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With the huge and ever-growing volume of industrial data, an enormous challenge of how

this data should be handled, stored, and analyzed emerges. In this paper, we describe

a novel method that facilitates automated signal parsing into a set of exhaustive and

mutually exclusive segments, which is coupled with extraction of physically interpretable

signatures that characterize those segments. The resulting numerical signatures can

be used to approximate a wide range of signals within some arbitrary accuracy,

thus effectively turning the aforementioned signal parsing and signature extraction

procedure into a signal compression process. This compression converts raw signals

into physically plausible and interpretable features that can then be directly mined in

order to extract useful information via anomaly detection and characterization, quality

prediction, or process control. In addition, distance-based unsupervised clustering is

utilized to organize the compressed data into a tree-structured database enabling rapid

searches through the data and consequently facilitating efficient data mining. Application

of the aforementioned methods to multiple large datasets of sensor readings collected

from several advanced manufacturing plants showed the feasibility of physics-inspired

compression of industrial data, as well as tremendous gains in terms of search speeds

when compressed data were organized into a distance-based, tree-structured database.

Keywords: industrial data analytics, physically-interpretable data compression, industrial database organization,

industrial database searching, industrial internet of things

INTRODUCTION

It is not widely known that industrial equipment already generates more data than computer and
social networks, with almost double the growth rate, leading to tremendous amounts of pertinent
data (Kalyanaraman, 2016). This provides an ever-growing opportunity to mine that data for useful
information via e.g., prediction of outgoing product quality, process monitoring and control or
optimization of operations.

Nevertheless, applications of Artificial Intelligence (AI) andMachine Learning (ML) in industry
are lagging behind advancements in the realm of computer and social networks (Nasrabadi, 2007).
The main reason is that the nature and characteristics of the data in physical processes or industrial
internet of things (Gilchrist, 2016) are different from what we see in computer and social networks
(Atzori et al., 2010). In the realm of computer science, information about events that are relevant
to modeling and characterization of the underlying system are directly available in the data—e.g.,
who is talking to whom, for how long and what the relevant locations are, or which website you
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FIGURE 1 | Illustration of the traditional data processing and management for data mining in manufacturing.

are on, for how long and which website you are going to go
after that, etc. On the other hand, in the industrial internet
of things (IIoT), events are embedded in the data and are not
directly visible. For instance, beginning and ending moments of a
reaction in a chemical reactor, or moment and location of particle
emission and trajectory of that particle in a semiconductor
vacuum tool—all this information is not directly observable and
is embedded in the signals emitted during the corresponding
processes. Finding and characterizing such events in industrial
data can link the mining of useful information from those
signals to the realm of discrete mathematics and thus leverage
tremendous advancements of AI and ML in the domains of
computer and social networks. The work presented in this paper
can be seen as an effort in the direction of establishing such a link.

At this moment, let us note that one of the main problems
in utilizing the ever-growing volume of industrial data is the
way that the data is handled at the very source. When it
comes to sensor readings from manufacturing machines and
equipment, industries tend to store the raw time-series (Kendall
and Ord, 1990), with occasional use of various, usually lossless
compression methods adopted from computer science in order
to cope with the enormous data volumes (Sayood, 2002).
These compression tools, such as run-length based compression
(Hauck, 1986), Huffman compression (Tharini and Ranjan,
2009), delta compression appliance (Mogul et al., 2002), or the
Lempel–Ziv–Welch (LZW) compression methods (Ping, 2002),
are inherently designed to maximize compression rates, while
minimizing information loss.

The purpose of the aforementioned compression tools is to
turn raw signals into a set of coefficients that is much smaller
than the original signal and is able to represent it perfectly,
or very close to perfection, thus achieving compression and
enabling storage of larger amounts of data. However, the resulting
coefficients in the compressed domain do not have any relevance
to the physical characteristics of the relevant processes and in
order to perform mining of useful information from such data,

one needs to decompress (reconstruct) the signal and extract the
informative signatures out of it (Alves, 2018), as illustrated in
Figure 1. Those informative signatures include metrics such as
mean value, standard deviation, peak-to-peak values and other,
usually statistics-inspired or expert-knowledge based quantities
calculated for one or multiple signal portions deemed to be
interesting for the data mining process1.

