69)* 81.25 (68.06,89.81)*
5 89.58 (77.83,95.47)* 83.33 (70.42,91.30)* 91.67 (80.45,96.71)* 83.33 (70.42,91.30)* 83.33 (70.42,91.30)* 81.25 (68.06,89.81)*
6 58.33 (44.28,71.15) 58.33 (44.28,71.15) 68.75 (54.67,80.05)* 64.58 (50.44,76.56)* 68.75 (54.67,80.05)* 68.75 (54.67,80.05)*
7 97.92 (89.11,99.63)* 100.00 (92.59,100.00)* 95.83 (86.02,98.85)* 100.00 (92.59,100.00)* 97.92 (89.11,99.63)* 100.00 (92.59,100.00)*
8 81.25 (68.06,89.81)* 81.25 (68.06,89.81)* 87.50 (75.30,94.14)* 87.50 (75.30,94.14)* 93.75 (83.16,97.85)* 93.75 (83.16,97.85)*
9 45.83 (32.57,59.71) 45.83 (32.57,59.71) 41.67 (28.85,55.72) 43.75 (30.70,57.73) 37.50 (25.22,51.64) 41.67 (28.85,55.72)
10 85.42 (72.84,92.75)* 83.33 (70.42,91.30)* 85.42 (72.84,92.75)* 89.58 (77.83,95.47)* 91.67 (80.45,96.71)* 87.50 (75.30,94.14)*
11 64.58 (50.44,76.56)* 60.42 (46.31,72.98) 64.58 (50.44,76.56)* 54.17 (40.29,67.43) 64.58 (50.44,76.56)* 50.00 (36.39,63.61)
12 75.00 (61.22,85.08)* 77.78 (64.22,87.22)* 83.33 (70.42,91.30)* 77.78 (64.22,87.22)* 83.33 (70.42,91.30)* 77.78 (64.22,87.22)*
13 62.50 (48.36,74.78) 60.42 (46.31,72.98) 62.50 (48.36,74.78) 62.50 (48.36,74.78) 56.25 (42.27,69.30) 62.50 (48.36,74.78)
14 62.50 (48.36,74.78) 58.33 (44.28,71.15) 58.33 (44.28,71.15) 62.50 (48.36,74.78) 54.17 (40.29,67.43) 56.25 (42.27,69.30)

Mean 68.60 (64.99,72.00)* 69.25 (65.66,72.62)* 68.45 (64.84,71.85)* 69.69 (66.11,73.04)* 68.30 (64.69,71.71)* 68.65 (65.04,72.04)*
(±SD) (±17.29) (±15.64) (±18.77) (±16.94) (±19.70) (±18.32)

* indicates the performance for which the lower bound of its confidence interval is larger than 50%.
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colors. The decisions made for the test data by the LDA and
linear-SVM classifiers are also depicted. It should be noted that
data distribution in feature space of 3- and 5-s history data are
generally similar to 1-s history data and therefore not shown here.
Also, it is worth mentioning that PCA is applied for visualization
purposes only and not for feature dimension reduction.

In the data of participant 2 there is a high overlap in the test
data between the distribution of the fear and non-fear classes,
making it difficult to reach decent performance. In participant 9
data, LDA and linear-SVM learned to distinguish classes along
the second PC, while the test data are clearly separable along the
first PC, thereby yielding performance around chance level. In

FIGURE 5 | Training, test data, and classification decisions from LDA and SVM of the 1-s subject-dependent classification of participants 2 (P2), 7 (P7), and 10
(P10), plotted against the first and second principle components.

TABLE 3 | Accuracies and confidence intervals [lower bound, upper bound] of the subject-independent classification).

