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Objective: The aim of this research is to present a novel computer-aided decision

support tool in analyzing, quantifying, and evaluating the retinal blood vessel structure

from fluorescein angiogram (FA) videos.

Methods: The proposed method consists of three phases: (i) image registration for

large motion removal from fluorescein angiogram videos, followed by (ii) retinal vessel

segmentation, and lastly, (iii) segmentation-guided video magnification. In the image

registration phase, individual frames of the video are spatiotemporally aligned using a

novel wavelet-based registration approach to compensate for the global camera and

patient motion. In the second phase, a capsule-based neural network architecture is

employed to perform the segmentation of retinal vessels for the first time in the literature.

In the final phase, a segmentation-guided Eulerian video magnification is proposed for

magnifying subtle changes in the retinal video produced by blood flow through the retinal

vessels. The magnification is applied only to the segmented vessels, as determined by

the capsule network. This minimizes the high levels of noise present in these videos and

maximizes useful information, enabling ophthalmologists to more easily identify potential

regions of pathology.

Results: The collected fluorescein angiogram video dataset consists of 1, 402 frames

from 10 normal subjects (prospective study). Experimental results for retinal vessel

segmentation show that the capsule-based algorithm outperforms a state-of-the-art

convolutional neural networks (U-Net), obtaining a higher dice coefficient (85.94%) and

sensitivity (92.36%) while using just 5% of the network parameters. Qualitative analysis of

these videos was performed after the final phase by expert ophthalmologists, supporting

the claim that artificial intelligence assisted decision support tool can be helpful for

providing a better analysis of blood flow dynamics.

Conclusions: The authors introduce a novel computational tool, combining a

wavelet-based video registration method with a deep learning capsule-based retinal

vessel segmentation algorithm and a Eulerian video magnification technique to

quantitatively and qualitatively analyze FA videos. To authors’ best knowledge, this is

the first-ever development of such a computational tool to assist ophthalmologists with

analyzing blood flow in FA videos.

Keywords: capsule networks, retinal vessel segmentation, Eulerian video magnification, haar wavelets

registration, fluorescein angiogram
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1. INTRODUCTION

Fluorescein angiography (FA) is a diagnostic imaging technique
that aids ophthalmologists in diagnosing, treating, and
monitoring retinal vascular pathology (Almotiri et al., 2018).
In this procedure, a fluorescent dye is injected into the patient’s
bloodstream to highlight the blood vessels in the retina.

Ophthalmologists diagnose abnormalities in the retina and its
vasculature using FA images and videos, which are captured by
a fundus camera. A typical fundus camera is shown in Figure 1.
The fundus camera can be considered a low power microscope
for the purpose of capturing retinal images. Special excitation
and barrier filters capture images of the fluorescent dye as it
traverses through the patients’ vasculature. The passage of dye
through the vasculature from the choroidal vessels, to the retinal
arteries and veins, corresponds to different phases of the retinal
circulation, from which retinal vascular flow is approximated
by the treating physician. An example FA video showing select
frames is shown in Figure 2 depicting this retinal vascular flow.
Blockages or leakage of the dye into the retinal neural tissue are
indicative of retinal pathology. Some of themore common retinal
pathologies diagnosed using FA include diabetic retinopathy,
age-related macular degeneration (AMD), retinal tumors, and
other retinal vascular diseases. Figure 3 shows a typical FA of a
diabetic patient where many such abnormalities can be seen.

Currently, physicians approximate vascular transit times by
“eyeballing” FA videos to determine retinal flow characteristics,
and subsequently detect disease. Although generally effective,
this approach is typically unreliable due to high inter- and
intra-operator variability and requires extensive training in
the interpretation of retinal angiographic images with clinical
disease correlation. Approximation errors and oversights can
lead to misinterpretation with significant visual consequences.
To the best of our knowledge, there is no existing system

FIGURE 1 | Fundus camera (SPECTRALIS OCT) (Courtesy of Heidelberg

Engineering Inc.).

for the automated analysis of retinal vascular flow in retinal
angiography. Some critical challenges in automated FA video
analysis exist, including motion, noise, the complex shape, and
nature of retinal vessels, lack of validated ground truths (typically
required for training supervised machine learning algorithms),
and difficulty in accurately measuring blood flow. Specifically,
one of the biggest challenges in FA analysis is the inevitable
motion between frames of the FA videos. Because the camera is
hand-operated, significant motion artifacts are typically present.
This motion causes the frames to become translated, rotated,
and/or skewed, relative to one another. Another significant
challenge is noise, where most of the areas in FA video frames are
extremely noisy. To develop an image analysis tool, such noise
should be carefully minimized, especially when identifying the
vessel structures for quantification purposes. Figure 4 displays
two consecutive frames of an FA video for a normal subject. The
highlighted region shows red and green vessels with significant
motion that caused non-overlapping vessels between subsequent
frames. Additionally, in non-vessel image areas, the large amount
of noise present.

The arboriform structure of the retinal vasculature provides
another major hurdle, similar to the tree-like appearances found
in the bronchial airways (Xu et al., 2015). Due to the irregular
structures within the same retinal fundus image, accurate
segmentation at different scales is harder than for closed objects
at the same resolution settings. This has been a well-known
problem in computer vision for decades and although numerous
multi-scale retinal segmentation methods exist in the literature,
this problem is not yet globally solved. Other factors that make
retinal vessel segmentation a challenging task are the varying size,
shape, angles and branching patterns of vessels, non-uniform
illumination, and anatomical variability between the subjects
(Srinidhi et al., 2017). While these challenges to creating an
automated analysis system are interesting, there are additional
factors which motivate the proposed study. The spatiotemporal
sensitivity of the human visual system is limited, and many
signals fall below our ability to detect. It has been shown, these
signals can be digitally enhanced to reveal important features
that are otherwise not readily apparent. For instance, a slight
variation in the redness of the skin due to blood flow can be
amplified to extract a person’s pulse rate (Poh et al., 2010), or the
subtle motion of any structure or component can be magnified
to reveal the mechanical behavior of materials (Liu et al., 2005).
Recently, Wu et al. (2012) conducted a study to visualize blood
flow in the face through a similar method of amplifying small,
usually imperceptible, motion, and color variations in several
real-world videos.

Although these studies have described the application of
different approaches to reveal “invisible” signals in the video,
the magnification of motion for possible clinical application
has yet to be explored (particularly in FA videos). To analyze
blood circulation, we propose a segmentation-constrained
Eulerian video magnification method to obtain the subtle flow
characteristics of retinal blood vessels, for the sake of aiding
disease detection.

The structure of the remainder of this paper is as follows:
section 2 reviews the existing literature; section 3 describes
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FIGURE 2 | FA video frames showing the flow of blood through a patient’s vasculature, where changes in the brightness level in vessels are due to blood flow. Frames

(non-sequential) are ordered from top left corner to bottom right corner.

FIGURE 3 | FA image of a subject with diabetes showing significant

abnormalities.

our proposed approach; section 4 reports the results of
the computational experimentation; and finally, section 5
summarizes our findings and proposes future research directions.

2. BACKGROUND AND RELATED WORKS

This section reviews previous studies in retinal image
registration, retinal blood vessel segmentation, and Eulerian
video magnification. A brief discussion of the main contributions
and known shortcomings of these works is provided, and, in
the end, we summarize our proposed innovations to overcome
these shortcomings.

2.1. Retinal Image Registration
Retinal image registration deals with the process of constructing
a pixel-to-pixel correspondence between two retinal images.
Historically, the study of image registration has revealed several
challenges, including variations frequently encountered in the
following: subject-eye positions and movements, camera internal
parameters, modalities of images, and retinal tissues in two
retinal images of the same subject. Moreover, due to the
limitation in image capture angle, smaller image regions are
frequently considered instead of whole fundus images; thus, a
sufficient number of small image regions are required to obtain
full information of eye diseases (Guo et al., 2017). Due to these
above difficulties in the alignment process, the problem of retinal
image registration has been a major area of research.

Generally, retinal image registration can be categorized into
feature-based, gradient-based, and correlation-based methods
(Guo et al., 2017). Feature-based methods use either manual
or automatic selection of some definite objects like edges and
corners to estimate the transformation of the pair of images. On
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FIGURE 4 | Presence of motion highlighted within the square region by overlaying two successive FA frames. The high-level of noise can be seen in red and green

dots in non-vessel image areas.

the other hand, gradient-based methods rely on the estimation
of translation parameters following some linear differential
equations. Whereas, correlation methods make use of translation
from the normalized spectrum to estimate translation, scaling,
and rotation using Fourier representation. For the last few
decades, feature-based registration has been one of the most used
in the literature with methods falling into one of the following
subcategories: region-matching, point-matching, or structure-
matching. Chen et al. (2015) proposed a retinal image registration
approach based on a global graph-based segmentation, which
utilized a topological vascular tree and bifurcation structure
comprised of a master bifurcation point and its three connected
neighboring pixels. Laliberté et al. (2003) presented a global
point-matching-based method, which considered a particular
point matching search, utilizing the local structural information
of the retina. Ghassabi et al. (2016) implemented a structure-
based region detector on a robust watershed segmentation
for high-resolution and low-contrast retinal image registration.
Kolar et al. (2016) presented a two-phase based approach for the
rapid retinal image registration. In the first phase, they applied
phase correlation to remove large eye movements and in the
second phase, Lucas-Kanade tracking with the help of adaptive
robust selection of tracking points.

Ramaswamy et al. (2014) successfully implemented the
phase correlation method for removal of residual fundus
image shift and rotation obtained from a non-scanning retinal
device. They noted from the experiment was that the phase
correlation approach could accomplish promising results with
respect to retinal nerve fiber sharpness measured by texture
analysis. Matsopoulos et al. (1999) applied an automatic
global optimization scheme by combining affine-, bilinear-,
and projective-based transformation models with different
optimization techniques, such as a simplex method, simulated
annealing, and a genetic algorithm. In the area of self-organizing
maps, which is an unsupervised neural network, Matsopoulos

et al. (2004) implemented a successful multimodal retinal image
registration method. However, manual registration remains the
standard in clinical practices (Karali et al., 2004).

In this work, we propose a novel wavelet-based registration
method to spatiotemporally align FA video frames to a central
reference frame to compensate the global camera and patient
motion. While being more robust to noise than other relevant
algorithms defined above, the presented registration algorithm
also provides better performance compared with the state-of-the-
art registration algorithms in this application domain.

2.2. Retinal Image Segmentation
Over the last two decades, researchers have developed many
different retinal vessel segmentation methods (Singh et al., 2015;
Zhang et al., 2015; Liskowski and Krawiec, 2016; Maji et al.,
2016; Almotiri et al., 2018). Recent surveys have chronicled the
approaches to blood vessel segmentation in retinal fundus images
(Fraz et al., 2012; Srinidhi et al., 2017; Almotiri et al., 2018), while
the remainder of this section will highlight some of the more
prominent of these methods.

