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Physiotherapy is a labor-intensive process that has become increasingly inaccessible.

Existing telehealth solutions overcome many of the logistical problems, but they are

cumbersome to re-calibrate for the various exercises involved. To facilitate self-exercise

efficiently, we developed a framework for personalized physiotherapy exercises. Our

approach eliminates the need to re-calibrate for different exercises, using only few user-

specific demonstrations available during collocated therapy. Two types of augmented

feedback are available to the user for self-correction. The framework’s utility was

demonstrated for the sit-to-stand task, an important activity of daily living. Although

further testing is necessary, our results suggest that the framework can be generalized

to the learning of arbitrary motor behaviors.

Keywords: telehealth, physiotherapy, Gaussian process, latent variable model, sit-to-stand

1. INTRODUCTION

Physiotherapy is a rehabilitation activity that improves and restores physical function. The process
can be labor-intensive, involving multiple face-to-face sessions with a physical therapist (PT)
(Figure 1). In each therapy session, the PT and patient practice a large variety of movements with
limited amount of time. An average post-stroke therapy session was found to be 36 min long,
requiring patients to perform up to 17 types of movements (Lang et al., 2007). This amount of
practice is an order of magnitude lower than what is expected to induce neural reorganization
(Lang et al., 2009). Thus, the patient is required to continue the exercises themselves, without the
corrective guidance from the PT (Tang et al., 2015).

While conventional face-to-face therapy is effective in treating many common injuries, access
has become increasingly difficult for many individuals. Among many factors, the shortage of
practitioners and physical distance were identified as major contributors (Schopp et al., 2000).
This shortage is expected to worsen as the world population is aging at an unprecedented rate.
At present, so-called developed countries are already considered aged, led by Japan (28%) and
Italy (23%); developing countries are following this trend at an even faster pace (United Nations,
2019). As a result, countries are shifting long-term elderly care from institutions to home-
and community-based services, and remote therapy has emerged as an accessible alternative to
conventional therapy (Higo and Khan, 2015).

Remote therapy, or telehealth, is defined as the delivery of health-related services and
information via telecommunications technologies (ICT) (Lee et al., 2018). Recent developments
use immersive technologies, like augmented reality (AR) and virtual reality (VR) to simulate
environments close to conventional therapy. An AR example is the popular augmented mirror
setup that guides users through pre-recorded exercises. For example, Physio@Home demonstrates
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FIGURE 1 | Therapist (left) induces proper form of exercise on the patient (right).

four shoulder exercises. The system tracks a user’s joints and
overlays them on the user’s body, where a target shoulder angle is
presented (Tang et al., 2015). A VR example is the simulation of a
3D environment to facilitate arm-reaching exercises. This system
also tracks users’ joint positions, while vibratory feedback is given
when task performance is successful (Kato et al., 2015). These
systems use simple single-limb models to reduce the cognitive
load on the patient and the computational load on the system.

The existing systems use single-purpose frameworks, which
can be cumbersome to calibrate for the variety of different
exercises and users. We highlight three issues in particular.
First, complex multi-joint movements are largely unexplored.
Focus has been largely on isolated individual movements, such
as finger motion, knee, and shoulder movements. Important
whole-body movements, such as the sit-to-stand exercise, cannot
be addressed. Second, patient-specific calibration is difficult to
achieve. On the one hand, many systems rely on generic expert
templates. The template may differ greatly from the target user’s
body type and physical condition, potentially suggesting painful
postures. On the other hand, automatic calibration would require
large amounts of personalized training data, which is impractical
with the limited time available during a therapy session. Finally,
the physical therapist’s motor skills are completely ignored. Many
systems are designed according to the information provided by
the expert PT. Expert knowledge, such as what types of exercise
and target angles are useful, but expertmotor skills play an equally
important role during therapy (Tang and Dillman, 2013).

The present study aims to develop a data-efficient framework
for personalized physiotherapy exercises. This framework solves
the identified problems by allowing arbitrary whole-body
motions, using only few user-specific demonstrations available
during collocated therapy.We approach this problem by utilizing
a model called Gaussian Process Dynamical Model (GPDM)
(Wang et al., 2008). GPDM is part of a family of latent variable
models which can represent high-dimensional observation data
in a low-dimensional latent space (Lawrence, 2005). GPDM,
a dynamical variant, has been demonstrated to work well
with human motion data. The key idea is to embed and
organize meaningful task demonstrations in the same latent
space. However, there is currently no principled way to compare
characteristics between multiple demonstrations.

