
TECHNOLOGY AND CODE
published: 04 February 2020

doi: 10.3389/fcomp.2020.00002

Frontiers in Computer Science | www.frontiersin.org 1 February 2020 | Volume 2 | Article 2

Edited by:

Frank Kargl,

University of Ulm, Germany

Reviewed by:

Yannick Chevalier,

Université Toulouse III Paul

Sabatier, France

Silvio Ranise,

Fondazione Bruno Kessler, Italy

*Correspondence:

Carlisle Adams

cadams@uottawa.ca

Specialty section:

This article was submitted to

Computer and Network Security,

a section of the journal

Frontiers in Computer Science

Received: 14 August 2019

Accepted: 14 January 2020

Published: 04 February 2020

Citation:

Adams C, Dai Y, DesOrmeaux C,

McAvoy S, Nguyen N and Trindade F

(2020) Strengthening Enforcement in

a Comprehensive Architecture for

Privacy Enforcement at Internet

Websites. Front. Comput. Sci. 2:2.

doi: 10.3389/fcomp.2020.00002

Strengthening Enforcement in a
Comprehensive Architecture for
Privacy Enforcement at Internet
Websites
Carlisle Adams*, Yu Dai, Catherine DesOrmeaux, Sean McAvoy, NamChi Nguyen and

Francisco Trindade

School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, Canada

This paper extends previous work to strengthen the enforcement portion of a

comprehensive architecture for enforcing privacy when a user needs to submit personal

data to an Internet website in order to obtain goods or services. Our extension proposes

to use a website’s P3P privacy policy (derived in an automated way from its internal

XACML access control policy) as a public key to encrypt the user’s data using IBE

(identity-based encryption) technology. The website will only acquire the corresponding

private key to decrypt this data if a trusted 3rd-party auditor (acting as an IBE private

key generator) has verified that the P3P policy is an accurate statement of the site’s

internal privacy practices. We discuss all the components of this model and describe

our proof-of-concept implementation which demonstrates that such an architecture is

feasible in real-world scenarios.

Keywords: user agent, privacy enforcement, XACML, XSLT, P3P, IBE

INTRODUCTION

The privacy of personal information has received increased attention, particularly in electronic
environments, over the past 20 years, and especially in the past decade. Internet users are more
aware today than ever before of the risks to their privacy if their personal data is leaked or
otherwise transferred to unintended parties. Simultaneously, holders of personal data (companies,
governments, hospitals, etc.) are under increasing pressure to safeguard this data and to be
transparent about the protection practices that they employ. On the other hand, these holders
typically see significant benefits to storing, using in various ways, and sharing as much personal
information about their customers/clients as they can. There can therefore sometimes be a tension
between what these holders know they should do, and what they would like to do, with personal
information. This gives rise to the concept of “privacy enforcement”: technology that can be used to
ensure that a holder of data only does with the data what they have publicly stated (i.e., promised)
that they will do.

In 2002, the World Wide Web Consortium approved a W3C Recommendation entitled The
Platform for Privacy Preferences 1.0 (P3P1.0) Specification (Cranor, 2002a; P3P, 2002) The goal of
P3P (see P3P, 2002, p. 1) was to enable websites to express their privacy practices in a standard
format that can be retrieved automatically and interpreted easily by software user agents. These
user agents would then be able to inform the human user about site practices and automate

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2020.00002
http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2020.00002&domain=pdf&date_stamp=2020-02-04
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:cadams@uottawa.ca
https://doi.org/10.3389/fcomp.2020.00002
https://www.frontiersin.org/articles/10.3389/fcomp.2020.00002/full
http://loop.frontiersin.org/people/746369/overview
http://loop.frontiersin.org/people/871836/overview

