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Alzheimer’s dementia (AD) is a type of neurodegenerative disease that is associated with a
decline in memory. However, speech and language impairments are also common in
Alzheimer’s dementia patients. This work is an extension of our previous work, where we
had used spontaneous speech for Alzheimer’s dementia recognition employing log-Mel
spectrogram and Mel-frequency cepstral coefficients (MFCC) as inputs to deep neural
networks (DNN). In this work, we explore the transcriptions of spontaneous speech for
dementia recognition and compare the results with several baseline results. We explore
two models for dementia recognition: 1) fastText and 2) convolutional neural network
(CNN) with a single convolutional layer, to capture the n-gram-based linguistic information
from the input sentence. The fastText model uses a bag of bigrams and trigrams along with
the input text to capture the local word orderings. In the CNN-based model, we try to
capture different n-grams (we use n � 2, 3, 4, 5) present in the text by adapting the kernel
sizes to n. In both fastText and CNN architectures, the word embeddings are initialized
using pretrained GloVe vectors. We use bagging of 21 models in each of these
architectures to arrive at the final model using which the performance on the test data
is assessed. The best accuracies achieved with CNN and fastText models on the text data
are 79.16 and 83.33%, respectively. The best root mean square errors (RMSE) on the
prediction of mini-mental state examination (MMSE) score are 4.38 and 4.28 for CNN and
fastText, respectively. The results suggest that the n-gram-based features are worth
pursuing, for the task of AD detection. fastText models have competitive results when
compared to several baseline methods. Also, fastText models are shallow in nature and
have the advantage of being faster in training and evaluation, by several orders of
magnitude, compared to deep models.
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1 INTRODUCTION

Dementia is a syndrome characterized by the decline in cognition that is significant enough to
interfere with one’s independent, daily functioning. Alzheimer’s disease contributes to around
60–70% of dementia cases. Toward the final stages of Alzheimer’s dementia (AD), the patients lose
control of their physical functions and depend on others for care. As there are no curative treatments
for dementia, the early detection is critical to delay or slow down the onset or progression of the
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disease. The mini-mental state examination (MMSE) is a widely
used test to screen for dementia and to estimate the severity and
progression of cognitive impairment.

AD affects the temporal characteristics of spontaneous speech.
Changes in the spoken language are evident even inmildADpatients.
Subtle language impairments such as difficulties in word finding and
comprehension, usage of incorrect words, ambiguous referents, loss
of verbal fluency, speaking too much at inappropriate times, talking
too loudly, repeating ideas, and digressing from the topic are
common in the early stages of AD (Savundranayagam et al.,
2005) and they turn extreme in the moderate and severe stages.
Szatlóczki et al. (2015) show that AD can be detected with the help of
a linguistic analysis more sensitively than with other cognitive
examinations. Mueller et al. (2018b) analyzed the connected
language samples obtained from simple picture description tasks
and found that the speech fluency and the semantic content features
declined faster in participants with early mild cognitive impairment.
The language profile of AD patients is characterized by “empty
speech,” devoid of content words (Nicholas et al., 1985). They tend to
use pronouns without proper noun references and indefinite terms
like “this,” “that,” and “thing” more often (Mueller et al., 2018a).
These results motivate us to believe that modeling the transcriptions
of the narrative speech in the cookie-theft picture description task
using n-gram language models can help in the detection of AD and
prediction of MMSE score.

In this work we address the AD detection and MMSE score
prediction problems using two natural language processing
(NLP)–based models: 1) fastText and 2) convolutional neural
network (CNN). These models have the advantage that they can
be easily structured to capture the linguistic cues in the form of
n-grams from the transcriptions of the picture description task,
provided with the Alzheimer’s Dementia Recognition through
Spontaneous Speech (ADReSS) dataset (Luz et al., 2020). CNNs,
though originated in computer vision, have become popular for NLP
tasks and have achieved great results in sentence classification (Kim,
2014), semantic parsing (tau Yih et al., 2014), search query retrieval
(Shen et al., 2014), and other traditional NLP tasks (Collober et al.,
2011). Our convolutional neural network model draws inspiration
from the work on sentence classification using CNNs (Kim, 2014).
The fastText (Joulin et al., 2017) is a simple and efficient model for
text classification (e.g., tag prediction and sentiment analysis). The
fundamental idea in the fastText classifier is to calculate the n-grams
of an input sentence and append them to the end of the sentence. Our
choice of fastText model is also motivated by its ability to often
outperform deep learning classifiers in terms of accuracy and
training/evaluation times (Joulin et al., 2017).

The rest of the paper is organized as follows. Section 2 discusses
the ADReSS dataset in detail. Section 3 discusses the baseline results
in AD detection. Section 4 discusses our proposed NLP-based
models followed by the listing of results in Section 5. Our results
and conclusions are discussed in Section 6.

2 ADRESS DATASET

The ADReSS dataset (Luz et al., 2020) is designed to provide
Alzheimer’s research community with a standard platform for

AD detection and MMSE score prediction. The dataset is
acoustically preprocessed and balanced in terms of age and
gender. It consists of audio recordings and transcriptions [in
CHAT format (Macwhinney, 2009)] of the cookie-theft picture
description task, elicited from subjects in the age group of 50–80
years. The training set consists of data from 108 subjects, 54 each
from AD and non-AD classes. The test set has data from 48
subjects, again balanced with respect to AD and non-AD classes.
More information on the ADReSS dataset can be found in the
ADReSS challenge baseline paper (Luz et al., 2020).

3 REVIEW OF BASELINE METHODS

This section provides a brief overview of the various approaches
for AD detection and MMSE score prediction on ADReSS
dataset. These approaches can be broadly classified into three
types based on the type of the features used in the problem: 1)
acoustic feature, 2) linguistic feature, and 3) a fusion of acoustic
and linguistic features. The performance of different approaches
on the AD detection and MMSE score prediction tasks are
compared using the accuracy and root mean square error
(RMSE) measures computed on the ADReSS test set.

Accuracy � TN + TP
N

(1)

RMSE �
�����������∑N

i�1(ŷi − yi)2
N

√
(2)

where N is the total number of subjects involved in the study, TP
the number of true positives, and TN the number of true
negatives. ŷi and yi are the estimated and target MMSE scores
for ith test sample. The results of different approaches on the
ADReSS dataset are summarized in Table 1.

3.1 Acoustic Feature-Based Methods
Luz et al. (2020) explore several acoustic features like extended
Geneva minimalistic acoustic parameter set (eGeMAPS) (Eyben
et al., 2016), emobase, ComParE-2013 (Eyben et al., 2013), and
multiresolution cochleagram (MRCG) (Chen et al., 2014), feeding
the traditional machine learning algorithms like linear
discriminant analysis, decision trees, nearest neighbor, random
forests, and support vector machines. In our previous work
(Meghanani et al., 2021), we have used CNN/ResNet + long
short-term memory (LSTM) networks and pyramidal
bidirectional LSTM + CNN networks trained on log-Mel
spectrogram and Mel-frequency cepstral coefficient (MFCC)
features extracted from the spontaneous speech. Pompili et al.
(2020) exploit the pretrained models to produce i-vector- and
x-vector-based acoustic feature embeddings. They evaluate
x-vector, i-vector, and statistical speech-based functional
features. Rhythmic features are proposed in Campbell et al.
(2020), as lower speaking fluency is a common pattern in
patients with AD. Koo et al. (2020) use VGGish (Hershey
et al., 2017) trained with Audio Set (Gemmeke et al., 2017) for
audio classification. They have proposed a modified version of
convolutional recurrent neural network (CRNN), where an
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attention layer is the forefront layer of the network, and fully
connected layers follow the recurrent layer.