We propose simple modifications to the GPDM to extract
meaningful feedback mechanisms for self-correction. In the

context of motor skill learning, feedback refers to performance-
related information that a learner receives for performing a
task. Two types of augmented feedback are typically presented
to a learner. One conveys knowledge of results (KR) while the
other conveys knowledge of performance (KP) (Sunaryadi, 2016).
From the modified latent space, we extract features that convey
both types of feedback.

This paper describes proposed modifications to the GPDM
for robust self-correction of whole-body physiotherapy exercises.
We then demonstrate our model’s utility on the sit-to-stand
task, an important activity of daily living. Our work eliminates
the need for cumbersome calibration or large amounts of user-
specific data for a personalized self-exercise system. Using only
a limited amount of personalized data, expert-level feedback can
be easily obtained. We will start with mathematical formulations
of the GPDM and proposed modifications, followed by a
description of the data collection and processing procedures.
Subsequently, we present the results of the modifications then
discuss them in relation to similar studies. Finally, we conclude
with a brief summary and outlook.

2. MATERIALS AND METHODS

We first discuss the fundamental concepts of GPDM before
introducing our proposed adjustments to the model. This is
followed by details of the experiments and data-processing
procedures performed for sit-to-stand motion data.

2.1. Gaussian Process Dynamical Model
The GPDM is a dynamical extension of the Gaussian Process
Latent Variable Model (GPLVM), a class of latent variable models
that allows non-linear generative mapping from latent space to
observation space (Lawrence, 2005). The GPDM extends this
model by introducing a dynamical prior in the latent space
(Wang et al., 2008). For human motion, data is a sequence of
poses indexed by discrete time t. The observation space is defined
by a sequence of vector-valued poses yt ∈ R

D, while the latent
space is defined by a corresponding lower-dimensional sequence
xt ∈ R

d. Either can be written in the form

xt =
∑

i

aiφi(xt−1)+ nx,t , (1)
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yt =
∑

j

bjψj(xt)+ ny,t , (2)

for weightsA = [a1, a2, . . .] and B = [b1, b2, . . .], basis functions
φi and ψj, and zero-mean white Gaussian noise nx,t and ny,t .

The GPDM is calculated by marginalizing over parameters
of the mappings (i.e., A and B) and optimizing the latent
coordinates of the training data. To obtain the data likelihood
over the observations Y, we assume an isotropic Gaussian prior
on each bj and marginalize over B to obtain

p(Y|X,β) =
|W|N

√

(2π)ND|KY |
D
exp

(

−
1

2
tr(K−1

Y YW2YT)

)

, (3)

where Y = [y1, . . . , yN]
T is a design matrix of poses, X =

[x1, . . . , xN]
T contains the corresponding latent coordinates,

W ≡ diag(w1, . . . ,wD) is a scaling matrix, and KY is a kernel
matrix. The elements of the kernel matrix are defined by a kernel
function, (KY )i,j = kY (xi, xj), chosen to be the default “RBF
+ bias + white” (Lawrence, 2005). The density over the latent
coordinates can be obtained in a similar manner. We assume
an isotropic Gaussian prior on each ai and marginalize over A
to obtain

p(X|α) =
p(x1)

√

(2π)(N−1)d|KX|
d
exp

(

−
1

2
tr(K−1

X X2 :NX
T
2 :N)

)

,

(4)
where X2 :N = [x2, . . . , xN]

T , KX is the (N − 1)× (N − 1) kernel
matrix constructed from X1 :N−1 = [x1, . . . , xN−1]

T , and x1 is
given an isotropic Gaussian prior. The dynamics are chosen to
be the default “RBF + linear + white” (Wang et al., 2008). The
latent mapping, priors, and dynamics define a generative model
for time series of the form

p(X,α,β|Y) ∝ p(Y|X,β)p(X|α)p(α)p(β), (5)

where simple uninformative priors p(α) ∝
∏

i α
−1
i and p(β) ∝

∏

i β
−1
i are assumed. The GPDM is learned by minimizing the

joint negative log-posterior of the unknowns−ln p(X,α,β|Y).
The definition for GPDM in Equation (5) is trained using

pose sequence Y, implying a single instance of motor behavior.
However, Wang et al. also describe how the model can be
extended to multiple sequences, explicitly modeling multiple
instances simultaneously. To do so, the associated latent
trajectories need to be embedded in a shared latent space.