Nevertheless, determination of the informative signal portions
and relevant signatures involves a tremendous amount of expert
process knowledge to insure the necessary information is indeed
embedded in them (Djurdjanovic, 2018), which inherently makes
this stage subjective and error prone. In addition, one is
effectively blind to events in signal segments that were not
selected for analysis, or to whatever is not depicted in the
characteristics extracted from the raw signals. These drawbacks
will be addressed in this paper by introducing a method for
automated time-domain based segmentation of a signal into a set
of exhaustive andmutually exclusive segments of steady state and
transient behaviors, out of which we will extract a set of statistics-
based and dynamics-inspired signatures that approximate the
signal in those segments. Based on such signal segmentation and
signatures extracted from each segment, one could approximately
reconstruct the signal, which means that this procedure could
be seen as a signal compression tool. In addition, physical
interpretability of the newly proposed signal segmentation and
signature extraction will enable mining for useful information
about the underlying process directly in that compressed domain,
without blind spots (segments) and without the need for human
involvement in the process of signal parsing and extraction
of signatures. Figure 2 illustrates the novel data curation

1These signatures can be extracted from descriptions of relevant signal segments

in various domains, such as time-domain, frequency-domain, or time-frequency-

domain of signal representations (Chen and Lipps, 2000; Phinyomark et al., 2009;

Suresh et al., 2013; Celler et al., 2019).
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FIGURE 2 | Illustration of the newly enabled paradigm for data processing and management for data mining in manufacturing.

process that could be facilitated via the methods proposed
in this paper.

More details can be found in the rest of the paper, which is
organized as follows. In Methodology section, we will present
the method for automated parsing of signals into a set of
exhaustive and mutually exclusive steady state and transient
segments, along with methods to characterize those segments
using a set of physically interpretable signatures that facilitate
approximate reconstruction of the signal and thus can be seen
as its approximate compression. Furthermore, this section will
present an approach to organize the compressed data into
a distance-based tree structure that is much more efficient
for search and retrieval than the temporally organized, list-
based database structure traditionally utilized for industrial
data. In Result section, we will present results of applying the
newly introduced data compression and organization methods
to sensor data gathered from several modern semiconductor
manufacturing fabs. Finally, Conclusion and future work section
gives conclusions of the research presented in this paper and
outlines possible directions for future work.

METHODOLOGY

This section describes the novel physically-inspired data
compression andmanagement methodology. In Physics-inspired
signal parsing & feature extraction for approximate signal
compression section, the method for automated signal parsing
and signature extraction will be explained, including a novel
method for approximation-oriented physically-interpretable
characterization of automatically detected transient portions of
the signal. This signature extraction approach enables better
reconstruction of the signal than what can be achieved using
signal characterization based on only standard transient features
described in IEEE 2011 (Pautlier et al., 2011). In Tree-
structured data organization section, a distance-based tree-
structured organization of industrial data will be proposed,
enabling quick and accurate search of industrial databases
directly in the compressed domain of coefficients extracted from
the signals.

Physics-Inspired Signal Parsing & Feature
Extraction for Approximate Signal
Compression
Traditional signal parsing in the time domain is performed using
human-defined windows based on physical knowledge of the
process and human expertise. Such signal windows are selected

FIGURE 3 | Illustration of signal windowing utilized in traditional signal parsing

and feature extraction.

usually because they correspond to a key portion of the process
or are for whatever reason known or assumed to contain useful
information. This often implies that the analysis ends up focusing
on the steady state portions of the signals, where the processes
actually take place. From these portions, a number of time
and/or frequency domain signatures can be extracted, including
mean, standard deviation, kurtosis, frequency peak locations
and intensities, instantaneous frequency, group delay and so on.
Consequently, large portions of the signal can be left unanalyzed,
especially if the signal contains significant portions of transient
behaviors (Kazemi, 1969; Hughes et al., 1979; Ramirez-Nunez,
2018; Yeap et al., 2018). Figure 3 illustrates such traditional signal
parsing based on user-defined windows, which leads to blind
spots, redundancies in signatures and usually leaves out of the
analysis process at least some (usually many or all) transient
signal portions.

Recent publication (Haq et al., 2016) proposed a method
for automatic segmentation of time-domain signal descriptions
into a series of exhaustive and mutually exclusive segments of
transient and steady state behaviors, as illustrated in Figure 4.
From each steady state, statistics-inspired features, such as
segment durations, or expected value and standard deviations
of the sensor readings within the segment are extracted. On
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FIGURE 4 | Result of applying the automated signal parsing method

introduced in (Haq et al., 2016) to the same signal as the one shown in

Figure 3.

the other hand, from the transient portions, standard dynamics-
inspired features, such as transition amplitudes, settling times,
rise times, as well as post-shoot and pre-shoot features are
derived (Pautlier et al., 2011). This ability for automated mining
of the entire signal rather than only a selected subset of its
portions led to great improvements in virtual metrology (Haq
and Djurdjanovic, 2016) and defectivity analysis (Haq and
Djurdjanovic, 2019) in advanced semiconductor manufacturing.

In addition, this automatic signal analysis opens the door
to a significantly novel way of managing and utilizing densely
sampled machine signals that are increasingly frequently
encountered in modern industry. Namely, we can fully leverage
the automatic parsing capabilities reported in (Haq et al., 2016)
to enable encoding of a raw signal via a set of physically-
interpretable statistical and dynamics-inspired signatures that
compress the data into a domain which can be directly mined.

More specifically, within each transient segment, we can
approximate the data using linear combination of sufficiently
many complex exponential functions of the form

ŷ (t)=
∑

N
i=1Ci · e

λit (1)

where ŷ (t) is the compressed transient model and for a given
model order N, coefficients2 Ci and λi can be determined using
the well-known least squares fitting to the data. This form can be
seen as a decomposition of a signal segment into contributions
each of which can be associated with a dynamic mode of a
linear differential equation (coefficients λi can be seen as roots
of the characteristic polynomial of the differential equation that
generated that segment, while coefficients Ci can be seen as
strengths of the corresponding dynamic contribution to that

2These coefficients can be real or complex.

segment). In this paper, the appropriate model order N in
(1) was determined using Akaike Information Criterion3 (AIC)
(Sakamoto et al., 1986), though other information-theoretical
or statistical approaches could be utilized for this purpose.
Moreover, in addition to what was reported in (Haq et al., 2016),
for each transient portion of the signal we also evaluated whether
it can be better described as a single segment of form (1), or as
a concatenation of two distinct segments of that form4, with the
more favorable option also selected using the AIC metric.

The original signals can be approximately reconstructed
utilizing the signatures extracted from the steady state and
transient segments. Specifically, in this paper, each steady
state segment was approximated via the expected value of the
amplitudes of the data points in that segment, while Equation
(1) fit to any given transient section of the signal was used to
approximate that signal portion.

In order to evaluate the efficacy of reconstructing the original
signal from the compressed domain, adjusted R-squared (R2)
metric is utilized (Miles, 2014). Furthermore, in order to evaluate
compression efficacy of our approach, we employ the intuitive
metric expressing compression rate as

Compression Rate = 1−
NC

L
(2)

where NC is the number of coefficients (approximately)
representing the signal in the compressed domain and L is the
total length of the original signal.

In order to facilitate comparison and mining of the extracted
signatures, one must ensure that corresponding signal segments
populate consistent portions of the feature vector. Namely,
though signals emitted by industrial processes usually have
a fairly consistent structure, with a great majority of them
having consistent number of segments, inherent process noise
and inconsistencies could lead to situations when some of the
signals have a slightly5 larger or smaller number of segments, as
compared to the majority of signals (Kosir and DeWall, 1994;
Haq et al., 2016). For example, Figure 5 shows signals emitted
by the same sensor during processing of 4 distinct wafers in
a semiconductor manufacturing tool. Signals A and B are two
different signals with the segmentation form that appeared most
frequently in that process, while Signal C contains two extra
segments and Signal D has a missing segment. All these signals

3AIC is a well-known information-theoretical criterion that can be utilized to

elegantly indicate when further increases in model complexity are not justified by

the corresponding improvements in model accuracy.
4In a very similar manner, one could certainly explore possibilities to describe

signal transients using concatenation of more than two segments of form (1).

Nevertheless, our experience with real industrial data indicates that representing

signal transients with up to two concatenated segments described by Eq. (1)

led to excellent representation of a wide range of signals. This is why we only

implemented a procedure that considers up to two distinct segments within each

transient, though we once again acknowledge that a more general procedure

should consider a more elaborate transient segmentation.
5For industrial processes, which are usually behaving in a fairly consistent manner,

the difference in numbers of segments is small, with signals having at most a

couple of extra or missing segments, and even such inconsistencies not appearing

too often.
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FIGURE 5 | Four distinct signals from a throttle valve angle sensor used in a Plasma Enhanced Chemical Vapor Deposition (PECVD) process operating in a major

300mm wafer semiconductor fab. Signals (A,B) have the segmentation that appeared most frequently among the relevant process signals. Compared to signals

(A,B), signal (C) has one additional steady state segment and one additional transient segment. Signal (D) has one missing transient compared to signals (A,B).

Please note that steady state and transient segments are denoted as “S” and “T,” respectively.

with different feature vectors need to be aligned in order to be
consistently compared.

In order to perform the alignment of feature vectors, we
identify all feature vectors in the available data that have the
maximum number of segments and use them to create a standard

vector,
−→
SV , that has the same (maximal) number of steady-

state and transient segments, each of which is characterized by

averages of relevant coefficients, with any order inconsistencies
within transient segments being resolved by adding appropriate
number of zeros to lower order transients. For a feature vector

that has fewer segments compared to the standard vector, we
add appropriate placeholder segments to match the number and

type of segments (steady state or transient) between that feature

vector and the standard vector. Each steady state placeholder
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FIGURE 6 | Illustration of comparison between a feature vector with one missing segment and the standard vector before the alignment (A), and after the alignment

(B). Based on segmentation of the standard vector, feature vector X misses a transient segment and hence, a placeholder corresponding to a transient segment

should be inserted into it. Plot (B) illustrates how segments in the feature vector X are aligned with their corresponding segments in the standard vector by inserting a

transient placeholder between segments T1 and S2 of the signal X, as well as by adding appropriate number of zeros to the set of C and λ coefficients in the T1

segment. Please note that insertion location for the transient placeholder is determined via the method described in sec Physics-inspired signal parsing & feature

extraction for approximate signal compression.

segment was characterized by statistical characteristics set to
zero (duration, mean, standard deviation, kurtosis, min, max,
etc.), while each transient placeholder segment was characterized
by the duration and all dynamic coefficients Ci and λi set to
zero, with the number of dynamic coefficients in the transient
placeholder depending on where in the signal it was inserted. The
appropriate locations for placeholder insertions were found by
evaluating all possibilities, with each candidate insertion option

yielding a feature vector
−→
FV of the same dimensionality as the

standard vector
−→
SV , and its similarity to the standard vector being

evaluated via the cosine between the two vectors

Alignment Similarity =

〈−→
SV ,

−→
FV

〉

∥

∥

∥

−→
SV

∥

∥

∥

∥

∥

∥

−→
FV

∥

∥

∥

(3)

where 〈·, ·〉 denotes Euclidean inner product between two vectors
and ‖·‖ denotes the corresponding vector norm. The option that
yielded the highest similarity metric (3), i.e., insertion option
that ended being the most co-linear with the standard vector
was ultimately chosen. Figure 6 demonstrates how the proposed
alignment methodology is performed in a situation where a
feature vector with a missing transient segment is being aligned
to the standard vector6.

It should be noted that as new data arrives, one could observe
new feature vectors containing extra segments compared to the
standard vector. In that case, the standard vector can be updated
and all previously collected and aligned feature vectors would

6Please note that in Figure 6, FV and SV associated with the Eq. (3) are the

concatenated vectors containing all the extracted feature from feature vector X and

the standard vector respectively.
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then need to be realigned based on the new standard vector. This
could obviously be a rather computationally involved process,
especially in large datasets. Nevertheless, our experience with
real industrial data indicates that after a certain amount of data,
the standard vector settles and rarely gets changed. Hence, it
is recommended to perform feature vector alignments using
sizeable initial datasets in order tomake arrivals of feature vectors
with extra segments less likely.

Tree-Structured Data Organization
Indexed databases with tree-based structures can be searched
with logarithmic gains over databases organized as lists
(Ramakrishnan and Gehrke, 2000). This is well-known within
the computer science community, but is less known within the
general engineering, and especially manufacturing research and
practice communities. Recently, Aremu et al. (2018) suggested
what is essentially a tree-based organization of industrial
databases for the purpose of data curation for condition
monitoring. The authors propose a hierarchical organization of
the industrial data based on a number of criteria, including
the underlying equipment condition and behavior modes.
Nevertheless, the details of how to differentiate those condition
and behavior modes when such information is not explicitly
visible in the data, which is usually the case in real-life
industrial processes, was not discussed. In addition, the authors
did not discuss nor demonstrate quantitative benefits of such
data organization.

To that end, in this paper, we propose the use of unsupervised
clustering to autonomously identify underlying operating modes
and conditions that are embedded in the physically-interpretable
signatures obtained via compression of equipment sensor
readings described in the previous section. Specifically, we use
a Fritzke’s growing gas based Growing Self-Organizing Map
(GSOM) (Fritzke, 1994, 1995) to represent a given database
of equipment sensor signatures via an appropriate number of
clusters of data entries that are near to each other, as expressed via
some distance matric7. GSOM-based clustering is accomplished
through growth and adaptation of so-called weight vectors
that tessellate the underlying data space into Voronoi sets,
each of which consists of points that are nearest to a specific
weight vector in the GSOM (Kohonen, 1990). Each cluster
is formed by data entries that are inside a specific Voronoi
set, which means that the data inside a cluster are closer to
the weight vector associated with that cluster than any other
weight vector in the GSOM. Following abundant research in
machine condition-monitoring (Siegel and Lee, 2011; Lapira
et al., 2012; Siegel, 2013; Hendrickx et al., 2020), clusters yielded
by unsupervised clustering of equipment sensor signatures, such
as those extracted through physically-interpretable compression
described in section Physics-inspired signal parsing & feature
extraction for approximate signal compression, can be seen
as representative of the underlying equipment condition and

7E.g. Euclidean, Mahalanobis, Manhattan or some other distance metric.

Furthermore, please note that one same database can be indexed in multiple ways,

usingGSOM-based clustering based on different distancemetrics. This would yield

multiple sets of centroids (database keys) that parse that database and facilitate

acceleration of searches.

operating regimes, and can thus serve as the foundation
for the hierarchical tree-based organization of databases of
those signatures.

Figure 7 illustrates the structure of such a database. Searching
within it would consist of first identifying the nearest GSOM
weight vector, thus identifying the cluster of entries similar to the
query entry, after which only entries inside that cluster should
be searched rather than the entire database. Of course, with
large size databases, the number of clusters in the GSOM could
grow as well, leading to the possibility to cluster the weight
vectors (clusters) themselves and facilitate a multi-level tree-
based database, as reported in (Sabbagh et al., 2020). Generally,
such a “divide and conquer” approach that focuses the search
onto areas of the database that are similar to the query item rather
than exploring the whole database is the key factor enabling
logarithmic acceleration of searches within such hierarchical,
tree-based databases (Chow and Rahman, 2009).

The abovementioned acceleration, however, does come with
some costs. Namely, if a query items falls close to the boundary
of a Voronoi set (i.e., close to the boundary of a cluster),
then some database entries similar to it could reside in the
neighboring cluster or clusters. Search that focuses only on
the cluster to which that query item belongs (i.e., only to
the cluster corresponding to the weight vector nearest to the
query item) will miss entries that reside in the neighboring
clusters, which leads to deteriorated search precision and
recall metrics (Buckland and Gey, 1994; Bhattacharya, 2014).
These problems are well-known in computer science, which
is why searches in tree-based databases can be augmented by
expanding the search to database sections in the neighborhood
of the section identified in the initial stages of the search
(leaves of the database tree that are in the neighborhood
of the tree leaf to which the search initially focuses).
Consequently, in this paper, we explored possibilities to search
database clusters in the topological neighborhood of the
cluster identified by the nearest (best matching) GSOM weight
vector (Balaban, 1982). Such expanded search takes longer
time to accomplish, but it improves the search precision and
recall metrics.

RESULTS

The newly proposed data compression methodology described
in Physics-inspired signal parsing & feature extraction for
approximate signal compression section of this paper was
evaluated on two large datasets. One of those datasets (Dataset
A) includes sensor readings obtained from a Plasma Enhanced
Chemical Vapor Deposition (PECVD) process performed on
a 300mm wafer tool operating in a major semiconductor
manufacturing fab. Sensor readings in Dataset A were collected
from 50 different sensors at a 10Hz sampling rate during
production of over 45,000 wafers. The other dataset (Dataset
B) contains sensor readings emitted by a 300mm wafer plasma
etch tool operating in another high-volume semiconductor
manufacturing fab. Dataset B contains readings from 110
different sensors collected at 5Hz during etching of 4,500 wafers.
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FIGURE 7 | Tree-based database organization enabled by unsupervised clustering of equipment signatures implemented using self-organizing maps (SOM).

TABLE 1 | Performance metrics associated with signal reconstruction.

Experimental Results Performance Measures Dataset A Dataset B

All signals Average Adjusted R2 0.926 0.987

Minimum Adjusted R2 0.737 0.879

Maximum Adjusted R2 0.994 0.998

Average Processing Time (s) 5.21 (s) 119 (s)

Average Compression Rate (%) 53.94 % 71.26%

FIGURE 8 | Examples of the original and reconstructed signals for one pressure sensor reading (Signal A) and one throttle valve angle sensor reading (Signal B)

observed in the Dataset A. The compression rate for the pressure sensor reading on the left of this figure was 0.6975, while the R-Squared metric for the reconstructed

signal was 0.9987. Compression rate for the throttle valve signal on the right of this figure was 0.3355, while the R-Squared for the reconstructed signal was 0.9846.

Table 1 summarizes key metrics characterizing the
compression rates and signal reconstruction performance in the
relevant datasets. In terms of computational times8, average time
to process all signals relevant to a single wafer was 5.2 s in Dataset
A, and 119 s in Dataset B. For illustration purposes, Figure 8
shows two examples of original and reconstructed signals, with

8The times reported here correspond to processing on a regular Personal

Computer with 32.0 GB RAM and a 6-core Intel R© Xeon R© CPU E5-1650 v4 @

3.60GHz processor.

corresponding signal compression and reconstruction metrics.
Both signals in Figure 8 were taken from Dataset A.

Furthermore, Dataset A was large enough to realistically
evaluate benefits of the distance-based data organization
methodology proposed in Tree-structured data organization
section. Signatures extracted via compression of the initial
1,000 signals from the Dataset A were clustered using Fritzke’s
growing gas GSOM method to yield the initial tree-based data
organization. From the remaining 46,000 wafers, we randomly
selected 200 wafers and for each vector of signatures extracted
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from signals emitted during manufacturing of those wafers,
we evaluated the search performance of finding 10 nearest
neighbors in the database. Such queries of industrial databases
are of paramount importance for e.g., condition monitoring,
where one needs to rapidly and correctly identify sensory
signatures in the database that lookmost alike the newly observed
(query) signature.

Growth and updating of the database were simulated by
adding compressed sensor signatures from successive batches
of 1,000 wafers from the Dataset A and adapting the GSOM
to facilitate clustering and subsequent tree-based organization
of the ever-growing dataset. Figure 9 shows evolution of the
number of clusters of the resulting SOM, while Figure 10

shows computational times it took the GSOM to settle after

FIGURE 9 | Number of GSOM clusters in unsupervised clustering-based organization of the database of compression signatures obtained from the Dataset A.

FIGURE 10 | Behavior of elapsed times needed for adjustments of the database of signatures obtained using newly proposed physically-interpretable compression of

signals from Dataset A.
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FIGURE 11 | Plot (A) shows the average ratio of times needed to search the GSOM-based database and times needed to conduct the corresponding search in the

traditional, temporally organized database on the form of a list. Plots (B,C), respectively, show the average precision and recall metrics of those searches. All tests

were evaluated for searches that involved only the cluster corresponding to the weight vector nearest to the query item (blue curves), clusters in the immediate

neighborhood of the one corresponding to the weight vector nearest to the query item (green curves), and clusters whose topological distance away from the one

corresponding the weight vector nearest to the query item is less or equal to two (orange curves).
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each introduction of signals from 1000-wafer batches9. Each
time compressed signal signatures from a new batch of 1000
wafers were added to the database and the GSOM adaptation
stopped, we again randomly selected 200 wafers that were not
yet presented to the database and for each vector of compressed
sensory signatures obtained from those wafers, we evaluated
the search performance in finding 10 nearest neighbors in
the database.