Adams et al. Strengthening Enforcement in APEX

decision-making based on these practices when appropriate (so
that users would not need to read the privacy policies at every site
they visit). Despite interest in academic circles and elsewhere in
P3P, this Recommendation was made Obsolete by W3C in 2018,
primarily for two reasons (P3P, 2002; Status of This Document).
First, there was insufficient uptake of this specification to justify
its continued Recommendation status (e.g., fewer than 6% of
the 10,000 most frequently visited websites supported P3P in
2018). TheW3C did concede, however, that “new data protection
regulations taking effect in 2018 may bring new interest in
machine-processable mechanisms similar to P3P.” In particular,
the (General Data Protection Regulation, 2018) issued by the EU
that became enforceable in 2018 places clear requirements on
holders of personal data and has the power to impose severe fines
on violators of this regulation. GDPR applies to not just EU-based
websites, but also any website worldwide that may collect and
hold personal data of EU citizens. Thus, it is indeed the case that
technologies such as P3P that facilitate the required transparency
of privacy practices at a website may see a resurgence of interest
and uptake in the wake of GDPR and similar regulations.

The second reason given for making P3P obsolete in 2018
was that “no enforcement action followed when a site’s policy
expressed in P3P failed to reflect the site’s actual privacy practices”
(P3P, 2002). The work described in this paper makes an initial
step toward addressing this deficiency, not by stipulating after-
the-fact fines or punishments, but rather by proposing a technical
mechanism that ensures near-real-time compliance with the
site’s stated privacy policy. We describe an extension for, and a
proof-of-concept implementation of, an architecture for privacy
enforcement proposed in Adams and Barbieri (2006). Our
extension specifically targets a missing enforcement scenario in
the original architecture.

RELATED WORK

Much of the previous work in the area of privacy enforcement
focuses on legislative efforts to protect privacy [see, for example
(Global Privacy Enforcement Network, 2013; Federal Trade
Commission, Privacy and Security Enforcement, 2019), and the
OECD Report on the Cross-Border Enforcement of Privacy
Laws (Organization for Economic Co-operation Development
(OECD), 2006)].

With respect to architectural approaches to
technical/automated privacy enforcement, related literature
includes Henze et al. (2014) and Adams and Barbieri (2006).
However, the work of Henze et al. proposes an architecture
for enforcing user privacy in a network of IoT devices (e.g., a
body-area-network of health monitoring devices) connected to
cloud-based services. In this paper, our focus is on protecting
user privacy during interactions with web-based services (e.g.,
online shopping transactions). Other related research focuses
less on a complete architecture and more on specific components
that could conceivably be used in such an architecture; recent
examples include Kučera et al. (2017), Canovas Izquierdo and
Salas (2018), and Tripp and Rubin (2014), while previous
work includes EPAL (APPEL, 2000; Ashley et al., 2002, 2003),

Hippocratic databases (Agrawal et al., 2002), and sticky policies
(Beres et al., 2003). These individual component solutions are
important, but do not address the need for an integrated overall
architecture that enforces privacy in browser-server interactions.

The work described in this paper builds on the architecture
proposed in Adams and Barbieri (2006) because that model
is most closely related to the environment in which we are
interested (i.e., privacy enforcement at Internet websites)
and requires only a single extension feature to address a
missing component in its threat model. Our work proposes
this additional feature and describes a proof-of-concept
implementation of the full architecture.

METHOD: PROPOSED EXTENDED
ARCHITECTURE

Consider the scenario in which a user visits a website and, in
order to obtain the desired goods or services, the user needs
to submit personal information as requested by the website.
How can the user feel confident that the website will “do the
right things” with the user’s data? (“Doing the right things”
may include not sharing it with 3rd parties, using it for only
the required purpose, storing it for no longer than a specified
amount of time, and so on.) A simple mechanism to facilitate
this trust is the advertised privacy policy of the website, which
states what data will be collected and how it will be used and
shared. Such policies, typically written in a natural language
such as English or French, are commonplace (and, in many
jurisdictions, are mandated by law). However, the mere existence
of a privacy policy on a website gives no guarantee about
the actual behavior of the organization associated with that
website. The organization may engage in any kind of behavior
with this data “behind closed doors,” and the user might
never find out about it. Furthermore, it is well-known that
many users do not read privacy policies (certainly not in any
detail) because these policies are long, complex, and written in
difficult legal terminology that is all but incomprehensible to the
average person.