3.2 Linguistic Feature-Based Methods
Recently, there have been multiple attempts on the AD detection
problem based on text-based features and models. Searle et al.
(2020) use traditional machine learning techniques like support
vector machines (SVMs), gradient boosting decision trees
(GBDT), and conditional random fields (CRFs). They also try
deep learning transformer-based models, specifically,
bidirectional encoder representations from transformers
(BERT) (Devlin et al., 2019), RoBERTa (Liu et al., 2019), and
DistilBERT/DistilRoBERTa (Sanh et al., 2019). Pompili et al.
(2020) encode each word of the clean transcriptions into 768-
dimensional context embedding vector using a frozen English
BERT model pretrained with 12 layers. Three different neural
models are trained on top of contextual word embeddings: 1)
global maximum pooling, 2) bidirectional long short-term
memory (BLSTM)–based recurrent neural networks (RNN)
provided with an attention module, and 3) the second model
augmented with part-of-speech (POS) embeddings. In the work
of Campbell et al. (2020), authors have used the manual
transcripts to extract linguistic information (interventions,
vocabulary richness, frequency of verbs, nouns, POS-tagging,
etc.) for creating the input features of the classifier. They use
another sequential deep learning-based classifier, which directly
classifies the sequence of Gobal Vectors (GloVe)–based word

embeddings. Koo et al. (2020) use transformer-based language
models (Vaswani et al., 2017), generative pretraining (GPT)
(Radford et al., 2018), RoBERTa (Liu et al., 2019), and
transformer-XL (Dai et al., 2020) to get textual features and
perform classification and regression tasks using a modified
convolutional recurrent neural network-based structure.

Graph-based representation of word features (Tomás and
Radev, 2012; Cong and Liu, 2014), which have shown promise
in classifying texts (De Arruda et al., 2016), is also employed for
detection of mild cognitive impairments. Santos et al. (2017)
model transcripts as complex networks and enrich them with
word embedding to better represent short texts produced in
neuropsychological assessments. They use metrics of
topological properties of complex networks in a machine
learning classification approach to distinguish between healthy
subjects and patients with mild cognitive impairments. Such
graph-based techniques have also been used in the word sense
disambiguation (WSD) tasks to identify the meaning of words in
a given context for specific words conveying multiple meanings.
Corra et al. (2018) suggest that a bipartite network model with
local features employed to characterize the context can be useful
in improving the semantic characterization of written texts
without the use of deep linguistic information.

3.3 Bimodal Methods
Methods with bimodal input features (both acoustic and
linguistic) are also used for AD recognition in various studies

TABLE 1 | Baseline methods on ADReSS test set.

Model Accuracy (%) RMSE

Searle et al. (2020), DistilBERT 81.25 4.58
Searle et al. (2020), SVM + CRF 81.25 5.22
Pompili et al. (2020), x-vectors SRE 54.17 —

Pompili et al. (2020), sentence embedding 72.92 —

Pompili et al. (2020), fusion of system 81.25 —

Luz et al. (2020), linguistic 75.00 5.20
Sarawgi et al. (2020b), ensemble 83.33 4.60
Koo et al. (2020), VGGish 72.92 5.07
Koo et al. (2020), Transformer-XL 81.25 4.01
Koo et al. (2020), VGGish + GloVe 77.08 4.33
Koo et al. (2020), VGGish + transformer-XL 75.00 3.74
Koo et al. (2020), ensembled output 81.25 3.77
Campbell et al. (2020), fusion II 75.00 —

Campbell et al. (2020), fusion I 72.92 —

Campbell et al. (2020), RNN model 75.00 —

Campbell et al. (2020), fluency 60.42 —

Campbell et al. (2020), x-vector 54.17 —

Sarawgi et al. (2020a), UA ensemble — 4.35
Sarawgi et al. (2020a), UA ensemble (weighted) — 3.93
Pappagari et al. (2020), acoustic and transcript 75.00 5.37
Rohanian et al. (2020), LSTM (Lexical + Dis) 72.92 4.88
Rohanian et al. (2020), LSTM with gating (Acoustic + Lexical) 77.08 4.57
Rohanian et al. (2020), LSTM with gating (Acoustic + Lexical + Dis) 79.17 4.54
Yuan et al. (2020), ERNIE3p 89.58 —

Syed et al. (2020) 85.42 4.30
Edwards et al. (2020), phonemes and audio 79.17 —

Meghanani et al. (2021), CNN-LSTM with MFCC 64..58 6.24
Meghanani et al. (2021), pBLSTM-CNN with log-Mel 52.08 5.90
Meghanani et al. (2021), ResNet-LSTM with log-Mel 62.50 5.98
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(Sarawgi et al., 2020a; Sarawgi et al., 2020b; Campbell et al., 2020;
Koo et al., 2020; Pompili et al., 2020; Rohanian et al., 2020).
However, in this work, we restrict ourselves to the NLP-based
approaches.