Search performance was evaluated using average precision
and recall metrics, as well as the average speed of those searches
for the cases when only the nearest database cluster was searched,
as well as when GSOM clusters with topological distance 1 and 2
from the nearest cluster were searched10. Figure 11A shows the
average ratio of times needed to search the GSOM-based database
and times needed to conduct the corresponding search in the
traditional, temporally organized database on the form of a list,
while Figures 11B,C, respectively, show the average precision
and recall metrics of those searches.

As expected, one can see from Figure 11 that expanding the
search into neighboring regions of the tree-based database leads
to improved precision and recall metrics (more accurate search
results). It can also be seen that these improvements come at
the cost of additional times needed to conduct the searches.
Nevertheless, it is clear that the tree-based database organization
consistently yields search-time improvements that grow with
the size of the database, with expanded searching of the tree
slightly slowing the search, while delivering nearly perfect search
results (average precision above 98% and average recall above
97% when one searches GSOM clusters, i.e., segments of the
database tree, with topological distance 2 away from the best
matching cluster).

Conclusion and Future Work
This paper presents an automated method for approximate
compression of a signal based on extracting physically
interpretable signatures from its time-domain description.
Thus, the proposed data compression approach is appropriate
for signals for which useful information is embedded directly
in the time domain. Those are usually sensors of thermofluidic
variables, such as flow, temperature, and pressure sensor
readings in semiconductor tools, petrochemical plants, or
pharmaceutical industries. However, in signals for which
information is embedded in the frequency or joint time-
frequency domain, such as vibrations from gearboxes and
bearings, or acoustic emissions signals from cutting tools in
machining, or civil engineering structures, this compression
method is not appropriate.

The newly proposed method converts raw signals into
signatures that can then be directly used for mining of useful

9These times correspond to the so-called computational overhead needed to

maintain the tree-based database organization (Bhattacharya, 2014). In the case

of a list-based database organization, this time is essentially zero, since there are no

adaptations needed to maintain the database organization.
10Such searching of database segments (bins) in the neighborhood of the initial

search focus within a tree-based database is yet another common practice utilized

to improve accuracy of database search results (Bhattacharya, 2014).

information via e.g., detection and characterization of anomalies,
quality prediction, or process control. The method also reduces
the data storage burden since the signal could be approximately
reconstructed from the extracted signatures. In addition, an
unsupervised clustering method was used to organize the
compressed data into a distance-based, tree-structured database.
Such tree-based data organization is known in computer science
to offer significant advantages in terms of speeding up searches
in large databases. The benefits of the proposed methodology
for data compression and organization were evaluated utilizing
two large datasets from modern semiconductor manufacturing
fabs. The results illustrate the feasibility of the aforementioned
data compression method, as well as superior performance in
terms of speed and accuracy of data searches in the newly
proposed database structure, compared to searches in the
conventionally organized industrial databases in the form of
temporal lists.

Methodologically, a natural next step forward in this
research would be to explore the possibilities of enabling
physically plausible signal compression methodology in the
frequency and time-frequency-domains. Such capabilities
could be of tremendous benefits for condition-monitoring
applications in rotating machinery and other mechanical
systems. Another direction for future work should be the
use of more powerful and general distance-based measures
to organize the compressed database. e.g., stochastic
automata (Eilenberg, 1974) could be used to yield alternative
distance measure to determine the “similarity” between
data points. which would greatly improve one’s ability
to compare signals even when novel segments that were
not previously seen appear in the signal, or a segment
that is usually there, but does not appear in the newly
observed signal.

From the practical point of view, the methods described
in this paper can be developed and implemented in an actual
industrial setting, where the sheer volume of data represents
a unique challenge. e.g., a modern semiconductor fabrication
facility processing 300mm wafers can stream well over 100K
signals, each of which can be (is) sampled at 10Hz or higher.
Effectively enabling data curation capabilities described in this
paper in such a setting requires methodologies and solutions
that intricately and innovatively link the software implementing
data curation methodologies with the hardware that enables
moving and processing of such enormous amounts of data.
Such solutions require highly interdisciplinary skills in both
hardware and software and their pursuit is outside the scope of
this paper.
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