A proposed solution for the unreadable (and therefore
unread) privacy policies was P3P. With this technology, a
software user agent would read the privacy policy for the user,
compare that policy with the user’s privacy preferences (as
captured in a file stored on the user’s machine), and alert the
user only if a mismatch was detected. In this way, the user
did not need to read any privacy policies, but the privacy
policy of every single visited website (in fact, every web page
of every website) would be carefully read by the user agent. In
order to make this work, standardized syntax and semantics for
privacy policies was needed, which is precisely what the P3P
Recommendation specified.

A proposed solution for the organization engaging in behavior
contrary to its posted privacy policy was to have external
3rd-party auditors who would periodically examine the actions
of the company and compare those actions with the privacy
policy. The auditor (e.g., TRUSTe Privacy Seal Program, 2019)
would issue a so-called “privacy seal” if the organization lived

Frontiers in Computer Science | www.frontiersin.org 2 February 2020 | Volume 2 | Article 2

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Adams et al. Strengthening Enforcement in APEX

up to its privacy promises; the seal would be displayed on the
organization’s website and users could have some confidence that
the organization was doing what it claimed.

The above solutions are important steps, but there is
a significant limitation. For an auditor to confirm that an
organization is complying with their privacy policy, the auditor
would need to examine every single dataflow and data storage
point throughout the organization, which for a large enterprise
can be prohibitively complex and time consuming. Thus, such
audits are often incomplete and, even when they are complete,
are done infrequently.

The APEX architecture (Adams and Barbieri, 2006) addressed
this limitation by proposing an explicit tie between an
organization’s P3P policy and its internal access control
infrastructure. In particular, recognizing that access to any
data (including personal data) is governed by access control
policies, and that access control policies can be written in XML,
it proposed eXtensible Stylesheet Language Transformation
(XSLT) technology (XSLT, 2017) to derive a P3P policy from an
eXtensible Access Control Markup Language (XACML) policy
(XSLT, 2017) in a fully automated way. Given that XACML
defines all data access and use across the organization, it follows
that a P3P policy automatically derived from an XACML policy
must necessarily reflect the organization’s actual behavior with
the personal data that it stores. Furthermore, the auditor’s task
is now reduced to examining the relevant XACML policy or
policies, the XSLT engine (to confirm that the P3P policy was
actually derived from these access control policies), and the
relatively small number of Policy Decision Points (PDPs) and
Policy Enforcement Points (PEPs) in the infrastructure that fulfill
the intentions of the XACML policies. This set of tasks is much
more tractable than examining all possible information flows and
storage locations in a very large organization. Thus, the auditors
are confirming that the XACML policy/policies are actually
being used by the organization, and that the P3P policy/policies
are actually derived from the XACML policy/policies (i.e., the
auditor’s task is to ensure that the organization’s privacy promises
faithfully reflect its internal practices). Of course, it is always
possible that an organization will change their XACML policy
without changing their P3P policy as soon as the audit has been
completed. Without continuous auditing (which is impractical
for many reasons), the best way to protect against this is to have
auditors conduct random “surprise audits” (a practice similar
to unannounced health and safety inspections at restaurants).
If this is done with some frequency, and if there are substantial
consequences for failing an audit, then organizations will be less
likely to take this risk.

One concern not addressed by the original APEX architecture
is a malicious organization that pretends to have gone through an
audit when in fact it has not. A “privacy seal” is essentially an icon
that is displayed on a website; it would be trivial for a malicious
organization to copy this icon from somewhere else and paste it
on their own site. This organization’s customers would think that
an audit has been performed and therefore that the organization
complies with its stated privacy policy, but in reality the audit was
never performed and the organization might be doing anything
with the data it acquires. Of course the user can contact the

auditor to find out whether (and when) an audit was completed
on organization “X,” but few (if any) users will do this for every
website they visit.

The extension we propose in this paper uses Identity-Based
Encryption (IBE; Boneh and Franklin, 2003) to mitigate this
concern. IBE is a cryptographic technology that takes an arbitrary
string (Shamir’s original proposal Shamir, 1984 was to use an e-
mail address) and maps it to a public key that can be used for
encryption purposes. It has been recognized that the arbitrary
string can be a policy, giving rise to the concept of Policy-Based
Encryption (PBE). Therefore, we suggest that the organization’s
P3P policy should be used as the string that maps to a public
key. In such a scenario, the 3rd-party auditor (or even a threshold
number of several auditors using a cryptographic secret-sharing
scheme) can play the role of Private Key Generator (PKG), giving
the organization the corresponding private key only if the audit
confirms that the organization fully complies with its P3P policy.

The components of the architecture, then, work as follows.
The organization uses XSLT to derive a P3P policy from its
relevant XACML policies, and it posts the P3P policy on its
website. A user visits the site and the user agent automatically
downloads the P3P policy and compares it with the user’s privacy
preferences. If there is no mismatch, the user’s browser displays
the requested web page. If the user needs to submit personal
information to the website (e.g., mailing address, credit card
number, etc.), for example by filling in a web form, the user agent
will encrypt this data using a public encryption key derived from
the P3P policy (as defined by IBE/PBE technology) and send it to
the website. If this organization has received a successful audit, it
will have the corresponding private key to decrypt and obtain the
user’s data; otherwise, it will be unable to do anything with the
ciphertext it receives from the user agent.

This extended APEX architecture provides privacy
enforcement by ensuring that websites behave internally in
compliance with their advertised privacy policy. This can help to
give users confidence to share their personal information with
websites when it is required in order to obtain the goods and
services they desire. Figure 1 shows a conceptual view of this
extended architecture.

RESULTS

This section describes the results of our proof-of-concept
implementation of the extended APEX architecture presented in
section method: proposed extended architecture.

XACML
XACML defines standardized syntax and semantics for writing
access control policies, along with the necessary decision request
& response messages that allow a PDP to determine whether
an access request should be granted or denied. Simple examples
of XACML policies are presented in section results of XACML
(2017). We also created our own very simple XACML policy
which was used to produce a valid P3P policy; please see
Appendix A for details.

Note that a recent paper by Jiang and Bouabdallah (2017)
proposed JACPoL as an alternative to XACML that is based

Frontiers in Computer Science | www.frontiersin.org 3 February 2020 | Volume 2 | Article 2

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Adams et al. Strengthening Enforcement in APEX

FIGURE 1 | Extended APEX architecture.

on JavaScript Object Notation (JSON) instead of XML and is
therefore simpler and more efficient, while retaining descriptive
power and human-readability. Although we explored JACPoL to
some extent, for our proof-of-concept implementation we used
XACML due to the availability of XSLT and the fact that both
XACML and P3P are written in XML.

P3P
A P3P policy states the privacy practices of the website in a
standardized format so that it can be read by a software user
agent. It includes information about what data is collected, how
long it is stored, who it may be shared with, and who a user should
contact in the case of any disputes. A simple example of a P3P
policy is presented as Example 3.2 in P3P (2002).

For our implementation, we created several simple P3P
policies representing different privacy practices. This allowed us
to easily test different scenarios (e.g., the P3P policy perfectly
matched the user’s preferences, or it did not match for any of
several defined reasons). We also derived a very simple P3P
policy in an automated way from our XACML policy; please see
Appendix B for details.

XSLT
XSLT is a mechanism that can be used to transform an XML
document into another XML document in a fully automated way.
An XSLT Stylesheet is used to specify the transformation rules
to be applied to the source document in order to transform it
into the resulting document (note that the stylesheet itself is also
written as an XML document). An XSLT Processor then inputs
the source document and the stylesheet and outputs the resulting
document. Finally, an XSLT Formatter can be used to pretty-print
the resulting document for display purposes, if desired.

Several XSLT Processors are available. We reviewed a number
of them for use in our implementation; these are described in the
following subsections.

Browser-Based Translation
The most basic method we determined was to create an HTML
document that calls the XACML document which has the XSLT

document referenced. This method, while simple, has a key
flaw that prevented us from using it: to run an HTML file we
need a browser to act as the processor. The problem is that
the common browsers (Google, IE, Firefox, etc.) only support
XSLT 1.0, whereas XSLT is currently on version 3.0. As such
this method of using a browser to act as the processor was
insufficient due to the lack of many basic features that are a
part of XSLT 3.0. For example, the ability to perform a “for-
each” search was added in XSLT 2.0 and is thus missing in XSLT
1.0. Consequently, we discarded this method as useful for any
modern XSL transformations.

Visual Studio 2019
A component of Microsoft Visual Studio (2019) is the XML
editor. Of interest in our case is that a module of the XML
editor is the XSLT tool, which allows the running of XSLT
documents on XML documents. It also has inbuilt debugging
features such as breakpoints and step-by-step processes. This
combination of features within the XML editor was very desirable
as it would allow work to be done in a single place. However,
Visual Studio presents a single problem that made it unusable for
our situation: cost.

The basic XML editor is a part of all versions of Visual Studio,
including the free version. However, the extra functionality,
including everything related to running XSLT, requires that a
purchased version of Visual Studio be used. As such we did not
use Visual Studio for its XSLT processing features. For other
research groups trying to determine which processor to use, if an
all-in-one package of editor and executor is desired, Visual Studio
is probably the best fit.

FreeFormatter.com
FreeFormatter (2018) is an online website dedicated to providing
free formatters, validators, and other tools online. Of interest
to our case is the XSL Transformer page which takes an XML
and XSL file as input, and outputs the resultant XML file.
The translations performed by FreeFormatter.com are seemingly
entirely correct; however, it is not a full system and merely prints
the resultant XML document on the webpage. As such, it is

Frontiers in Computer Science | www.frontiersin.org 4 February 2020 | Volume 2 | Article 2

https://www.FreeFormatter.com
https://www.FreeFormatter.com
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Adams et al. Strengthening Enforcement in APEX

not a system that can be easily used to retrieve the resultant
P3P document.

However, its ease of use made it useful as a validator in
our early work to confirm that we were performing the XSL
translations correctly, or to help correct any other problem. In
practice, this is probably where it is best suited (i.e., as a secondary
checker of an XSL translation program, or to check smaller cases
to make sure you are creating correct XSLT documents).

Oxygen XML Editor
Oxygen XML Editor (2020) is a standalone XML editor which has
XSLT support. This means that, like Visual Studio, all activities
related to the construction of the XSLT document can be done
within the editor. Although it is a fully capable package to act as
a processor, it does not offer any significant extra features over
the Visual Studio XML editor. Furthermore, it also requires a
purchase to use, and so we did not use it, nor do we see any reason
to use it over the larger package of Visual Studio.

XSLTPROC
xsltproc (2019), which stands for “XSLT Processor,” is a command
line tool to run libraries which act as an XSLT processor. It
possesses all the features that the (XML editor, XSLT processor)
combinations have, along with a few extra functions. These extra
features include timing functions and other debugging features
to allow precise optimization. However, these extra features are
beyond what was required for our project and were irrelevant to
our selection process.

xsltproc is capable of being used on all operating systems:
there are libraries for each operating system, and the libraries
are available for free. We decided to use xsltproc as our XSLT
processor of choice for this project.

Since xsltproc is just an XSLT processor, and not also an
XML editor like Visual Studio and Oxygen XML Editor, we were
required to use a basic text editor to write out XACML and XSLT
documents. Unlike XSLT processors, text editors are not complex
and any editor that can save files as “.xsl” and “.xml” can be used.
In our case, Notepad++ was used.

Translating to P3P
When creating the XSLT document, we found that some P3P
elements had an equivalent (or, at least, an analogous) XACML
element from which the relevant data could be retrieved. Other
P3P elements had no XACML equivalent (e.g., <ENTITY/>
data, such as company name and physical address). For such
elements we had to hard-code in the XSLT Stylesheet the data
to be populated in the resultant P3P document. Although this
hard-coding would need to be done for every given company, it
only needs to happen once, and then will likely remain consistent
for many years (even if the XACML policy of the company
is modified), and so the amount of effort is minimized (in
the sense of being amortized over time). Note that this hard-
coding process is necessarily a human-centric process; it is not
an automated activity. That is, the creation of these portions of
the XSLT document requires human input. However, once the
XSLT document is complete, it can be applied to any XACML
policy in the company to produce a valid P3P policy in an

automated fashion. The XSLT document can be used repeatedly,
as XACMLpolicies change and grow over time, to produce a valid
P3P policy that corresponds identically to the XACML policy
currently in place.

A decision regarding the data for populating the resultant
document (i.e., the actual value for hard-coding or, alternatively,
where it can be found in a source XACML document) was needed
for every required P3P element: <POLICY/>, <ENTITY/>,
<ACCESS/>, <DISPUTES-GROUP/>, <STATEMENT/>,
<PURPOSE/>, <RECIPIENT/>, <RETENTION/>,
<CONSEQUENCE/>, and <DATA-GROUP/>. The full
collection of these decisions comprised the final XSLT Stylesheet
document. In Appendix C, we show a relatively extensive
example of an XSLT document that can create a valid P3P
policy from a valid XACML policy (this example XSLT
document was created by students D. Li and H. Yan in separate
work). Due to space constraints, only a portion of the XSLT
document is shown in this paper. The full XSLT document is
available at http://www.site.uottawa.ca/\protect\T1\textdollar
%7Bsim%20%7D\protect\T1\textdollarcadams/papers/
XSLTDoc(ExtendedAPEX-AppendixC).pdf .

Note that the concept of privacy in a general sense can be fairly
broad, including notions such as anonymity and pseudonymity,
unlinkability of data or actions, unwanted intrusions into a
“personal space,” and so on. Many of these notions are unrelated
(or very distantly related) to traditional access control, and would
consequently be difficult or impossible to derive in an automated
way from a typical access control policy (such as an XACML
policy). In the context of our architecture, however, such privacy
notions are not included in a standards-compliant P3P policy
and so this potential “semantic gap” between traditional access
control and broader notions of privacy does not arise. Thus,
automated translation from an XACML policy to a P3P policy
is entirely possible (once a few elements have been hard-coded
into the XSLT document, as discussed above).

User Agent
Privacy Bird was an extension for Internet Explorer (versions
5.01, 5.5, 6.0) that was developed and released in the early
2000’s by AT&T Corp. (Cranor, 2002b; Privacy Bird, 2002).
This extension examined the P3P policy of a visited website
and compared it with the user’s privacy preferences. If there
was no conflict between the policy and the preferences, an icon
in the upper-right corner of the browser window would be a
bird singing happily, whereas any conflict would instead show
an icon of an upset bird cawing like an angry crow. Privacy
Bird was not maintained after IE 6.0 and so it does not run on
current browsers. For our proof-of-concept implementation, we
needed to create our own browser extension that replicated and
augmented the functionality of Privacy Bird (our implementation
can be found at https://github.com/FranciscoAT/priv_bird and
is publicly available for review and further development). We
decided to build an extension for Chrome, rather than IE, because
according to w3schools.com, the most used web browser is
Chrome: in 2019, there are over 79% Chrome users while only
4% of users use IE/Edge (w3schools.com, 2019b).

Frontiers in Computer Science | www.frontiersin.org 5 February 2020 | Volume 2 | Article 2

http://www.site.uottawa.ca/protect T1	extdollar %7Bsim%20%7Dprotect T1	extdollar cadams/papers/XSLTDoc(ExtendedAPEX-AppendixC).pdf
http://www.site.uottawa.ca/protect T1	extdollar %7Bsim%20%7Dprotect T1	extdollar cadams/papers/XSLTDoc(ExtendedAPEX-AppendixC).pdf
http://www.site.uottawa.ca/protect T1	extdollar %7Bsim%20%7Dprotect T1	extdollar cadams/papers/XSLTDoc(ExtendedAPEX-AppendixC).pdf
https://github.com/FranciscoAT/priv_bird
https://www.w3schools.com
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Adams et al. Strengthening Enforcement in APEX

We created a sample website which can be populated with
one of several possible P3P policies that we designed for our
experiments. When the user opens Google Chrome and visits
our website, the badge icon will change color according to the
following conditions:

• Red: the P3P policy conflicts with the user’s preferences in at
least one area;

• Yellow: possible conflicts have been found between the policy
and the preferences; the user is encouraged to consult the
human-readable policy for further details;

• Green: the P3P policy is valid and is aligned with the
user’s preferences.

In the cases where the icon is Red or Yellow, the user can click
on the icon to display a pop-up listing the conflicts (or possible
conflicts) found. At this point, the user can decide to remain on
the site and continue with filling out the form, or leave the site
immediately (in order to protect his/her privacy).

Our sample website was a simple page requesting the user’s
name, credit card number, address, e-mail, and phone number.
The user’s privacy preferences were created and edited using a
tool on the user’s machine with the interface shown in Figure 2.

Various P3P policies were created to comply or conflict with
the current saved preferences file so that the functionality of our
Chrome extension could be tested thoroughly.

One challenge in getting our extension to work efficiently
was to resolve the mismatch between the stored data files (i.e.,
the user preferences and the P3P policy) and the extension
background script file (which was written in JavaScript). For
the user preferences, we had the option of using HTML web
storage (which stores data as strings for either a single session
or indefinitely), or using Chrome.storage API [which stores data
as objects and is “optimized to meet the specific storage needs
of (Chrome) extensions” (Chrome storage, 2019)]. We chose
Chrome.storage API for our implementation primarily because
of its object storage capability.

For the P3P policy, the extension downloads it from the
website in XML format, but this is difficult to parse (i.e., it

FIGURE 2 | User privacy preference editing tool.

is difficult to retrieve necessary elements and attributes) using
JavaScript. A preferable syntax is JSON because “JSON is quicker
to read and write and uses arrays” (w3schools.com, 2019a),
whereas using an XML format would require us to “use an
XML DOM to loop through the [policy] to extract values and
store in variables” (w3schools.com, 2019a). We found a simple-
to-use xmlToJSON function on Kushagra Gour’s GitHub that
was last updated in 2019 (Gour, 2019) and used this for our
implementation. The function getLocalChromeValues returns
the user’s preferences, and the function compareStatement

determines whether the preferences match the JSON-encoded
P3P policy. Specifically, within compareStatement, the following
checks are made.

• Retention: the extension tries to find information where the
retention is equal to “legal-requirement” or “indefinitely.” This
means that the user’s data may be stored for longer than the
specific stated purpose of the company.

• Purpose: the extension tries to find whether the company
collects the user’s data for telemarketing purposes.

• Categories: the extension tries to find whether the company
collects user, financial, or computer data.

If conflicts are found, the badge icon is set to the appropriate
color and an explanation can be shown in a pop-up
window. The above checks would of course be expanded
significantly in a real product, but for our proof-of-concept
implementation this was sufficient to demonstrate the
required functionality.

IBE
As discussed in section method: proposed extended architecture
above, we wish to mitigate the risk of a website that posts a
P3P policy but does not behave internally in accordance with
that policy. Inspection by an external auditor such as a Privacy
Seal organization is an important component of this, but we
don’t want the user to simply put all his/her trust in an icon
on the web page. Policy-Based Encryption (PBE) appears to be
a useful technology to ensure that internal company behavior

FIGURE 3 | Original form data.

Frontiers in Computer Science | www.frontiersin.org 6 February 2020 | Volume 2 | Article 2

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Adams et al. Strengthening Enforcement in APEX

conforms to its advertised policy, as attested to by an audit:
if the P3P maps to a unique encryption key, then user data
can be encrypted using that key prior to being transmitted
to the website, and the site will only be able to decrypt the
data if the company has successfully passed the audit. In this
scheme, the Privacy Seal organization acts as the IBE/PBE Third
Party Authority (TPA), with its own Master key pair (public
and private); the TPA generates all system parameters for the
cryptographic algorithms and performs the function of Private
Key Generator (PKG) so that it can supply the company with
the private key that corresponds to its P3P policy if the audit is
successful. Note that it may be useful to ensure that the posted
P3P policy cannot be accidentally or maliciously changed by any
party (since this would prevent the legitimate organization from
decrypting user data that is sent to it). One simple way to ensure
this is for the organization to digitally sign the generated P3P
policy before it is posted. Using W3C’s “XML Signature Syntax
and Processing” specification (XMLSig, 2013; which includes
a specified XML canonicalization transform guaranteeing that
semantically identical XML documents produce identical bit
strings) will prevent any P3P modifications from being accepted
by any party.

On the client side, our extension first checks whether the
website has a P3P policy. If so, we use the IBE library Node
Package Manager “ibejs” version (ibejs, 2016) to encrypt the
client data before it is transmitted to the site. Because of the way
Chrome security policies work, we are unable to simply change
the form data before the outgoing message is sent. Rather, we
need tomake a new form in JavaScript, fill it in appropriately, and
send that form to the same POST location. Note, however, that
the form it creates is hidden so that the user does not see anything
unusual (i.e., to the user, it appears that the form transmission
occurs normally).

On the server side, we created a separate Remote Site that
plays the role of the external auditor. This remote site is the
only entity that knows the Master private key, and it uses this
to generate a company private key when given a P3P policy
as the public key (using IBE cryptographic operations). The
company makes a call to Remote Site to obtain the company
private key; the key is returned to simulate a successful audit,

or is not returned to simulate an unsuccessful audit. If the
company acquires the company private key, the user’s data can
be decrypted. Note that if the website has no P3P policy, our
implementation proceeds without privacy enforcement (i.e., the
user goes to the website, fills in the form data, and submits it
directly to the website).

Figures 3–5 show the original form data (filled in by the
user at the browser), the ciphertext that is transmitted to the
server, and the successfully decrypted plaintext at the server
end, respectively.

Our proof-of-concept implementation is a relatively
straightforward use of the underlying IBE toolkit, but it
is not difficult to envision more sophisticated approaches
that, for example, encrypt only the sensitive information
in the web form (leaving non-sensitive data in plaintext),
or use a hybrid approach in which the P3P policy is
only used to encrypt a randomly-generated symmetric
key and the symmetric key is used to encrypt the actual
user data.

SUMMARY AND FUTURE WORK

Given society’s growing dependence on digital technology, as
well as increasingly strengthened legal requirements around
the privacy of personal information, there is a need for

FIGURE 5 | Decrypted data at website.

FIGURE 4 | Ciphertext received by website after JSON parse (only a portion is shown in this figure).

Frontiers in Computer Science | www.frontiersin.org 7 February 2020 | Volume 2 | