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Ribbon diagrams are important for protein visualization, used to convey the secondary
structure in a clear and concise manner. However, most algorithms used to generate these
diagrams do not maintain visual continuity when viewing amolecular trajectory, with certain
sections of ribbons flipping between clockwise and counterclockwise twists. Here we
outline a new method which prevents this artifact by morphing between consecutive cross
sections instead of rotating. This yields diagrams which are well suited for viewing dynamic
simulations, such as those used for interactive molecular dynamics. We illustrate the utility
of this algorithm by using it to visualize iMD-VR (interactive molecular dynamics in virtual
reality) simulations of the secondary structure of the SARS-CoV-2 main protease (Mpro),
which is being investigated as a potential target for COVID drug therapies.
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1 INTRODUCTION

The ribbon diagrams used to visualize protein secondary structure can trace their origins to hand-
drawn illustrations. This culminated in the production of diagrams for all 75 protein structures
currently determined, by Richardson (1981, 2000). These diagrams were first and foremost tasked
with conveying the three dimensional structure of proteins upon the two-dimensional page. Starting
from a trace of the experimentally determined positions of the alpha carbons, subjective decisions
were made to smooth the final curves such that they clearly conveyed the structures in question
(Richardson (1985)). These diagrams also guided the form that future diagrams would take, with the
secondary structure motifs of helices and beta sheets appearing as wide flat ribbons, in contrast to the
cylindrical tubes of the intervening backbone.

One of the first computer algorithms for reproducing these diagrams was described by Carson and
Bugg (1986), and utilized in several early programs (Carson and Bugg (1988), Carson (1991), Carson
(1997)). Richardson had described aligning ribbons with the axes of the helices and hydrogen bonds
of the beta sheets (Richardson (1985)), which is reflected in Carson and Bugg’s choice to align the
normals of the ribbons with that of the peptide plane. Examples of ribbon diagrams as seen in
modern molecular visualization programs are shown in Figure 1.

The mathematical construct used to represent these smooth paths is commonly a spline, which
consists of piecewise polynomial curves which are connected to give a continuous curve. The path of
the spline is driven by a set of control points, which the spline may or may not pass through. Often
ribbon diagrams use splines that fall into the latter category, as the ribbon adopting a pleasing smooth
path outweighs the need for it to pass through the exact positions of the α carbons that dictate
its shape.
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A spline defines a one dimensional curve that passes through
three dimensional space, consisting of individual segments which
share end points. To generate an actual ribbon, a cross section
(commonly either a rectangle or ellipse) is extruded along the
curve. The alignment of the ribbon at the end points is
determined either by the shape of the curve, or features of the
underlying molecular topology. Therefore, there also has to be a
choice in how to smoothly twist the ribbon such that it is correctly
oriented at each end point. Most algorithms choose to turn either
clockwise or counterclockwise, depending on which would
involve the smallest twist. This is achieved by inverting the
second normal if the two face in opposite directions.

When considering a single static diagram, this is a suitable
approach. However, a problem arises when continuity is required
between consecutive ribbon diagrams representing subsequent
snapshots of a single trajectory. Most algorithms for generating
the positions along the splines are well-conditioned—a small shift
in the position of the control points leads to a small shift in the
spline’s path. However, defining the orientation of the ribbon as
that of minimizing the rotation along the curve is not well
conditioned. The maximal twist that can occur over a single
segment is 90°, at which point the end normal is inverted and a
flip occurs where the segment goes from twisting in a clockwise
direction to a counterclockwise direction, or vice-versa. Figure 1
highlights this issue for the SARS-CoV-2 main protease, showing
flipping between two adjacent trajectories. Supplementary
Videos S1–S3 are provided in the supplementary materials to
highlight this issue in other molecular visualization packages.

We posit that this issue has not received much prior attention
because ribbon diagrams are used predominately for static
structures or short image sequences of trajectories in which
the timestep between each image is large. The large timesteps
between frames means that though the flipping occurs, it is not
noticeable in comparison to the changes in atomic positions
between the frames. However, interactive molecular dynamics
(iMD) uses simulations which are displayed to the user in real
time. This means that in iMD the simulation timestep between

different rendered frames is smaller than that used for animated
images. Therefore, in this domain the visual artifact of ribbon
flipping becomes apparent, and may obscure small fluctuations in
atomic positions which may be important.

These discontinuities are particularly apparent for iMD
simulations carried out in virtual reality (iMD-VR), such as used
by O’Connor et al. (2019). For example, in recent work, we have
shownhow iMD-VRcan be applied to interactive studies of the SARS-
CoV-2main protease, byDeeks et al. (2020). The immersive quality of
virtual reality means that the user may be more readily distracted by
the visual noise of sudden changes in their peripheral vision.

2 METHODS

Here we will outline a method for generating a ribbon
representation of a protein which avoids discontinuities due to
ribbon flipping. We have implemented this within our VR-
enabled molecular viewer Narupa iMD (Jamieson-Binnie et al.
(2020)), in which readers can see iMD-VR simulations rendered
using the methods described in this paper.

2.1 Spline
We choose a cubic hermite spline (Eq. 1), which guarantees that
the ribbon passes through each alpha carbon. A spline segment
passes from one alpha carbon to the next, and is defined purely in
terms of the positions of the two alpha carbons p→0 and p→1, and
two tangentsm→0 andm

→
1. It is parameterized in terms of a variable

t in the range [0, 1].
p→(t) � (2t3 − 3t2 + 1) p→0 + (t3 − 2t2 + t)m→0 + ( − 2t3 + 3t2) p→1

+ (t3 − t2)m→1

(1)

This function explicitly contains the position and tangent at
each end point, and hence two adjacent spline segments will have
C0 and C1 continuity (continuity of both positions and tangents).

FIGURE 1 | Comparison of ribbon visualizations in ChimeraX 1.1 (left, Goddard et al. (2018)) and VMD 1.9.3 (right, Humphrey et al. (1996)) of the SARS-CoV-2
main protease (PDB ID 6W63). The trajectory from which these were taken was run within the Narupa framework (Jamieson-Binnie et al. (2020)), based upon input files
used by Deeks et al. (2020). Each frame is separated by a timestep of 10 femtoseconds.
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Whilst the positions are defined by the alpha carbons, there is
not a unique choice for the tangents. There are several methods
for choosing tangents for this class of splines, such as cardinal
splines, Catmull-Rom splines (Catmull and Rom (1974)) and
Kochanek–Bartels splines (Kochanek and Bartels (1984)), all of
which define the tangents in terms of the control point positions
p→i and zero or more parameters. By default we use the cardinal
spline approach for simplicity, with the shape of the curve
dictated by a single parameter.

2.2 Coordinate Frames
To define the ribbon, we require an orthonormal coordinate
frame to be defined at each point along the curve, consisting of an
origin, a tangent, a normal and a binormal. Given the position
and tangent we have determined for the spline, we must also
define at least one of either the normal or binormal, with the third
axis being determined as a cross product. Often, ribbon
representations use a normal which is based upon one or
more bond directions within the peptide plane. However, this
limits the ribbon representation to the visualizing of polypeptides,
where in general it can be applied to other polymers such as
nucleic acids and polysaccharides.

The normal at each control point is instead found by first
taking the second derivative of the curve (Eq. 1) with respect to t.
This vector points in a direction determined by the curvature of
the spline. By taking the perpendicular component of this vector
relative to the tangent at each end point, we obtain a start and end
normal for each segment. To ensure continuity in normals
between adjacent segments, the normal at each control point
is taken as the average of two: the end normal of the preceding
segment, and the start normal of the subsequent segment. This
normal vector is defined purely by the geometry of the curve,
rather than the geometry of the peptide planes. For the two
common cases of helices and beta sheets in protein secondary
structure, these normals align well with those commonly chosen
based upon bond directions.

These initial spline calculations are performed on the CPU,
and yield a set of curve points (consisting of a position, tangent,
normal, scale and color) and a set of pairs of consecutive points.
Each pair corresponds to a single segment, which will be drawn as
a cubic hermite spline on the GPU. For this, a single high
resolution mesh of a cylinder is uploaded to the GPU and
rendered using GPU instancing. Within the vertex shader of
the GPU, the end points of each segment are used to deform the
unit cylinder to yield the correct position and orientation of a
single ribbon segment.

Given the coordinate frames at either end of the segment,
some method is required to generate intermediate coordinate
frames along the spline. These coordinate frames must be
positioned along the curve, with their tangents aligned with
the tangent of the curve at that point.

There are several techniques for generating a set of frames
along a curve. The two common methods are Frenet-Serret
frames (Willmore (2000)), which are defined purely in terms
of the curvature of the parameterized function, and rotationally
minimized or Bishop frames (Bishop (1975)), which minimize
the rotation of the normal along the curve. However, both have

drawbacks, with Frenet-Serret frames exhibiting sharp twists
around inflection points, and Bishop frames requiring iterative
methods to propagate the frame along the curve. These two
methods for assigning coordinate frames, along with the method
we will propose, are illustrated in Figure 2.

For our implementation within iMD-VR, we require a set of
reference frames that are easy to compute, and—whilst not
necessarily minimizing the rotation of the normal—they
should aim to reduce it. Therefore, we propose the following
algorithm to calculate the set of frames:

• Compute the start and end binormals b
→

0 and b
→

1 using
b
→

i � t
→

i × n→i where t
→

i is the normalized tangent and n→i is
the normalized normal at each end point.