In kernel-based modeling, Singh et al. (2015) presented a
segmentation technique based on a combination of local entropy
thresholding and a Gaussian matched filter for delineating the
retinal vascular structure. The authors modified the parameters
of the Gaussian function to improve the overall performance
of the method for identifying both thin and large blood
vessel segments on the DRIVE dataset (Staal et al., 2004).
Kumar et al. (2016) proposed an algorithm considering two-
dimensional kernels and the Laplacian of Gaussian (LoG) filter
for detecting the retinal vascular structure. In their algorithm,
the authors apply two-dimensional matched filters with LoG
kernel functions. Kar and Maity (2016) developed an approach
combined with curvelet transformation, matched filtering, and
Laplacian Gaussian filter. Their experimental results reveal that
the method performed well on both pathological and noisy
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retinal images. However, matched kernels respond strongly
to both vessel and non-vessel structures, leading to false-
positive errors.

Considering model-based methods, Zhang et al. (2015)
proposed a snake-based segmentation technique in the category
of parametric modeling, to fit a parameterized curve to vessel
boundaries in retinal images. However, snake-based techniques
suffer from drawbacks due to not having the flexibility required
to represent the complex and diverse arboriform structures
present in the retinal vasculature. Additionally, snakes can also
fail to converge to the correct vessel edges in the presence
of high noise, empty blood vessels, and low contrast levels.
Gongt et al. (2015) proposed a novel level set technique in the
category of geometric deformable models, based on local cluster
values through bias correction. This method provides more local
intensity information at the pixel level and does not require
initialization of the level set function. The method by Rabbani
et al. (2015) is one of the few applied to FA images, where they
determine vessel regions for 24 subjects by subtracting other
fluorescing features then applying an opening operation utilizing
a disk-shaped structuring element with a radius of 2 pixels
followed by eroding the image utilizing disk-shaped structuring
elements with radii of 5 and 3 pixels. This work then initializes
an active contour method based on gray-level values in order to
segment leakages and obtains a Dice score of 0.86%. However,
the weakness of model-based techniques, either parametric or
geometric, is that they require the generation of a set of seed
points during initialization steps.

A mathematical morphology-based technique was applied in
Jiang et al. (2017) using global thresholding operations. This
technique was tested and validated on the publicly available
DRIVE and STARE data sets (McCormick and Goldbaum, 1975).
By implementing the good features of both matched filtering and
morphological processing, this methodology not only achieves
higher accuracy and better robustness but also require less
computational effort. The main drawback of this method is that
it fails to model the highly curved vessels, which are mostly seen
in young individuals.

Imani et al. (2015) presented an approach based on
morphological component analysis combined with Morlet
wavelet transform to overcome the traditional problem of vessel
segmentation in the presence of some abnormalities. The purpose
of this method was to divide vessels from other lesion structures
which plays vital role in clinical settings for the assessment of
abnormal situations.

Multi-scale approaches deal with the property of multiple
scales and orientations appearing in the vessel structures.
Christodoulidis et al. (2016) proposed a scheme based on
multi-scale tensor voting (MSTV) to improve the segmentation
of small/thin vessels. Their technique consists of four major
phases: pre-processing, multi-scale vessel enhancement, adaptive
thresholding, and MSTV processing, and post-processing. The
adaptive thresholding is used to segment large- and medium-
sized vessel structures, whereas, the MSTV is applied for
small-sized vessels. These multi-scale approaches, however, have
some drawbacks, such as tending to over-segment large vessels
and under-segmenting thin vessels. Similarly, Mapayi et al.

(2015) also proposed a local adaptive thresholding method,
this one based on a gray level co-occurrence matrix energy
transformation, to attempt to segment both large and thin retinal
blood vessels.

Nguyen et al. (2013) modified the basic concept of multi-
scale line detection in their approach for the retinal vessel
segmentation to show improved segmentation, especially, near
two closely parallel vessels and at crossover points.

Sharma and Wasson (2015) developed a fuzzy logic-based
vessel segmentation method. The authors used fuzzy-logic
processing, considering the difference between low-pass and
high-pass filters in the retinal image. The fuzzy logic is comprised
of different sets of fuzzy rules, where each fuzzy rule is
constructed based on different thresholding values, to select and
discard pixel values, leading to vessel extraction.

Recently, convolutional neural networks (CNNs) have
emerged as powerful deep learning algorithms compared to
other machine learning approaches, and perform remarkably
well in a variety of fields. Liskowski and Krawiec (2016) presented
a CNN-based algorithm for segmenting retinal vessels using a
relatively simple network of four convolutional layers followed by
three fully-connected layers. Maninis et al. (2016) implemented
a fast and accurate deep CNN algorithm to simultaneously
segment both the retinal and optic disc structures. The authors
extracted feature maps from the 1st– 4th and 2nd– 5th layers of a
pre-trained CNN, concatenating and adding a single additional
convolutional layer to each set, outputting the segmentation
of the vessels and optic disc, respectively. Maji et al. (2016)
proposed a deep neural network-based technique by creating an
ensemble of 12 simple five-layer CNNs to discriminate between
vessel pixels and non-vessels using 20 raw color retinal images of
DRIVE dataset.

Despite achieving astounding results, these deep CNNs suffer
from their own set of shortcomings, such as a limited ability to
model object-part relationships due to the scalar and additive
nature of neurons in CNNs. Additionally, CNNs lose valuable
information due to their use of a max-pooling component; while
providing important features such as reducing the computational
cost and number of parameters, improving invariance to minor
distortions, and increasing the receptive field of neurons, max-
pooling does so in a rigid and nearly-indiscriminate way, causing
some important information to be lost and some unimportant
information to be retained.