4 PROPOSED NLP-BASED METHODS

4.1 Data Preparation
In this work, we explore the linguistic features for AD detection
and hence only the textual transcripts in the ADReSS dataset are
used. The transcripts contain the conversational content between
the participant and the investigator. This includes pauses in
speech, laughter, and discourse markers such as “um” and
“uh.” Each transcript is considered as a single data point with
their corresponding AD label and MMSE score. We create two
transcription level datasets after preprocessing the transcripts as
in Searle et al. (2020)—1) PAR: containing the utterances of
participant alone, 2) PAR + INV: containing utterances from
both the participant and the investigator. In addition to the
preprocessing performed in Searle et al. (2020), we keep PAR
and INV tags as well in the data (which defines whether the
utterance is spoken by the participant or the investigator).

4.2 Convolutional Neural Network Model
Language impairments like difficulties in lexical retrieval, loss of
verbal fluency, and breakdown in comprehension of higher order
written and spoken languages are common in AD patients. Hence
the linguistic information, like the n-grams present in the input
sentence, may provide good cues for AD detection. Any n × d
CNN filter, where n is the number of sequential words looked
over by the filter and d is the dimension of word embedding, can
be viewed as a feature detector looking for a specific n-gram in the
input that can capture the language impairments associated
with AD.

We describe the details of the CNN model from the work
(Kim, 2014) as follows. Let zi ∈ Rd be a d-dimensional word
vector corresponding to the ith word in the sentence. A sentence
of length L is represented as {z1, z2, . . . , zL}. Let zi:i+j represent the

concatenation of the words zi, zi+1, . . . , zi+j. A convolution
operation involves a filter w ∈ Rnd, which is applied to a
window of n words to produce a new feature as shown in Eq.
3, where si is generated from a window of words zi:i+n−1 by

si � f (w · zi:i+n−1 + b). (3)

In Eq. 3, f is a nonlinear function and b is the bias term. A
feature map E is obtained by applying the filter to all possible
windows of words in the sentence [z1:n, z2:n+1, . . . , zL−n+1:L].

E � [s1, s2, . . . , sL−n+1]. (4)

A max-pool over time (Collober et al., 2011) is performed over
the feature map to get smax � maxE as the feature corresponding to
that filter. This corresponds to the n-gram that is “most relevant” in
the AD recognition task. The weights of the filters, which in turn
determine the “most relevant” feature, are learnt using
backpropagation. CNNs are trained with just one layer of
convolution. Variable length sentences are automatically
handled by the pooling scheme. We use pretrained 100-
dimensional GloVe word vectors (Pennington et al., 2014) for
word embedding. Multiple kernels of sizes 2 × 100, 3 × 100,
4 × 100, and 5 × 100 are employed to have a look at the
bigrams, trigrams, 4-grams, and 5-grams within the text. We
use 100 filters each with heights 2, 3, 4, and 5. Multiple
configurations with filter sizes [2,3,4], [3,4,5], and [2,3,4,5] are
applied which are referred to as CNN-bi+tri+4 gram, CNN-
tri+4+5 gram, and CNN-bi+tri+4+5 gram in our tables. The
outputs of the filter are concatenated together to form a single
vector. Dropout with probability p � 0.5 is applied on the
concatenated filter output and the results are passed through a
linear layer for the final prediction task. The linear layer weights up
the evidence from each of these n-grams and make a final decision.
Figure 1 shows the basic CNNoperation over an example sentence.

4.2.1 Training Details
For the classification task, training is performed for 100 epochs
with a batch size of 16. Adam optimizer is used with a learning
rate of 0.001. Model with the lowest validation loss is saved and

FIGURE 1 | Demonstration of CNN over text for an example sentence.
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used for prediction. Since AD classification is a two-class
problem, binary cross-entropy with logits loss is used as the
loss function. For the MMSE score prediction task, the output
layer is a fully connected layer with linear activation function. In
the regression task the network is trained for 1,500 epochs with
the objective to minimize the mean squared error.

We use bootstrap aggregation of models known as bagging
(Breiman, 1996) to predict the final labels/MMSE scores for test
samples. Bootstrap aggregation is an ensemble technique to improve
the stability and accuracy of machine learning models. It combines
the prediction from multiple models. It also reduces variance and
helps to avoid overfitting. We fit 21 models and the outputs are
combined by a majority voting scheme for final classification. In the
regression task, the outputs of these bootstrap models are averaged to
arrive at the final MMSE score.

4.3 fastText
fastText-based classifiers calculate the n-grams of an input
sentence explicitly and append them to the end of the
sentence. In this work, we use bigrams and trigrams. We
conducted the experiments with 4-grams as well, but the
results did not show any improvement over the use of
trigrams. This bag of bigrams and trigrams acts as additional
features to capture some information about the local word order.

Figure 2 shows the architecture of fastText model. The
fastText model has two layers, an embedding layer and a
linear layer. The embedding layer calculates the word
embedding (100-dimensional) for each word. The average of
all these word embeddings is calculated and fed through the linear
layer for final prediction as described in Figure 2. fastText models
are faster for training and evaluation by many orders of
magnitude, compared to the “deep” models. As mentioned in
the work (Joulin et al., 2017), fastText can be trained on more
than one billion words in less than 10 min using a standard
multicore CPU and classify half a million sentences among 312 K
classes in less than a minute.

4.3.1 Training Details
All training details are the same as mentioned in Section 4.2.1.
The only difference is that dropout is not used in this model. Here

also we use 21 bootstrapping models and the outputs are
combined as described in Section 4.2.1.

5 RESULTS

We have performed 5-fold cross-validation, to estimate the
generalization error. One of the folds has 20 validation
samples and the remaining four have 22 validation samples.
The results of cross-validation on CNN and fastText models
trained on PAR and PAR + INV sets are listed in Table 2. The
best performing model for classification during the cross-
validation was fastText with bigrams on the PAR + INV set,
which yields an average cross-validation accuracy of 86.09%.
Among the CNN models, tri+4+5 grams give the best
accuracy in both PAR (77.54%) and INV + PAR (81.27%)
sets. As far as accuracy is concerned, both the CNN and
fastText models seem to benefit from the inclusion of
utterances from the investigator. For the prediction of MMSE
score, CNN with bi+tri+4+5 grams (RMSE of 4.38) was the best.
The fastText models seem to get a clear advantage in RMSE with
the addition of the utterances from the investigator. However
such a large difference in RMSE is not observable between the
CNN models using PAR and INV + PAR sets. The cross-
validation results confirmed our belief that the n-grams from
the transcriptions of the picture description task could be useful
in the detection of AD.

Table 3 lists the classification accuracy and RMSE in the
prediction of MMSE score on the test set of the ADReSS corpus.
The table also lists the precision, recall, and F1score for each class.
They are computed as precision π � (TP/(TP + FP)), recall
ρ � (TP/TP + FN), and F1score � (2πρ/(π + ρ)), where TP,
FP, TN , and FN are the number of true positives, false
positives, true negatives, and false negatives, respectively. The
listed results are obtained after bootstrapping with 21 samples.
The best classification accuracy is 83.33% which is achieved using
fastText model with appended bigrams and trigrams. The
accuracies are similar in both PAR and PAR + INV sets using
the fastText model. The maximum accuracy obtained with CNN
models is 79.16%, which is achieved on the INV + PAR set using
bi+tri+4 grams or tri+4+5 grams. In the detection task, the CNN
models seem to benefit from the addition of utterances from the
investigator. Also the accuracies seem to degrade when bigrams,

FIGURE 2 | fastText model (Joulin et al., 2017) with appended n-gram
features (X1 ,X2 ,X3 , . . . ,XK−1 ,XK ) as input.

TABLE 2 | Average 5-fold cross-validation results for AD classification and RMSE
values.

Dataset Model Accuracy RMSE

PAR CNN, bi+tri+4 gram 73.91 4.55
PAR CNN, tri+4+5 gram 77.54 4.41
PAR CNN, bi+tri+4+5 gram 76.54 4.65
PAR fastText, bigram 80.54 5.43
PAR fastText, bi + trigram 82.36 5.40
PAR + INV CNN, bi+tri+4 gram 80.18 4.63
PAR + INV CNN, tri+4+5 gram 81.27 4.53
PAR + INV CNN, bi+tri+4+5 gram 80.36 4.38
PAR + INV fastText, bigram 86.09 4.66
PAR + INV fastText, bi + trigram 85.90 4.81
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trigrams, 4-grams, and 5-grams are considered together. This
behavior is consistent across the PAR and PAR + INV sets. The
best RMSE in the prediction of MMSE score is 4.28 which is
obtained on the PAR + INV set using fastText model employing
only bigrams. In the regression task using fastText, the use of
bigrams achieves slightly better RMSE compared to the use of
both bigrams and trigrams. Also the fastText models seem to
benefit from the use of utterances from the investigator. In
contrast, CNN models do not seem to get any specific
advantage with the inclusion of investigator’s utterances. The
performance of the CNN models remains almost the same across
the use of bi+tri+4, tri+4+5, and bi+tri+4+5 grams.

6 DISCUSSION AND CONCLUSION

In this work, we explore two models, CNN with a single
convolution layer and fastText, to address the problem of AD
classification and prediction of MMSE score from the
transcriptions of the picture description task. The choice of
these models was based on our initial belief that modeling the
transcriptions of the narrative speech in the picture description
task using n-grams could give some indication on the status of
AD. The chosen models are also shallow. The number of
parameters is much less than the usual deep learning
architectures and hence they can be trained and evaluated
quite fast. Yet, the performance of these models is competitive
with the baseline results reported with complex models (refer to
Table 1). The results suggest that the n-gram-based features are
worth pursuing, for the task of AD detection.

Among the considered models, fastText model with bigrams
and trigrams appended to the input achieves the best
classification accuracy (83.33%). In the regression task, the
best results (RMSE of 4.28) are achieved using fastText model
with only the bigrams appended to the input. The fastText models
have a clear edge over CNN in the classification task. Empirical

evidence suggests that fastText models benefit from the inclusion
of utterances from the investigator in the regression task, though
they do not make much difference in the classification task. The
CNNmodels on the other hand perform better on the PAR + INV
sets in the classification task. In the regression task, their
performance is similar across the PAR and PAR + INV sets.
Bigrams have an edge over bi + tri grams in fastText, when used
for prediction of MMSE score. However, the performance of the
CNN models remains almost the same across the use of bi+tri+4,
tri+4+5, and bi+tri+4+5 grams, in the regression task.
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TABLE 3 | Results on ADReSS test set. The bold values represent the best results obtained by our models.

Dataset Model Class Precision Recall F1 score Accuracy (%) RMSE

PAR CNN, bi+tri+4 gram Non-AD 0.74 0.71 0.72
72.91 4.38

AD 0.72 0.75 0.73
PAR CNN, tri+4+5 gram Non-AD 0.76 0.67 0.71

72.91 4.46
AD 0.70 0.79 0.75

PAR CNN, bi+tri+4+5 gram Non-AD 0.71 0.71 0.71
70.83 4.42

AD 0.71 0.71 0.71
PAR fastText, bigram Non-AD 0.78 0.88 0.82

81.25 4.51
AD 0.86 0.75 0.80

PAR fastText, bi + trigram Non-AD 0.81 0.88 0.84
83.33 4.87

AD 0.86 0.79 0.83
PAR + INV CNN, bi+tri+4 gram Non-AD 0.77 0.83 0.80

79.16 4.48
AD 0.82 0.75 0.78

PAR + INV CNN, tri+4+5 gram Non-AD 0.77 0.83 0.80
79.16 4.47

AD 0.82 0.75 0.78
PAR + INV CNN, bi+tri+4+5 gram Non-AD 0.74 0.71 0.72

72.91 4.44
AD 0.72 0.75 0.73

PAR + INV fastText, bigram Non-AD 0.78 0.88 0.82
81.25 4.28

AD 0.86 0.75 0.80
PAR + INV fastText, bi + trigram Non-AD 0.79 0.92 0.85

83.33 4.47
AD 0.90 0.75 0.82
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