Now the observation space sequences {Y(1), . . . ,Y(P)} are still
trained as a single data matrix, but each sequence is made
independent by ignoring the temporal transitions between the
last pose of sequence i − 1 and the first pose of sequence i.
Consequently, the associated latent trajectories {X(1), . . . ,X(P)}

become disconnected (Wang et al., 2008).

2.2. Organizing Latent Trajectories
The original formulation of GPDM is insufficient for comparing
multiple demonstrations. As is, we see a disorganized latent
space where extraction of meaningful features becomes difficult
(Figure 2A). We reorganize the space by introducing common
reference points.

2.2.1. Common Pose
We hypothesize that the latent trajectories can be organized
naturally by appending exact copies of common reference points
to each motion sequence. We introduce the concept of a common
pose (CP), which is appended to either end of each latent
trajectory. The CP is calculated twice, based on the mean pose of
trajectory end points. The first is done for the start of the motion
sequence, and a second time for the end of the motion sequence.
Formally, the common start pose is defined as

CPstart =
1

P

P
∑

p=1

y
(p)
1 , (6)

where P is the number of sequences. Similarly, the common end
pose is defined as

CPend =
1

P

P
∑

p=1

y
(p)
N , (7)

where N is the number of poses in a sequence. The CPstart
is appended to the start of each motion sequence Y(p), while
the CPend is appended to the end. In our tests, we found that
appending fifteen instances to each trajectory end works well.

2.2.2. Zone of Intermediate Poses
By connecting all latent trajectories through the common poses,
any pair of trajectories creates an enclosed zone bounding all
intermediate poses between them (Figure 2B). This Zone of
Intermediate Poses (ZIP) has two useful properties for simple
user feedback.

FIGURE 2 | Latent space representation, (A) GPDM, (B) GPDM with CP, (C) with precision.
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The geometric area of the ZIP is a measure of performance
similarity in the latent space. A large area indicates dissimilar
movement patterns; a small area indicates similar movement
patterns; and zero area (coincident lines) indicates exact-
matching movement patterns. The area given by the coordinates
(xi, yi) of two connected trajectories is defined by Gauss’s
Area Formula:

A =
1

2

n
∑

i=1

[xi · (yi−1 − yi+1)], (8)

where A is the area of the polygon and n is the total number of
vertices. The first and last points that create the polygon connect
to each other, defined as y0 = yn and yn+1 = y1. Since our
definition of similarity explicitly uses an area formula, the latent
space is necessarily two-dimensional.

Poses sampled within the ZIP yield a smooth pose sequence,
due to the proximity of the trajectories. Each latent point has
an associated level of uncertainty in the pose space, with higher
precision yielding better pose estimates. Precision is highest on
the training points, but decreases rapidly as points are sampled
farther away. In our implementation, the uncertainty of each
point in the pose space is visualized by gray-scale coloring in
the latent space. High-precision poses are indicated by a light
color, while low-precision poses are indicated by darker colors
(Figure 2C).

2.3. User Performance Feedback
We propose two ways to present both types of augmented
feedback. Knowledge of Results is presented through a
performance score, while Knowledge of Performance is presented
by visualization of corrective poses. In other words, users can
confirm if their performance is improving, and if not, how to
correct their mistakes.

2.3.1. Performance Score
The user is given a Performance Score to indicate the quality
of performance, starting from base performance to the desired
expert-induced motion. The Performance Score is defined as

PS = 1−
Acurr

Aref
, (9)

where Aref is the area between the baseline and desired
trajectories; Acurr is the area between the current and desired

trajectories; and both Aref and Acurr are calculated using (8). This
convention implies that the baseline condition is assigned a 0%
score while a goal condition is assigned a 100% score. Generally,
a user’s progress starts from 0% and improves all the way to 100%.
However, it is possible to perform worse than the baseline by
misinterpreting the expert’s instructions. In this case, the score
can go below 0%. The possible scoring outcomes are visualized
with their corresponding ZIP in Figure 3.

2.3.2. Corrective Action
Poses can be visualized by sampling points from the latent space.
Self-correction is facilitated by sampling a trajectory from the
ZIP. By tracing a line from a current trajectory to a desired
trajectory, a smooth corrective pose sequence can be inferred.

2.4. Data Collection
2.4.1. Participants
Nine healthy adult males (age: 27.2 ± 1.5 years, weight: 62.7 ±

10.7 kg) were recruited for the role of subject (person who stands
up), while one PT (30 years experience) was recruited for the
role of expert (person who induces change). All participants gave
informed consent to participate in the experiment.

2.4.2. Experiment Protocol
Each subject was asked to perform a number of conditions during
their respective session. At the start of every condition, a subject is
instructed to sit comfortably on an armless, backless chair of fixed
height (0.45 m), while the knee is flexed to 90◦. Before recording,
a subject is given a fewminutes to familiarize themselves with the
movement of the current sit-to-stand condition. There are three
types of conditions, performed in the following order:

1. NATURAL: A subject is asked to stand up naturally, i.e.,
a self-selected pace and strategy. This condition is further
subdivided into three typical sit-to-stand conditions. These
conditions are distinguished by the arm position: (1)N.folded:
folded across the chest, (2) N.front: to the front on the knees,
and (3) N.sides: to the sides.

2. INDUCED: The PT is asked to induce the desired sit-to-
stand motion as usually performed for his patients. This form
of guidance is characterized by a light touch on the arms,
requiring the subject to use his own strength to stand up.

3. LEARNED: A subject is asked to recall the new strategy that
was learned from the INDUCED condition. The subject is
then asked to replicate the motion as close as possible to the

FIGURE 3 | Area-based performance score system, possible scores (A) worsening: PS<0%, (B) base: PS = 0%, (C) improving: 0<PS<100%, (D) mastery: PS =

100%.
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taught movement. No additional instructions on timing or
strategy was given.

Each subject performed all five conditions during their
respective session, where each condition was repeated for six
successful trials. A trial was considered a failure if data capture
was affected in any way, e.g., occlusion of markers. A total of
270 successful trials (5 conditions × 6 trials × 9 subjects) were
collected for analysis. The experiment protocol is summarized in
Figure 4.

2.4.3. Motion Capture Recording
While the sit-to-stand tasks were being performed, the subject’s
whole-bodymotion was being recorded. The setup was an indoor
MAC3D motion capture system (Motion Analysis Corp.), with
16 cameras mounted around the capture space (Figure 5A). The
Cortex software from the same company provides the control
panel for all devices and the tools for processing raw motion
capture data.

Before data recording, 29 passive retroreflective markers were
fitted to a subject’s whole body, followed by a standard calibration
procedure. The Helen Hayes marker set (Figure 5B) was used
as a reference (Motion Analysis Corporation, 2006). During
recording, the marker trajectories were sampled at 200 Hz with

measurement units in millimeters. The x, y, z positions of each
marker were continuously recorded, for a total of 87 channels
(29 markers× 3 dimensions). An audible beep signals the subject
when a trial starts and ends. The trial is ended a few seconds after
the subject is fully standing.

2.4.4. Data Pre-processing
The marker data were first pre-processed before analysis, using
built-in tools in Cortex (Motion Analysis Corp.) and custom
code in Matlab (The MathWorks, Inc.). The procedures were
performed in the following order:

1. Noise removal: Each trial was visually examined and
corrected for occlusions and noise. The markers were then
labeled and smoothed using a fourth-order Butterworth (6 Hz
low-pass) filter.

2. Data translation: The coordinate system was standardized
across trials. A common origin point was obtained using
the static point between the R.Heel and L.Heel markers. The
average point between the two markers were calculated, and
the coordinates of all other markers were subtracted by this
value. This procedure was performed for all trials individually.

3. Data normalization: To reduce inter-individual differences,
the length units are normalized to a unitless value based on

FIGURE 4 | Experimental flow diagram for each subject.

FIGURE 5 | Motion capture setup, (A) capture space, (B) Helen Hayes markerset.
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height (Hof, 1996; Bahrami et al., 2000). For each trial, all
coordinate values are divided by the vertical component of the
Top.Head marker.

4. Event standardization: Each trial was truncated to retain only
the relevant portion of the sit-to-stand motion. A start and
an end event were defined based on a stable reference marker
(Tully et al., 2005). The start event is defined as the moment
when the speed of the R.Shoulder marker is >0 in the sagittal
plane, while the end event is defined as the moment when the
R.Shoulder reaches its highest vertical position.

3. RESULTS

A reorganized latent space was successfully extracted from the
experiment data. Relevant properties of the new latent space are
discussed in this section.

3.1. Latent Space Behavior
In conventional GPDM, multiple motor behaviors have no
apparent relation in a shared latent space. This is true even
when the same motor task is performed repeatedly. To organize
the latent trajectories, we proposed to connect them according
to known matching poses. Specifically, we appended reference
common poses to both ends of each latent trajectory.

Results indicate that the latent trajectories have successfully
connected at the common poses, CPstart and CPend, found at
either end. The trajectories of similar conditions stay close
together, forming two subgroups. TheNATURAL conditions stay
close together, while the INDUCED and LEARNED conditions
also stay close. However, the order within the subgroups vary
among subjects. These results suggest that even small differences
in the pose space can cause latent points to stay far apart. By
connecting the trajectories through exactly matching poses, an
organized latent space can be achieved. The extracted latent
trajectories are shown in Figure 6.

3.2. Performance Score
Knowledge of results (KR) is one of two types of augmented
feedback shown to be positively linked to motor skill learning
(Sunaryadi, 2016). We proposed the Performance Score (PS) as
a measure of performance success. The score uses the normalized

geometric area between two connected latent trajectories as a
measure of similarity between a baseline and a desired behavior.
We assigned N.folded as the baseline condition and INDUCED
as the desired condition.

Results indicate that the INDUCED scores are always higher
than the LEARNED scores, while the LEARNED scores are
always higher than the NATURAL scores. This consistent
ordering suggests that all subjects were able to remember
and perform part of the expert-induced movement. While all
LEARNED scores are positive, theN.front andN.sides conditions
report some negative values. The inconsistent negative scores of
the other NATURAL conditions suggest that the expert-advised
movement is not naturally achieved. These results indicate that
the Performance Score can capture the expected performance
improvements. A summary of all scores is shown in Table 1.

3.3. Corrective Pose Sequence
Knowledge of performance (KP) is the other type of augmented
feedback formotor skill learning (Sunaryadi, 2016).We proposed
sampling from the Zone of Intermediate Poses (ZIP) as a simple
yet robust solution for movement self-correction, since a smooth
pose sequence can be visualized by simply sampling adjacent
points from the latent space.

Results show that by sampling along a trajectory, known
pose sequences can be reconstructed. For example, tracing

TABLE 1 | Performance score summary.

Subjects N.folded N.front N.sides INDUCED LEARNED

A 0 2.91 −14.69 100 75.52

B 0 23.06 27.44 100 36.95

C 0 −44.47 −56.51 100 52.14

D 0 −36.70 −38.41 100 65.77

E 0 15.34 11.46 100 38.97

F 0 −2.44 10.43 100 36.34

G 0 47.74 49.69 100 66.00

H 0 43.20 30.52 100 73.90

I 0 −19.33 4.08 100 62.48

FIGURE 6 | Latent trajectory representation for all subjects (A–I).
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a NATURAL trajectory and the INDUCED trajectory shows
the prototypical pose sequences. We can see some distinction
between the two conditions as the INDUCEDposes are lower and
more forward-leaning (Figure 7). Further, by sampling the ZIP
between the LEARNED trajectory and the INDUCED trajectory,
one can visualize the corrective pose sequence (Figure 8). These
results indicate that the generative portion of GPDM is unaffected
by our modification, while the formed ZIPs can be used to
identify the erratic portions of movement.