As an alternative method to the CNNs, a new type of
deep learning network, called a capsule network, has attracted
growing interest of researchers and is beginning to emerge
as a competitive deep learning tool. These capsule networks,
first introduced by Sabour et al. (2017) have shown remarkable
performance compared to CNNs in many computer science
applications including digit recognition, image classification,
action detection, and in generative adversarial networks (Sabour
et al., 2017, 2018; Deng et al., 2018; Duarte et al., 2018; Jaiswal
et al., 2018). Recently, capsule networks have been successfully
implemented in various medical image applications as well
(Afshar et al., 2018; Iesmantas and Alzbutas, 2018; Jiménez-
Sánchez et al., 2018; LaLonde and Bagci, 2018; Mobiny and
Van Nguyen, 2018).
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In summary, while a variety of CNN-based and other methods
have been introduced, no work based on capsule neural networks
have been introduced for the task of retinal vessel segmentation.
Although the literature on capsule networks continues to grow,
almost all previously introduced methods focus on classification-
based tasks and virtually none, with the exception of LaLonde
and Bagci (2018) are directed toward segmentation. Additionally,
the previous study, (LaLonde and Bagci, 2018) focuses on
segmenting a comparatively simpler object, lungs (large and
closed objects), where the translation of such an approach to the
more challenging arboriform structure present in retinal vessels
is currently unclear. Toward this goal, this research is motivated
to test the suitability of a capsule-based neural network in retinal
blood vessel segmentation and to compare its performance with
state-of-the-art CNN-based segmentation methods.

2.3. Video Magnification
Many signals that are frequently encountered in real-life
environments fall below the spatiotemporal sensitivity of human
visual systems. Signals such as the variation in skin coloration due
to blood flow or the subtle mechanical motion of many structures
or components typically fall within this group. Several recent
studies have shown these signals can be artificially magnified to
reveal important features of many objects around us (Liu et al.,
2005; Wu et al., 2012).

Wu et al. (2012) proposed a Eulerian video magnification
method using spatiotemporal processing to magnify
imperceptible color changes and subtle motions in some real-
world videos. They visualized the temporal variation of blood in
a human face by amplifying the small color variations caused by
blood flow. Wadhwa et al. (2016) implemented Eulerian video
magnification to visualize subtle color and motion variations
in real-world videos by amplifying the variations, namely, a
person’s pulse, breathing of an infant, sag and sway of a bridge,
which is difficult to identify by human vision. Recently, Oh
et al. (2018) applied deep CNNs to learn filters from the set of
hand-designed kernels to overcome the drawback of the video
magnification method due to the presence of noise and excessive
blurring in small motion videos. The authors show their method
is effective for producing high-quality results on real videos
with less ringing artifacts and improved signal quality than the
existing methods. Other related significant works include the
studies by Liu et al. (2005) and Wu et al. (2018).

Although there have been several studies on the applications
of different tools to reveal imperceptible signals in videos,
the application of magnifying the subtle motion of blood
circulation through retinal vessel structures in FA videos using
Eulerian-based methods has not been reported in the literature.
Pursuing to fill this literary gap, we introduce a Eulerian video
magnification approach which is guided by our deep learning-
based segmentationmodule tomagnify the flow of blood through
patients’ vasculature. By constraining the magnification process
to the segmented blood vessels, we maximize useful information
and minimize the high levels of noise present in FA videos,
thus providing ophthalmologists with a much needed AI-assisted
tool for determining retinal flow characteristics and detecting
potential disease.

3. METHODS

3.1. Overview of the Proposed System
We present a new tool that has three modules: image registration,
retinal blood vessel segmentation, and segmentation-guided
video magnification (an overview is shown in Figure 5). The
main contribution of the first module is a novel wavelet-
based registration algorithm using Haar coefficients. During
registration, a middle frame is chosen as a reference to register
all the remaining frames to that one. The objective of this module
is to remove the camera and subject motion between all video
frames, while also removing some of the noise.

The second module performs the segmentation of retinal
vessels, which are later used to constrain our final module,
greatly reducing the effect of noise, and providing quantitative
analysis of blood flow patterns to ophthalmologists. To the
best of our knowledge, there is no existing deep learning-based
segmentation method for FA video in literature, and our work is
the first such attempt. We propose to use a capsule-based deep
learning approach (LaLonde and Bagci, 2018), where capsule
networks are a relatively recent innovation within deep learning
(discussed in section 2). We also perform a comparison with
the popular U-Net (Ronneberger et al., 2015) architecture. In
the final module, we introduce a segmentation-guided Eulerian
video magnification method, as applied to retinal blood vessels
during fluorescein angiogram imaging. Due to the high levels of
noise present in FA videos, we constrain our video magnification
to the vessel structures, guided by our deep learning-based
segmentation module. In this way, instead of applying the
Eulerian magnification to the entire frame, as done in previous
methods, we use the segmentation as a prior to magnify motion
and color changes in the blood vessels only, effectively amplifying
our desired signal without simultaneously amplifying noise.

3.2. Image Registration
During FA video capture, video frames are not properly aligned
due to several independent sources of motion, including patient
movement, eye blinking, and the hand-operation of the fundus
camera. Therefore, accurate image registration is required to
properly analyze flow dynamics in FA videos. Moreover, our final
module of the proposed solution, Eulerian video magnification,
is designed to amplify subtle motions of interest, and errors
in the registration can be greatly amplified in this stage to
yield undesired results. In this paper, we utilize the Haar
wavelets to introduce a new image registration algorithm -
Haar wavelet domain multi-resolution image registration. This
approach utilizes the Haar coefficient details of the images and
optimization of the transformation matrix (T) using the Jacobian
of Haar coefficient details. To utilize the Haar wavelets of the
images, we built two quadtrees where each respective quadtree
stores the coefficients for both the reference image and the image
to be aligned.

The quadtrees are constructed in the following manner, where
we define the height of the quadtree,N. First, the reference image
is resized using an interpolation method by a factor of 2. Then
2D Haar wavelet transformation is applied on the resized images
and their coefficients are stored in the first level of their respective
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FIGURE 5 | Overview of the proposed approach.

FIGURE 6 | Construction of Haar quadtrees using a single-level discrete 2D Haar wavelet transform.

quadtrees. For the 2nd level, 2D Haar wavelet transformation is
applied on the approximation coefficients of the previous level
and the outputs, with the four coefficients, are stored at that level.
This process is repeated for the rest of the levels of the quadtree
(Q1) of the reference image. The quadtree (Q2) of the image to be

aligned is constructed in the same manner. Figure 6 depicts one
such quadtree.

The main objective of this algorithm is to optimize the
transformationmatrix T that will align themoving image (frame)
to the reference image. We first initialize the matrix T as a
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FIGURE 7 | Updating Haar wavelet coefficients for each level in Haar quadtree of (A) reference and (B) image to be aligned.

3 × 3 identity matrix, then create an outer loop to handle the
coefficients of each level in the respective quadtrees and traverse
both the quadtrees in bottom-up fashion (i.e., we deal with
the lowest level first). For each level in Q1, the first coefficient
matrix is updated as the new approximate coefficients (a2)
for the reference image for that particular level as illustrated
in Figure 7A. Similarly, for each level in Q2, the first three
coefficient matrices are updated as the new approximate (a1),
horizontal (h) and vertical coefficients (v) respectively, of the
image to be aligned for the respective level (see Figure 7B).

The next step involves the Jacobian of Haar wavelet
coefficients to optimize the transformation matrix T. Here
we use an inner loop for P iterations. First, a 2D spatial
transformation is used to update the variables a1, h, and v
using initial transformation matrix T. A mask is created to
deal with pixels outside image borders. The mean of the
approximation coefficients in the mask area, a1 and a2 are
taken and are subtracted from their original values. The current
transformation matrix T and the normalized cross-correlation
values are computed and stored. Next, we compute the Jacobian
of the warped approximation coefficients, Jh from the horizontal

and vertical coefficients h and v. The inverse of the auto-
covariance of Jh, Ai, is used for computing the error matrix Je.
We define a correction matrix dT as the product of Ai, Je, and a
Lagrange multiplier λ, defined as

λ =
1

log2 (1+ p)
, (1)

where, p is the iteration number of the inner loop. This
Lagrangemultiplier λ can be adjusted for better convergence. The
transformation matrix T is updated using the correction matrix
dT . Both loops are closed and the updated transformation matrix
T is used to align the moving image to the reference image. The
procedure involving the inner loop is illustrated in Figure 8.

3.3. Segmentation Using Baseline SegCaps
There have been numerous studies applying deep learning to
the task of image segmentation in various fields, including
in biomedical imaging. Fully Convolutional Networks (FCN),
(Long et al., 2015) U-Net (Ronneberger et al., 2015), and The
One Hundred Layers Tiramisu (Tiramisu) (Jégou et al., 2017),
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FIGURE 8 | Flowchart of Jacobian optimization of transformation matrix T.

are some of the widely used deep learning algorithms for
segmentation. The U-Net architecture is currently the most
widely used image segmentation algorithm in biomedical
imaging. Based on FCN, U-Net makes two modifications which
improves the final segmentation results. First, U-Net continues
the upsampling and combining present in FCN back to the
original image resolution while keeping the number of feature
maps symmetric at each level. Second, it replaces the summation
over feature maps with a concatenation operation to perform the
combining. These changes give U-Net its “U-like” shape, hence
the name, and combines a downsampling path or “encoder” with
an equally-shaped upsampling path or “decoder,” hence networks
of this type are typically referred to as “encoder-decoder”
networks. These modifications allow U-Net to outperform the
previous FCN and provide a finer segmentation. One of the
major shortcomings of CNN based algorithms (including U-Net)
is that higher-layer features only care if the neurons in the
previous layer are giving a high value, and so on back through
the network, without any regard to where those features are
coming from, so long as they are within the receptive field of that
higher-layer neuron. This makes the learning and preservation of
part-whole relationships with a CNN extremely challenging. An
additional shortcoming is introduced by the pooling operation,
existing in virtually every successful CNN, that rigidly and
nearly indiscriminately throws away information about the input

without any respect to the heterogeneity or importance of the
information coming from one region relative to other regions.

To solve these major shortcomings, Sabour et al. (2017)
introduced the concept of “capsule networks,” in the form of
CapsNet for small digit and small image classification. Capsules
solve these major issues present in CNNs by changing the scalar
representations of CNNs to vectors and removing the pooling
operation in favor of a “dynamic routing” algorithm. Each
capsule in a capsule network now stores information about the
position and orientation of a given learned feature within its
vector, and activations at the higher layer are computed as affine
transformations on the lower layer capsules. In this way, capsule
networks get an additional benefit; whereas CNNs attempt
somewhat poorly to learn affine invariance for their feature
values, capsule networks learn to be affine equivariant, thus
allowing for much stronger robustness to affine transformations
of the input. A CNN must learn how to map all possible affine
transformations of an input to the same activation value for a
given neuron, while capsule networks simply learn the input once
and then can project all other possible affine transformations to
the next layer. To best utilize these capsule vectors and remove
the pooling operation, capsule network use strided, overlapping
convolutions and a dynamic routing algorithm. The dynamic
routing algorithm takes the affine transformed features from a
previous layer and attempts to find the agreement between their
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vectors at the next layer. For example. if all relevant features
for a face (e.g., eyes, nose, mouth, ears) are present, but those
features do not agree in their size and orientation about where
the face should be, then the face capsule at the next layer will not
be activated.

Capsule networks have shown some amazing initial promise,
but there are very few works in the literature using this
new style of neural networks. Since CapsNet and subsequent
capsule works are proposed for small image classification, it was
necessary to adapt it to segmentation. The SegCaps architecture
(LaLonde and Bagci, 2018) is a heavily modified version of
CapsNet for object segmentation that we adopted to use in our
particular problem too. SegCaps changes the dynamic routing of
CapsNet, constraining the routing to within a defined spatially-
local window, and shares transformation matrices across each
member of the grid within a capsule type. These modifications
enable handling large image sizes, unlike previous capsule
networks. Additionally, the concept of deconvolutional capsules
was introduced, making the whole network a U-shaped network
but with convolutional layers and pooling operations replaced
with locally-constrained routing capsules. In this work, we
conduct a comprehensive computational experiment to compare
the baseline SegCaps (LaLonde and Bagci, 2018) with a state-
of-the-art baseline network (U-Net), which itself has never been
applied in this application domain. We chose to favor a three-
layer convolutional capsule network, since global information
obtained from an encoder-decoder structure is less important in
our particular application, and we instead wish to introduce as
little downsampling as possible to maintain the spatial resolution
necessary to localize the small vessels present in FA videos. The
schematics of the SegCaps network is illustrated in Figure S1.

3.4. Video Magnification
The final module of the proposed pipeline-based architecture
is video magnification. This module enables the visualization
of changes in intensity inside blood vessels for more easily
analyzing flow dynamics and detecting disease. In the literature,
it has been found that Lagrangian perspective-based approaches
(with reference to fluid mechanics) can be used to amplify
subtle motions and visualize the deformation of objects that
would otherwise be undetectable. However, this perspective
involves excessive computational times and it is difficult to make
artifact-free, especially at regions of obstruction and areas of
complex motion due to its exact motion estimation. On the
other hand, Eulerian-based approaches do not rely on exact
motion estimation, but instead, amplify the motion by changing
temporal color at fixed positions (Wu et al., 2012). In this
study, we create a Eulerian video magnification (EVM) method
which is guided by our segmentation module and apply it
to FA videos. The segmentation results are used as a prior,
to constrain the magnification to only blood vessels, allowing
effective analysis of blood flow while minimizing noise coming
from non-vessel regions.

A Eulerian video magnification algorithm combines spatial
and temporal processing to emphasize to minor changes in
a video along the temporal axis. The process involves the
decomposition of video frames into different spatial frequency

bands. Then, the frames are converted from the spatial to the
frequency domain using Fourier transformation. Considering the
time series of pixel intensity in a frequency domain, a bandpass
filter is applied to obtain the frequency bands of interest. The
extracted bandpassed signal is amplified by amagnification factor
of α. This factor is user-defined. Finally, the magnified signal is
appended to the original and the spatial pyramid is collapsed
to generate the output. The overall architecture of the Eulerian
video magnification is illustrated in Figure S2.

We use a modified version of Eulerian video magnification
as illustrated in Figure 9. The main requirements for the
magnification algorithm to perform successfully are to have
registered and noiseless frames, where the presence of these
factors creates artifacts during magnification. In this study,
we reduce the motion in FA frames using our proposed
wavelet-based registration algorithm and reduce noise, which is
mainly present in the background non-vessel regions, using the
masks obtained from our proposed capsule-based segmentation
algorithm. We apply a mean intensity projection on all the
masks to obtain a single mask, which is used to generate frames
that only contain all blood vessels. In this way, we apply the
magnification algorithm to amplify only the motions of interest
(blood flow through retinal vessels). Accordingly, the segmented
frames obtained from the segmentation algorithm are taken as
the inputs of the magnification algorithm. We apply Eulerian
magnification with an amplification factor of 5, a frequency range
of 0.5− 10 Hz, and spatial decomposition levels of 4. The output
is a gray-scale video, where only the blood vessels are magnified
in red color, showing the flow of blood in the vessels as the
video progresses.

4. EXPERIMENTS AND RESULTS

A prospective study was conducted with an IRB approved at
the University of Central Florida College of Medicine, Orlando,
FL in collaboration with Central Florida Retina, Orlando, FL
(IRB: MODCR00000068, Title: Automated Retinal Vascular Flow
Analysis). FA videos of 10 normal subjects are considered for this
study after obtaining the written consent of the participants. The
details of the dataset are presented in Table S1. The dataset will
be made available by the authors on request.

4.1. Wavelet-Based Image Registration
Thewavelet-based registration algorithmwas coded inMATLAB,
using the wavelet and parallel computing toolboxes.We used four
different transformation types namely, translation, Euclidean,
affine, and projective to generate four videos. Two experiments
were performed based on the number of iterations for each
transformation type. In the first experiment, 2 levels of Haar
quadtree with 50 iterations was used. In the second experiment,
the number of iterations was increased to 150. We considered the
middle frame as the reference image for registration. To evaluate
the output quantitatively, the normalized cross-correlation of
each frame was calculated with respect to the reference frame. As
a brief note, we considered cross-correlation as a similaritymatrix
instead of mutual information because it has been shown in the
literature that cross-correlation often gives better interpretation
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FIGURE 9 | Data flow diagram of Eulerian video magnification for FA video.

than mutual information on images with the same modality
or source.

The t-test was used to validate the statistical significance of
the improved results obtained by the second experiment over
those given by the first experiment for all the four different
transformation types individually. The video considered for
this experiment had 182 frames. In the first experiment, four
series of normalized cross-correlation were obtained for each
transformation type. Similarly, another set of normalized cross-
correlation was generated through the Experiment 2. Thus, each
transformation type for the two experiments comprised 182 pairs
of normalized cross-correlation values. For each transformation
type, the mean and the standard deviation of the 182 differences
in the cross-correlation values were determined. The difference
corresponding to a transformation was computed by subtracting
the cross-correlation of the particular transformation type of
the second experiment from that of the first experiment.
The results of statistical test (P-values) of the two different
experiments for each transformation type are as follows,
Translation: 0.0175, Euclidean: 0.00868, Affine: 0.0053, and
Projection: 0.026, respectively.

At 95% confidence level, alpha (significance level) = 0.05.
Since there were total of 182 frames, degrees of freedomwere 181.
Using a standard table of t-distribution, critical value t for 181
degrees of freedom was obtained for each transformation type.

The results depict that t Statistic is greater than t critical for one-
tailed distribution. Based on t-test, both results in experiments
were found to be statistically significantly different for all four
transformation types.

As a further baseline for comparison, we also considered
another standard image registration algorithms, rigid
registration. The rigid registration algorithm was coded in
C++, using the Insight Toolkit (ITK) library. The OpenCV
library was also adopted for pre-processing FA video frames.
The experiments for the rigid registration was carried out
with binary images as this yielded far better results than
operating on the gray-scale images. To optimize the registration
parameters, we applied the gradient descent algorithm
with a learning rate of 0.125 and a step size of 0.001. We
run the optimizer for 200 iterations, and the parameters
of the gradient descent algorithm were obtained through
manual search.

The visual evaluations revealed that the images were far better
aligned when binary image was used, while the image registration
failed when a gray-scale image was used as a reference image.
The overlapping of two successive frames using two different
reference images (one of them gray-scale, while the other is a
binary image) is shown in Figure 10. Further, visual evaluation
of the registration outputs shows the wavelet-based registration
algorithm to be superior to the rigid registration algorithm. The
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FIGURE 10 | Overlapping two successive frames shows rigid registration (A) fails with grayscale images and (B) successful with binary images.

main aim of this module is to remove the motion across frames,
and the proposed algorithm greatly reduces the motion.

4.2. Segmentation Using Deep Learning
Manual annotations (ground truths) of the FA video frames
were done using AMIRA software. Due to the difficulty of
annotation, and since physicians primarily look for the changes
in the blood flow in large vessels, only large and medium-size
vessels were annotated, with the majority of very small vessels
left absent. The networks U-Net and baseline SegCaps was coded
in python using Keras and Tensorflow, and experiments were
run on a single 12GB memory NVIDIA Titan X GPU. The
networks were trained from scratch on the FA images with
standard data augmentation techniques (i.e., random scaling,
flip, shift, rotation, elastic deformations, and salt-n-pepper
random noise). The Adam optimizer was used with an initial
learning rate of 10−4, with the learning rate decayed by a
factor of 10−6 when the validation loss reached a saturation
level. Due to the large image sizes and a loss value coming
from every pixel, the batch size was taken as 1 for all the
experiments, with weighted binary cross-entropy loss used as
the loss function. The training continued for 200 epochs (1000
steps per epoch) and early stopping was applied with a patience
value of 25 epochs. To validate the algorithm’s performance,
we used a 10-fold cross-validation (leave-one-out for our 10
patients videos), with 10% of the training video frames set aside
for validation.

4.2.1. Quantitative Analysis
The results of our segmentation experiments were
quantitatively evaluated in terms of the standard metrics:
Dice coefficient, sensitivity, and specificity. The results of
these experiments and the total number of parameters
of the models are shown in Table 1. The presented
SegCaps network outperforms the U-Net model, producing

TABLE 1 | Comparison of Dice, Sensitivity (Sens.), and Specificity (Spec.) for

different neural network models are given in mean ± standard deviation (SD)

format.

Methods Params. Dice (%) Sens. (%) Spec. (%)

U-Net 31 M 85.50 ± 3.78 90.74 ± 6.24 98.56 ± 0.71

SegCaps 1.6 M 85.94 ± 3.05 92.36 ± 3.57 98.38 ± 0.95

higher sensitivity while obtaining comparable dice and
specificity scores. Additionally worth noting, the SegCaps
achieved these results while using 94.84% fewer parameters
than U-Net.

Although SegCaps outperformed U-Net model, the difference
was not found to be statistically significant with respect to the
region-based evaluation metric (Dice coefficient). We performed
a t-test on the Dice scores between the SegCaps and the U-
Net models. The p-value for one-tail was 0.38, hence the result
is not statistically significant. We argue this is somewhat due
to limitations in the Dice metric where small differences in
thin vessel structures are overshadowed by the large overlap
in the more easily segmented vessels. This is demonstrated in
Figure 12 which show how much better SegCaps captures the
vessel structures, especially for thin or close-together vessels,
even though this results in very similar Dice scores. However,
this is partially captured by the higher sensitivity in SegCaps
over U-Net. It should be noted that these results for both the
proposed SegCaps and our baseline U-Net represent the first
application of deep learning-based methods in the literature to
analyze FA videos, and both perform well (> 90% sensitivity) in
our proposed pipeline.

Since there was no ground truth for small vessels, we were
not able to analyze them quantitatively. Moreover, the small
vessel quantification is not within the scope of our study
due to the current clinical workflow that targets medium to
large vessels only. However, we have let our participating
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FIGURE 11 | (A) Classification of small and big vessels in FA images. (B) Segmentation results of baseline SegCaps on FA images. Boxes are used to illustrate the

capturing of finer detail (small vessels) produced by our method.

ophthalmologists evaluate the proposed method’s small vessel
segmentation for their correctness, their visual evaluations did
not reveal any concerns.

4.2.2. Qualitative Analysis
To truly capture the difference in performance between methods,
visual evaluation of segmented objects is often necessary when
the object exists in multiple scales, where finer details can get
washed out in the quantitative metrics. These finer details (small
vessels) are illustrated in Figure 11A. We show some results of
our proposed baseline SegCaps in Figure 11B, illustrating the
fine details of smaller vessels captured successfully by baseline
SegCaps, shown on small patches from segmentation results of
FA images for better visualization.

To further illustrate our proposed method’s performance on
finer details, we provide a qualitative comparison on a few
examples between baseline SegCaps andU-Net in Figure 12. Two
different frames are shown from two subjects, with the ground

truth colored in cyan, the predicted segmentation in magenta,
and the white region represents the intersection of both regions.
From the figures, we see far more white regions in the SegCaps
patches than its U-Net counterpart. We mark some places using
red (for U-Net) and green (for SegCaps) arrows to show regions
of under- or over-segmentation by U-Net. While the quantitative
results were extremely similar, we can see the baseline SegCaps
performed far better in these challenging regions denoted by the
arrows. As an interesting note, manual annotations are done for
medium and large vessels only; however, it is found that baseline
SegCaps achieves great segmentation of smaller blood vessels
as well.

4.3. Eulerian Video Magnification
The results of our experiments on Eulerian video magnification
are shown in Figure 13. In a first experiment (Figure 13A),
we magnify the FA frames based on the corresponding masks
obtained from the SegCaps network. Since at the beginning of the
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FIGURE 12 | Comparison of segmentation results on U-Net and baseline SegCaps. Despite achieving similar quantitative results, we can see SegCaps outperforms

U-Net in challenging regions as denoted by the corresponding red (U-Net) and green (SegCaps) arrows. U-Net struggles with under-segmentations in Subject 3 and

over-segmentations in Subject 4.

FIGURE 13 | Eulerian video magnification of registered and segmented FA frames (A) without mean intensity projection and (B) with mean intensity projection of

masks. See Supplementary Videos for the frames shown here.

FA video, the blood flow has not started, we see incomplete red-
colored vessels in the first few frames of the FA video. After a few
frames, as the blood slowly makes its way into the arteries and

veins, we see a complete picture. To get a better understanding
of the blood flow dynamics, we perform a second experiment.
Instead of using the corresponding masks for each frame, we
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apply a mean intensity projection on all the masks to get a single
mask that will represent all the frames. This mask is then used as
the prior for our segmentation guidedmagnify of the blood vessel
regions. In this second experiment, we see much clearer blood
flow dynamics. The blood vessels are highlighted from the first
frame. We see gradual intensity change in the red color channel
as the blood flows into the veins as illustrated in Figure 13B.
We conducted some preliminary computational experiments to
ascertain the best parameters of the proposed EVM method and
consider the parameters for the EVM approach: amplification
factor (α) of 5, a frequency range between 0.5 and 10 Hz, and
spatial decomposition levels of 4.

5. DISCUSSIONS AND CONCLUSION

We present a novel computational tool that helps physicians
analyze and diagnose fluorescein retinal angiography videos.
The proposed pipeline-based approach consists of three phases:
image registration, followed by retinal vessel segmentation, and
lastly, segmentation guided video magnification. In the image
registration phase, we apply a novel wavelet-based registration
method that uses Haar coefficients to spatiotemorally align
individual frames of the FA video. Moreover, in this phase, all
the frames are registered to the middle frame to eliminate the
motion between the frames and some of the noises. In the second
phase, a baseline capsule-based neural network architecture
performs segmentation of retinal vessels. We demonstrate this
novel application of a capsule network architecture outperforms
a state-of-the-art CNN U-Net in terms of both parameter use, as
well as qualitative and quantitative results. Finally, we introduce
a segmentation-guided Eulerian video magnification method to
further enhance the intensities of the retinal blood vessels. The
magnification is performed on the segmented retinal vessels,
emphasizing the retinal vessel information in FA videos while
minimizing the high levels of noise. The final output video
from our proposed novel AI-assistant tool provides a better
analysis of blood flow from fluorescein retinal angiography
videos and should aid ophthalmologists in gaining a deeper
understanding of the blood flow dynamics and enable more
accurate identification of potential regions of pathology.

Limitations in the current study are to be noted. Image
registration is essential for the removal of motion from the
video. From a segmentation point of view, we have investigated
the performance of the SegCaps based network architecture
on a small dataset. The dataset is limited to only 10 subjects
for analysis due to the extremely time-consuming nature of
collecting annotations, which were analyzed using leave-one-
out cross-validation. Although our data validated the superior
performance of the algorithm, a larger dataset, once available,
could be used for more accurate FA video image segmentation.
Across all subjects the capsule segmentation network (SegCaps)
outperformed U-Net but the difference may not be statistically
significant from region-based evaluationmetric (Dice).We argue
this is somewhat due to limitations in the quantitative metrics
and that the qualitative figures demonstrate how much better
SegCaps captures the vessel structures, especially for thin or

close-together vessels, even though this results in very similar
Dice scores. This is partially captured by the higher sensitivity in
SegCaps over U-Net. The parameters used in the magnification
algorithm can also be further optimized to get more precise
amplification. Since we empirically find the parameters, a more
thorough parameter search can potentially lead to further
performance gains.

Future applications of this research can include automated
flow calculation and detection at various segments of the retinal
vasculature for more accurate disease detection. Theoretically,
these can be integrated into existing clinical software applications
for automated diagnoses. Lastly, one may re-organize the
system by using the segmentation module first, followed by the
registration and magnification modules. It may bring additional
benefit in the registration step to first have a segmentation
mask; however, potential mistakes in segmentation can affect the
overall robustness of the system in such a scenario. Since we
are currently using a 2D neural network, this would be an easy
switch; however, as a future direction 3D segmentation methods
could be investigated on the registered video frames.
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