• Take the average of these two to give a reference
binormal b

→
ref

• For an arbitrary point p→(t) along the curve, the tangent
t
→(t) is given by the (normalized) derivative of Eq. 1.

• The binormal b
→(t) at this point is given by the

(normalized) perpendicular component of the reference
binormal b

→
ref to the tangent t

→(t).
• The normal n→(t) is given by n→(t) � b

→(t) × t
→(t)

This method yields a set of coordinate frames for a given curve.
Given these coordinate frames, we transform the cylinder such

that its cross sections lie on the planes spanned by the normal and
binormals at a given point along the curve. By using this
approach, we’ve transformed the problem from considering a
fixed ribbon being extruded along a set of coordinate frames that
are twisting to a cross section that is rotating along a set of
coordinate frames that are aligned. This reduces the problem
down to a two dimensional problem, in which we wish to
transform an ellipse aligned with one normalized vector on
the 2D plane to another.

2.3 Morphing Cross Sections
At any point along our spline, we have a 2D plane in which to
define our cross section which is spanned by the normal and
binormal of the coordinate frame. Projecting the start and end
normals of our curve points onto these 2D planes yields two unit
directions, η→0(t) and η→1(t). Here, η→i(t) is the projection of the
binormal b

→
i onto the 2D coordinate system spanned by the axes

n→(t) and b
→(t). These two vectors define the direction of the

major axis of the ellipse at either end of the segment. As an ellipse
can be flipped in the direction of either of its axes, we invert η→1(t)
if the dot product η→0(t) · η→1(t)< 0. This ensures that the
maximal rotation that occurs along a single segment is 90°.
From here, the simplest method that could be used is to
continuously rotate the vector η→(t) from η→0(t) to η→1(t).
This method is shown in the first row of Figure 3, which
highlights the discontinuity that occurs when the difference
between the start and end vector is close to 90°.

We propose a solution to this problem by using an alternative
to a simple rotation of the ellipse from the initial cross section to
the final cross section. As previously mentioned, negating either
vector has no effect on the ellipse at the start or end of each
segment. Therefore, we consider two separate vectors—one
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which goes from η→0(t) to η→1(t), and one which goes from η→0(t)
to − η→1(t). Therefore, one vector rotates clockwise toward the
final vector, and one rotates counterclockwise.

For this method, instead of rotating the vectors, we use a
simple linear interpolation to yield two different vectors (Eq. 2).
Though a spherical interpolation would be more correct when
considering a single vector rotating from the start point to the end
point, linear interpolation yields a compression in the ribbon’s
cross sectional area which we consider to be aesthetically pleasing.

η→+(t) � (1 − t) η→0(t) + t η→1(t)
η→−(t) � (1 − t) η→0(t) − t η→1(t)

(2)

The first of these represents the linear interpolation from the
start vector to the end vector. The second however is a linear
interpolation toward the reflected end vector. Therefore, if one of
these vectors is rotating clockwise, the other must go
counterclockwise and vice-versa. Therefore, by using both of
these vectors to generate the cross section of the ellipse, the
ellipse will end up as some kind of superposition of both a
clockwise and counterclockwise twist. We also note that
exchanging η+(t) and η−(t) has no effect on the generated
cross section, and hence flipping either η→0(t) or η→1(t) has
no effect.

These two vectors are used to generate two other vectors called
and d

→−(t) (Eq. 3), which will be used to deform the circular cross
section of the cylinder.

d
→+(t) � η→+(t) + η→−(t)

2
� (1 − t) η→0(t)

d
→−(t) � η→+(t) − η→−(t)

2
� t η→1(t)

(3)

For a given cross section, we have a set of points { v→} from the
cylindrical mesh which lie on the unit circle. We wish to
transform these points so they form an ellipse dictated by the
vectors d

→+(t) and d
→−(t). This is achieved by taking the dot

product of each point with both d
→+(t) and d

→−(t) and using that
to translate the point in that direction. Combined with a radial
scaling r, this yields a cross section as defined in Eq. 4.

v→1r v→+⎛⎜⎝ v→ · d
→+(t)∣∣∣∣ d→+(t)∣∣∣∣⎞⎟⎠ d

→+(t) +⎛⎜⎝ v→ · d
→−(t)∣∣∣∣ d→−(t)∣∣∣∣⎞⎟⎠ d

→−(t) (4)

These cross sections are similar to rotating the ellipse when the
angle between η→0(t) and η→1(t) is small. However, as this angle
approaches 90°, the cross sections begin to go through an intermediate
circular cross section (see Figure 3). Therefore, when the angle

FIGURE 2 |Comparison of three different methods of assigning a coordinate frame to each point along a cubic curve (From left to right) The Frenet-Serret frame,
defined in terms of the geometry of the curve (Willmore (2000)); The rotationally minimized frame, generated using the double reflection method of Wang et al. (2008); and
our method, using an average of the start and end binormals. Axes shown are the tangent (red), normal (blue) and binormal (green).

FIGURE 3 | Comparison of rotating elliptical cross sections at angles of (Left to Right) 15°, 85, and 95°. The top row rotates the normal vector from the initial
alignment to the final alignment, exhibiting a flip between 85 and 95°. The bottom row shows our method, with a circular cross section occurring at angles approaching
90° to avoid a discontinuity. Animated versions of this diagram can be found in Supplementary Videos S5, S6 in the supplementary materials.
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between the vectors is 90°, the ellipse can’t be said to be rotating either
clockwise or anticlockwise, and insteadmorphs continuously between
the two. This could be seen as stating that at these angles, it is ill
defined at intermediate points which way the ribbon is aligned, and
this uncertainty is represented by deforming the ellipse toward a circle
which has no defined orientation.

3 DISCUSSION

Figure 4 shows our approach applied to a SARS-CoV-2 protein.
Ourmethod yields visually pleasing results that pass through all the
alpha carbons, which allows side chains to connect directly to
the ribbon backbone if visualized. The method is not dependent on
the type of spline or normals used. We therefore expect this method
to be readily applicable to existing approaches, such as those using
b-splines or those aligning normals with bond directions.

Another source of visual discontinuity in these systems is the
discrete assignment of each amino acid residue to a single secondary
structure motif. There exist several algorithms for performing this
assignment, including DSSP (Kabsch and Sander (1983)) and
STRIDE (Frishman and Argos (1995)). These methods act upon
a single set of coordinates, giving the secondary structure at a specific
point in time. However, between frames there may be discrete
changes in assignment for certain residues. There has been
previous work by Schulz et al. (2018) on visualizing uncertainty
in secondary structure due to dynamics, with uncertainty being
visualized as a sinusoidal distortion of the ribbon.

In Narupa iMD, rather than compute the secondary structure
assignment for each frame, we instead only calculate it once a
second. Based upon settings provided by the user, this provides a
width and color for each part of the ribbon. We then linearly
interpolate between the existing colors and widths from the
previous assignment and those which have just been assigned.
This gives a smooth fading between different motifs as the protein

backbone moves. This approach also gives the user a sense of
which secondary structure elements are unstable, as those near
the threshold required to define a specific secondary structure can
oscillate between two or more over time.

The use of ribbons as a visualization technique, and hence this
issue with visual continuity, is not limited to proteins. The Twister
visualization is a ribbon-like algorithm used for polysaccharide
chains, which has been implemented in VMD (Kuttel et al. (2006);
Cross et al. (2009)). The orientation of the ribbon is related to the
orientation of the individual rings involved in the polysaccharide.
Both the polypeptide and polysaccharide case are linked by the
freedom of rotation that exists between adjacent monomers, which
makes the existence of visual artifacts due to flipping inevitable.We
expect this method to be applicable to these systems as well.

The secondary structure visualization approach outlined herein
has been implemented within our software Narupa iMD, and is
available open source to enable readers of this paper to inspect the
results generated using this approach. Narupa iMD can be accessed
at https://narupa.readthedocs.io/. This can be used in conjunction
with a cloud mounted simulation server https://app.narupa.xyz/,
where simulations of the SARS-CoV-2 main protease in both apo
(PDB ID 6MO3) and inhibitor complex (PDB ID 6W63) forms are
available. Other simulations are available, including a 40-alanine
polypeptide which shows our algorithm’s application to a flexible
system. See Deeks et al. (2020) for more information on running
these simulations and viewing them in virtual reality.

Once the simulation is running, the rendering can be altered
using a python script. Information on how to set up ribbon
rendering is provided in the supplementary information.

4 CONCLUSION

Ribbon rendering is ubiquitous for visualizing the secondary
structure of proteins, but existing algorithms have been aimed

FIGURE 4 | Ribbon diagram of the SARS-CoV-2 main protease (PDB ID 6W63), as rendered in Narupa iMD using the cartoon representation. Shown inset is a
close-up of a beta strand which exhibits a turn close to 90°, highlighting its similarity to a twist when viewed from a distance. An animation of this is provided in
Supplementary Video S4 of the supplementary materials.
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at visualizing discrete snapshots of a system. We propose a
method for generating ribbons with elliptic cross sections
which do not exhibit discontinuities where they flip from a
clockwise twist to a counterclockwise and vice-versa.
Combined with linear interpolation to fade between different
secondary structure assignments, this yields a smooth continuous
representation with no sudden changes. This continuity helps
reduce visual clutter and immerse the user in the environment
when utilizing virtual reality to interact with the system.
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