4. DISCUSSION

Our goal is to develop a data-efficient framework for personalized
physiotherapy exercises. Our modified GPDM approach solves
the common problems of existing telehealth applications, by
providing personalized feedback for whole-body exercises, based
on few expert-induced demonstrations. Specifically, two types
of augmented feedback were extracted from the reorganized
latent embedding, conveying both performance quality and
the corrective action. By analyzing the feedback outcomes
from sit-to-stand experiments, we confirmed the utility of our
proposed method for an important physiotherapy exercise. In
the discussion that follows, we compare our findings with
related literature.

4.1. Latent Space Behavior
The introduction of the common pose solved the problem of
relating multiple latent trajectories. The desired connecting
effect is achieved because the common pose points “gather”
nearby similar points. Effectively, the appended common poses
reintroduce the still poses to both ends of the movement, i.e.,
subject is sitting still and standing still. The key differences with
the original still poses are that they now match exactly and are
shared by all sequences.

Multiple GPLVM studies demonstrate that multiple
trajectories lie separately in the shared latent space, despite
sharing common poses. One study modeled four golf swings
from the same golfer, using conventional GPDM (Wang et al.,
2008). Another study modeled sitting motion on surfaces of
different heights, using Observation Driven GPLVM (Gupta
et al., 2008). In both types of motion, the start poses are known to
be the same pose, yet the latent starting points are represented by
different points. One key difference with our target movement,
i.e., sit-to-stand, is that the end pose is also known to be the
same. This condition appears to be unique to our study.

4.2. Augmented Feedback
Our approach provides Knowledge of Results through the
Performance Score, calculated as a function of the geometric area

FIGURE 7 | Reconstructing demonstrated poses, (A) latent space, (B) N.folded sequence, (C) INDUCED sequence.

FIGURE 8 | Inferring corrective poses, (A) latent space, (B) N.folded to LEARNED sequence, (C) LEARNED to INDUCED sequence.
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between two connected latent trajectories. Since the mapping
from latent space to pose space is non-linear, the score does
not necessarily convey the scale of progress, i.e., flexing a joint
50% more does not necessarily mean a subject improved by 50%.
Other single-valued quantities for progress have been previously
proposed, yet the scale of progress remains difficult to quantify
exactly. Some examples include time to accomplish the task (Yang
and Kim, 2002; Kato et al., 2015), joint flexion/extension angle
(Piqueras et al., 2013), and root mean square error between
poses (Anderson et al., 2013). Our proposed Performance Score
has two advantages over the aforementioned metrics. First, it
incorporates both spatial and sequential information. Second,
calibration is not necessary when generalizing to other motions.

One interesting note regarding the Performance Score is that
the area term in Equation (9) is a valid metric, i.e., distance
function. Given any pair of connected latent trajectories, the
four conditions of non-negativity, identity of indiscernibles,
symmetry, and triangle inequality are all satisfied.

Our approach provides Knowledge of Performance through
estimating the intermediate poses between two motor behaviors,
allowing the user to visualize a corrective pose sequence. Due to
the complexity of humanmotion, presenting the optimal amount
and type of information is challenging. To reduce cognitive
load, popular approaches use immersive technologies or only
limb-specific movements. For example, some existing systems
ask the user to move a target bone vertically and horizontally
(Velloso et al., 2013) or move the shoulder laterally to a target
number of degrees (Tang et al., 2015). Virtual reality applications,
in particular, tend to be limited to upper-body movement for
safety reasons. Our approach balances the amount of information
captured and presented, by focusing only on the corrective poses
of a whole-body model. Thus, removing the need to arbitrarily
isolate body parts.

An important note regarding the corrective pose sequence is
that it involves the visualization of the latent space, limiting the
dimensionality to a maximum of three. Nonetheless, it would
be of interest to discuss how different choices of dimensionality
may affect our application. In particular, we highlight a three-
dimensional example by Wang et al. (2008) and a nine-
dimensional example by Damianou et al. (2016). In the first
example, the original GPDM model was used to describe golf
swing motion, and the latent space was set to three dimensions.
The latent trajectories resulted in U-like shapes. In the second
example, an extension of GPDM (dynamical variational GPLVM)
was used to describe walking and running motions. In their
model, the latent space was initially set to nine dimensions, but
the model selects three “true” dimensions. Within the visualized
three-dimensional space, each motion resulted in circular shapes
with some distance between them.

We can see that relatively simple motions, such as golf
swing, walking, and running, form “flat” trajectories. Despite
being assigned three dimensions, the flat shapes of each motion
suggest that these simple motions can be embedded in a two-
dimensional space with some small loss. Although we can instead
decide on a three-dimensional space for visualization, we argue
that “navigating” a two-dimensional space can offer a more
familiar experience. Since many commercial devices, such as

smartphones and computer screens, offer a two-dimensional user
interface, a user can more readily interact with the proposed
system without the need to learn new forms of interaction.
Thus, from the practical considerations discussed above, the
simplest and most direct approach remains to be the two-
dimensional representation.

4.3. Interpretation of Motor Knowledge
Subjects were found to interpret intervention differently after
being guided by the PT. This difference can be observed by
looking at the LEARNED condition, which is the subject’s
attempt to repeat the INDUCED movement. The PT’s general
strategy was observed to be guiding the subject lower and more
forward than natural. However, some subjects undershoot while
some overshoot the target motion. This behavior can be observed
by plotting the body center of mass (CoM) in the sagittal plane
(Figure 9). Further, the expert-INDUCED CoM trajectories were
observed to be different across subjects. These results suggest that
both treatment and subject response are personalized in practice.

We observed that the subjects with the lowest LEARNED
performance scores (i.e., subjects B, C, E, F in Table 1) were
performing a posture called “augmented arm,” where arms are
extended forward at shoulder height. We speculate that these
subjects have the same interpretation of the therapist’s intended
change in motor behavior; thus, the same posture. Since this
posture has the tendency to produce lower scores, such postures
should be identified and avoided. This finding suggests that
“low-score” postures may exist in other exercises as well, and
identifying particular bad postures may help in self-correction.
This posture may also be a reaction to counteract the slower
motion induced by the PT, as it has been demonstrated to reduce
standing up time (Kwong et al., 2014).

4.4. Alternative Models
Human motion can be modeled reasonably well in a few other
ways. One can look at variants of GPDM, GPLVM, or deep
learning techniques, which have the capacity to model a variety
of high-dimensional dynamical data. We first discuss some
extensions of GPDM and their application to different types
of human motion. We also discuss two models which use
conceptually different techniques to model dynamics.

GPDM has been demonstrated to work well with different
types of whole-body motion. Wang et al. (2008) uses the GPDM
to describe walking and golf swing movements, demonstrating
the model’s capability to model simple cyclic and acyclic motions.
Chen et al. (2009) extends this concept by introducing a switching
mechanism to account for motion sequences that involve
switching dynamics, such as in salsa dancing. To our knowledge,
a GPDM-based approach has not yet been applied to sit-to-
stand motion, but we should note that Gupta et al. (2008) have
applied it to the related stand-to-sit task. Together, these studies
demonstrate the applicability of GPDM as a model for describing
full-body motion, which can reasonably include sit-to-stand.

Hierarchical GPLVM (HGPLVM) can be considered an
alternative implementation of dynamics for GPLVM. The main
difference is that GPDM is autoregressive while HGPLVM is
not. Instead, HGPLVM takes timestamps as inputs (Lawrence
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FIGURE 9 | Body center of mass in the sagittal plane for all subjects (A–I).

and Moore, 2007). This is advantageous if uniform sampling
is difficult to achieve. But in the controlled environment
of telehealth, such a precaution is not necessary. HGPLVM
also offers the option to “decompose” the subject model into
component parts, allowing an isolated view of selected parts.
However, this increases the number of visualized subspaces and
requires a decision on the appropriate decomposition for each
target activity. While still considering whole-body information,
the single latent space representation of GPDM is a more
straightforward approach to visualization.

Deep learning models are widely considered as universal
approximators, which can work well with a large variety of data
(Hornik et al., 1989). Given enough data and resources, deep
learningmodels can exceed the performance of whatever specific-
purpose model. In fact, a single network can be demonstrated
to generalize well to multiple types of human actions. A trained
model can simultaneously perform classification and prediction
of novel poses with very little computational cost (Butepage et al.,
2017). The main downside with such a model is the amount of
resources necessary to perform training. In the context of single
subjects with limited sessions, such large amount of resources is
simply unavailable.

4.5. Motion Data Format
Motion data is an attractive modality for telehealth since it can
be naturally learned and can be measured remotely. However,
high-quality captures of specific motor tasks can sometimes be
expensive and logistically difficult to obtain. Thus, in several
GPLVM-based works on human motion data, no motion
experiments were actually performed. Instead, the popular CMU
Graphics LabMotion Capture Database (mocap.cs.cmu.edu) was
often used. One practical note regarding the human models in
these studies is the format used. The format used in the CMU
database contains joint angle information instead of the marker
coordinate information we used in our study.

Although both formats are functionally similar, formats that
store joint angles typically need to define a skeleton. The main
advantage to this is that bone segments can be calibrated
to each user, and limb lengths can be fixed. On the other
hand, we can also argue that coordinate-based formats are
more accessible as sensors and algorithms themselves measure
anatomical points. Currently, in-home telehealth applications
often use the ubiquitous Kinect sensor (Microsoft Corp.)
which tracks 3D skeletal landmarks of the users. As computer
vision algorithms become more advanced, ordinary images and
videos are increasingly used to extract similar coordinate-based
anatomical key points as well (Cao et al., 2017).

4.6. Limitations
The consistent results found across all subjects highlight the
ability of our proposed feedback framework to perform as
intended. However, our approach was only demonstrated to work
well in a controlled environment. Tests on a larger variety of
users and motor tasks would be necessary to confirm its clinical
utility. We discuss some of the methodological limitations, and
how these limitations compare to related studies.

The proposed framework was tested on nine healthy subjects,
where each subject performed a total of 270 trials for standing up
motion (five conditions for six trials each). Other motion studies
employing GPDM rather focus on a larger variety of movements
with fewer samples each. For context, Wang et al. (2008) used the
original GPDM formulation to model three different whole-body
motions: two gait cycles from one subject, one gait cycle from
four subjects, and four golf swings from one subject. A GPDM
extension by Gupta et al. conducts two types of experiments.
The first experiment models jumping jack, walking, and climbing
a ladder with one subject and one instance each. The second
experiment models four different sitting instances for one subject
(Gupta et al., 2008).

Our framework was tested on sessions conducted by one
professional therapist. Realistically, different PTs may have
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different individual preferences, and it would be interesting to
investigate intervention strategies across multiple PTs. Currently,
we made the simplifying assumption that a patient’s attending
PT can best prescribe the personalized exercises. Identifying the
appropriate impairments and conditions for our system would
be challenging and is outside the scope of the current study. A
separate study with a larger cohort would be necessary for each
target motor impairment.

Learning the GPDM involves numerical optimization in
estimating the model unknowns {X,α,β}. In our study, we
needed to set both the number of learning iterations and the
number of appended CPs. We found that setting a low number
for both quantities saves on computational costs. In studies using
GPLVM-based methods, the best working settings are generally
reported without explanation. Some examples include iteration
T = 15 for GPLVM (Lawrence, 2005), outer loop iteration
I = 100 for GPDM (Wang et al., 2008), and no mention
for Hierarchical-GPLVM (Lawrence and Moore, 2007). Notably,
these methods have been demonstrated to generalize well despite
few iterations and training samples.

5. CONCLUSION

This study aims to address some of the problems in existing
telehealth systems. We first modified the GPDM algorithm,
which allowed us to extract simple yet meaningful feedback
mechanisms for self-correction in physiotherapy exercises.
These mechanisms allow for whole-body movements and
are personalized through expert-induced demonstrations. Our
framework is appropriate for telehealth due to its ability to train a
sensible model using only a small number of good examples. We
confirmed its utility using sit-to-stand motion data, an important
physiotherapy exercise.

We imagine that this research can take on two interesting
directions. First, incorporating modalities other than motion
can be used to extend the current framework. A multi-modal
model can be an interesting approach to incorporate more
assessment tools used by the PT. Second, our approach was

designed with physiotherapy in mind, but it can be reasonably
applied to arbitrary motor tasks where expert demonstrations
are available, e.g., sports science. Instead of learning expert-
induced movements, learning the expert motor skill itself is also
an interesting possibility.
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