Participant 1s history 3s history 5s history

LDA SVM LDA SVM LDA SVM

1 78.33 (70.14,84.76)* 78.33 (70.14,84.76)* 75.83 (67.45,82.61)* 75.83 (67.45,82.61)* 76.67 (68.35,83.34)* 76.67 (68.35,83.34)*
2 67.50 (58.69,75.22)* 66.67 (57.83,74.47)* 70.83 (62.15,78.22)* 70.83 (62.15,78.22)* 70.83 (62.15,78.22)* 70.83 (62.15,78.22)*
3 79.17 (71.06,85.47)* 80.00 (71.96,86.18)* 78.33 (70.14,84.76)* 78.33 (70.14,84.76)* 77.50 (69.24,84.05)* 76.67 (68.35,83.34)*
4 84.17 (76.59,89.63)* 82.50 (74.72,88.26)* 89.17 (82.35,93.56)* 89.17 (82.35,93.56)* 88.33 (81.36,92.92)* 89.17 (82.35,93.56)*
5 85.00 (77.53,90.30)* 85.00 (77.53,90.30)* 90.83 (84.32,94.80)* 90.83 (84.32,94.80)* 89.17 (82.35,93.56)* 90.83 (84.32,94.80)*
6 72.50 (63.91,79.70)* 72.50 (63.91,79.70)* 84.17 (76.59,89.63)* 81.67 (73.80,87.57)* 82.50 (74.72,88.26)* 81.67 (73.80,87.57)*
7 88.33 (81.36,92.92)* 85.83 (78.48,90.96)* 90.00 (83.33,94.19)* 86.67 (79.44,91.63)* 91.67 (85.34,95.41)* 88.33 (81.36,92.92)*
8 48.33 (39.58,57.18) 51.67 (42.82,60.42) 50.00 (41.19,58.81) 50.00 (41.19,58.81) 52.50 (43.63,61.22) 54.17 (45.26,62.82)
9 65.83 (56.97,73.71)* 65.83 (56.97,73.71)* 68.33 (59.55,75.97)* 69.17 (60.42,76.73)* 67.50 (58.69,75.22)* 68.33 (59.55,75.97)*
10 87.50 (80.40,92.28) 85.83 (78.48,90.96) 91.67 (85.34,95.41) 88.33 (81.36,92.92) 90.83 (84.32,94.80) 89.17 (82.35,93.56)
11 53.33 (44.44,62.01)* 55.83 (46.90,64.40)* 55.00 (46.08,63.61)* 55.00 (46.08,63.)]* 54.17 (45.26,62.82)* 54.17 (45.26,62.82)*
12 68.52 (59.75,76.15)* 67.59 (58.78,75.31)* 63.89 (54.99,71.93)* 65.74 (56.88,73.62)* 60.19 (51.25,68.50)* 66.67 (57.83,74.47)*
13 69.17 (60.42,76.73)* 68.33 (59.55,75.97)* 69.17 (60.42,76.73)* 68.33 (59.55,75.97)* 70.00 (61.28,77.47)* 69.17 (60.42,76.73)*
14 57.50 (48.56,65.98) 57.50 (48.56,65.98) 63.33 (54.42,71.41)* 63.33 (54.42,71.41)* 65.83 (56.97,73.71)* 66.67 (57.83,74.47)*

Mean 71.80 (69.60,73.90)* 71.67 (69.47,73.77)* 74.33 (72.19,76.36)* 73.80 (71.64,75.85)* 74.12 (71.97,76.16)* 74.46 (72.32,76.49)*
(±SD) (±12.75) (±11.60) (±13.66) (±12.84) (±13.31) (±12.34)

* indicates the performance for which the lower bound of its confidence interval is larger than 50%.
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contrast, data distribution of training and test data are rather
similar for participant 7, with a much clearer linear separability in
test data. The classification for this participant is therefore high
for of the linear classifiers.

3.3.2 Subject-independent Classification
Table 3 shows the accuracies of the subject-independent classifiers
and the 95% confidence interval, calculated using Eq. 1. For the
subject-independent classification, the 95% confidence intervals are
smaller, since these are tested on n � 120 samples. This also implies
that if the estimated performance is above 59% then the lower bound
of the 95% confidence interval is larger than 50%. This implies that
for most types of classifiers 12 out of 14 subject-independent
classifiers perform significantly better than random. In order to
compare the mean performance of the subject-independent
classification with the mean of subject-independent random
classification, we take the same approach as for the subject-
dependent classification. In this case we have 14 × 120 trails, and
the 99% confidence interval is given by (47%, 53%). Based on the
mean accuracies computed from all participants, it can be inferred
that the SVMon the 5-s history performs best, with amean accuracy
of 74.46% (SD 12.34). On the contrary, the SVM on the 1-s history
performs the worst on average, with a mean accuracy of 71.67% (SD
11.60). From the calculated 99% confidence interval (47%, 53%) for
the mean of random subject-independent classification (see Section
2.6.2), one can easily deduce that themean of the subject-dependent
classification is significantly higher (99.5% confidence) than the
mean of random subject-independent classification.

Again, the difference between the accuracies of the classifiers that
perform best and worst on average is only a few percent, indicating
that the amount of history and the classification methods have
merelyminor influence on the classification performance. Again, the
accuracies vary considerably among participants, ranging from
48.33% (participant 8) to 91.67% (participant 10), and the cause
of this variation is also investigated by data distribution in PC space.

In the data of participant 8, the training data depicted in
Figure 6 (P8) shows that the data labeled as no fear are mostly

centered around the negative values of the first PC, while fear data
were located around the positive values. However, the test data of
Figure 6 (P8) have a different pattern. Instead, the data of the
different labels are distributed over the positive and negative
values of the second PC and are quite overlapping, indicating
the difficulty to separate the test data of the different labels by a
linear decision boundary. This might explain why the classifiers,
which seemingly learned to separate classes along the first PC,
cannot perform well on the test data, yielding low accuracy. In
contrast, data distribution in test data from participant 10 [see
Figure 6 (P10)] are linearly separable in the first PC.
Specifically, data labeled as no fear are centered around the
negative values of the first PC, and the test data labeled as fear
are centered around the positive values of the first PC. The linear
classifiers were therefore successful in generalizing the learned
pattern along the first PC to the test data, achieving high
classification performance.

4 DISCUSSION

The aim of this study was to measure brain activity of participants
with and without fear of heights when exposed to fearful stimuli
presented in VR-HMD. Additionally, the study investigated the
feasibility to train a simple classifier to recognize a fear response
from fNIRS signals recorded from participants with fear of
heights. A successful combination of fNIRS measurement and
VR-HMD can prove the ecological validity of its use in VRET.

4.1 Statistical Analyses
4.1.1 Between-Group Analysis
The results from the between-group analysis of the fNIRS signals
showed that the grand average contrast Δ[HbO] signals of the
control group and the experimental group are significantly
different in channel 3. No significant differences were found
between the grand average contrast Δ[HbR] signals of the two
groups. The evidence that only one out of 27 channels shows a

FIGURE 6 | Training, test data, and classification decisions from LDA and SVM of the 1-s subject-dependent classification of participants 2 (P2) and 10 (P10),
plotted against the first and second principle components.
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significant difference between the two groups for only one
chromophore suggests that the fNIRS signals of participants
with fear of heights were not that different from those of
participants without fear of heights in general.

However, it is difficult to make a direct comparison of our result
with the literature due to the lack of including both experimental and
control groups in previous studies on this topic. Despite this, it was
discovered that Δ[HbO] measured in (some areas of) the PFC of
recruited homogeneous participants increased during fearful
conditions (Rosenbaum et al., 2020; Glotzbach et al., 2011; Zhang
et al., 2017; Köchel et al., 2013; Roos et al., 2011; Ma et al., 2013;
Landowska, 2018), which is in line with our results that the Δ[HbO]
signal of the experimental group peaks higher than that of the control
group when exposed to fearful stimuli (see Figure 3). In contrast, we
found that Δ[HbR] of both groups were quite equal, which is partly
in accordance with the evidence that the majority of similar works
did not report any change of Δ[HbR] after the exposure to fearful
stimuli (Roos et al., 2011; Ma et al., 2013; Zhang et al., 2017;
Rosenbaum et al., 2020), but there are some exceptions
(Glotzbach et al., 2011; Köchel et al., 2013; Landowska et al., 2018).

Nevertheless, it was also reported in the literature that Δ[HbO]
values over the PFC can increase when the participants were
experiencing other mental states, such as mental workload,
mental stress, affective responses, attention, deception,
preference, anticipation, suspicion, and frustration (Suzuki
et al., 2008; Ayaz et al., 2012; Kreplin and Fairclough, 2013;
Ding et al., 2014; Hirshfield et al., 20142014; Tupak et al., 2014;
Arefi Shirvan et al., 2018; Numata et al., 2019). This indicates that
increased Δ[HbO] values are not only an indication of fear
responses but can also be driven by other psychological
factors. This effect is less likely for the experimental group in
our study, as they indicated that they were feeling afraid during
the height exposure, which makes it improbable that they also
experienced other mental states, considering that fear is
presumably the most salient feeling they would perceive.

4.1.2 Within-Group Analysis
The result of the within-group analysis of the fNIRS signals shows
that the grand average Δ[HbO] values are significantly higher
during the height condition than during the ground condition.
This significant difference was observed in a total of 13 channels,
which are all located towards the frontal part of the PFC. These
results indicate that during fear responses, the Δ[HbO] values
increase significantly as compared to no-fear responses, which is
in accordance with the vast majority of previous works on fNIRS
measurements taken during fear responses (Glotzbach et al.,
2011; Roos et al., 2011; Köchel et al., 2013; Ma et al., 2013;
Zhang et al., 2017; Landowska, 2018; Rosenbaum et al., 2020).

Additionally, the results of the within-group analysis show
that the grand average Δ[HbR] values of the height condition and
the ground condition are significantly different in channel 23.
Surprisingly, the grand average Δ[HbR] signal of the height
condition is higher than that of the ground condition in this
channel. This contradicts some findings from the literature,
where decreased Δ[HbR] values are reported for fearful
conditions (Glotzbach et al., 2011; Köchel et al., 2013;

Landowska et al., 2018). It remains unclear why our results
differ from the literature.

The clear distinction of fNIRS signals due to fear exposure in
experimental group suggests the possibility to train a classifier to
automatically detect fear responses using fNIRS.

4.2 Classification
4.2.1 Subject-Dependent Classification
The subject-dependent classification results suggest that the amount
of history and the choice between the LDA or the linear-SVM
algorithm has minimal influence on the subject-dependent
classification performance. The linear classifiers do not perform
well for some participants due to the difference in data distribution
between training and test data. A possible explanation is that the fear
responses and accompanying fNIRS measurements of these
participants were not stable over time.

4.2.2 Subject-Independent Classification
Similarly, the choice of classification methods and the amount of
history to take into account do not have enormous influence on
the performance of subject-independent classifiers. While the
overall accuracy is above 71%, classification for participants 8 and
11 achieved poor performance. Our investigation on the
participants’ AQ, SUDS, and IPQ scores indicated that these
participants had a strong fear of heights, felt very anxious during
the height trials, felt relaxed during the ground trials, and felt
sufficiently present in the VEs. However, we learned from the
data distribution analysis that the fNIRS measurements of these
participants were not stable over time. This might explain the
overlap of fear and no fear fNIRS data trials in the first two PCs of
the feature space when taking all data from this participant as a
test set (in leave-one-subject-out cross-validation), while the
cause of the instability of data over time remains unclear.

It is remarkable that for most participants, the subject-
independent classification outperforms the subject-dependent
classification. While the training data from the first six trials
have a different distribution than the last four trials used as a test
set in subject-dependent classification, combining all trials might
mitigate the discrepancy between those trials, converging to more
common patterns of the other participants. This would explain
the relatively good performance of the subject-independent
classification. More research is needed to prove this hypothesis.

4.2.3 Overall Classification Performance
Overall, the average classification accuracy of the subject-
dependent classification is approximately 70%, whereas the
subject-independent classification has average accuracies
around 74%. These accuracies are statistically significantly
higher than random classification. It is noteworthy that the
goal of this study is not to find the best classification model
but to examine to what extent a simple linear classifier with
minimal parameter tuning can discriminate between fear and no-
fear responses. Future work on applying sophisticated algorithms
could improve the classification performance. It should also be
noted that our channel selection used in classification was based
solely on signal quality and not influenced by feature correlation.
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The accuracies in our study are comparable to those in
previous works attempting to classify fear from no-fear
responses in VR using physiological signals. Despite achieving
slightly higher accuracies from 76% to 89.5% compared to our
research, previous work recruited a lower number of participants
[seven participants in Handouzi et al. (20132013) using blood
volume pulse (BVP) data, eight participants in Bălan et al. (2020)
using galvanic skin response (GSR), heart rate, and EEG data].
Among similar studies that recruited a higher number of
participants, the study by Šalkevicius et al. (2019) detected
public speaking anxiety using BVP, GSR, and skin temperature
data from 30 participant and achieved 80.1% accuracy in leave-
one-subject-out cross-validation. However, this work did not
include brain signals in the study. In contrast, another study
(Hu et al., 2018) detecting fear of heights response in VR-HMD
from EEG signal achieved 88.77%, but the results were based on
10-fold cross-validation, where the generalizability to classify
unseen participant remains unknown.

In general, our classification performance has demonstrated
the feasibility to detect a fear of height response from brain signals
of a previously unseen participant as a 1-s rate (the size of our
sliding window is 1 s). As we encourage other researchers to test
other classification paradigms, the physiological data reproducing
the results in this study are publicly available.

4.3 Limitations of the Study
It is noteworthy that the fNIRS signals comprise multiple
components where some of them are potentially confounders
that are not task-related. Our method is based on contrasting
an experimental condition with a baseline condition, which can
subtract out spurious hemodynamic/oxygenation responses from
the experimental task (Tachtsidis and Scholkmann, 2016). Thus, it
should reduce hemodynamic influences from the extracerebral
layer from the fNIRS signals. Alternative approaches can be further
incorporated to remove systemic confounders.

Neither the fNIRS headset nor the VR-HMD was originally
designed for simultaneous usage of both devices. The incompatibility
caused an uncomfortable feeling for many participants. The VR-
HMD needed tightening up with a headband around the
participant’s head. This put an extra pressure on the optodes of
the fNIRS headset, which can be unpleasant for some participants,
negatively influencing the user experience of the system. Since it is
difficult to quantify the effect of the uncomfortable feeling caused by
the hardware components, it remains unknown to what extent this
affected the participants and the consequent results.

Although the fNIRS technology is less susceptible to motion
artifacts and electrical noise, it was often reported in the literature
that motion artifacts still occur (Naseer and Hong, 2015; Wilcox
and Biondi, 2015; Pinti et al., 2020). Therefore, the participants in
our study were instructed to look around very slowly in the VEs
and to limit their bodily movements, which might reduce realism
of the experience of the VEs for some participants. Still, the
motion artifacts were present in our study.

4.4 Recommendations for Future Work
Future research should consider adding more trials per condition
and prolonging the duration of each trial. More data are needed to

train sophisticated classification models. Prolonged duration
opens the possibility to include heart rate variability (HRV) as
a feature for the classifier; HRV can be captured from the
embedded cardiac cycles in the fNIRS signals and was found
to be a useful measure to detect fear (Wiederhold et al., 2002;
Peterson et al., 2018). Also, it is worthy to investigate the
difference among high-arousal-negative-valence responses,
such as mental stress, frustration, and fear; disentanglement of
such responses can potentially improve the detection of fear of
height.

In this research, we measure distress and the feeling of
presence by using established scales to allow the comparison
with previous research in fear and VRET. While SUDS has been
widely used in the context of fear exposure treatment due to its
high comprehensiveness, conciseness, and validity in
psychological studies, future works should also consider using
recently developed measures that are correlated highly with the
SUDS to confirm the validity of the measured fear by the classical
SUDS. These include the scale of anxiety (Spielberger, 1972;
Masia-Warner et al., 2003), discomfort (Kaplan et al., 1995),
disturbance (Harris et al., 2002; Kim et al., 2008), or distress
(McCullough, 2002). Similarly, although IPQ was found as the
most reliable questionnaire to measure the presence in VR
environment (Schwind et al., 2019) among classical measures
(Witmer and Singer, 1998; Slater and Steed, 2000; Usoh et al.,
2000), the alternative recent questionnaires should also be
considered (Grassini and Laumann, 2020).

The statistical analyses of the fNIRS data and the classification
performances are merely based on the mean Δ[HbO] and mean
Δ[HbR] values. However, it is known from previous fNIRS studies
investigating mental states that alternative features such as
amplitude, slope, standard deviation, kurtosis, skewness, and
signal peaks can provide insights and be used as discriminative
features for classifying mental states (Khan andHong, 2015; Zhang
et al., 2016; Aghajani et al., 2017; Parent et al., 2019). In our study,
the grand average Δ[HbO] traces revealed that the traces of the
experimental group generally rise to a peak value, whereas this
pattern is less apparent for the grand average traces of the control
group (see Figure 3). A similar observation can be made for the
grand average Δ[HbO] traces of the height condition and ground
condition of the experimental group (see Figure 4). Based on these
observations, it is anticipated that alternative features such as the
maximum signal value, the time to peak, and the signal slope have
the potential to improve the classification results or enhance the
fNIRS difference between groups.

5 CONCLUSION

The results answer our first research question by
demonstrating that there is significant difference in fNIRS
signals between participants with a fear of heights and
participants without it when exposed to fear conditions in
a VE. Specifically, the contrast between the ground-condition
and height-condition fNIRS signals in the experimental
group was larger than that in the control group, despite
limited statistical significance. The effect of the condition
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was more salient when focusing only on the experimental
group that exhibited significant differences in the grand
average Δ[HbO] values during fear responses and during
no-fear responses. The effect was dominant in the optode
area close to the frontal part of the PFC. To answer our
research question regarding to what extent a machine
learning model can be successfully trained to recognize
fear of heights response using fNIRS, we trained different
simple classifiers in a subject-dependent and subject-
independent framework and found that subject-dependent
classification encountered the issue of subjective variability.
Nevertheless, the subject-independent classification results
show the potential for usage in online fear of height detection,
and the average accuracy in classifying unseen data from a
previously unseen participant is above 74.00%. Our study
therefore confirmed the ecological validity of combining
fNIRS measurement and VR-HMD, which may pave a way
toward effective VRET.
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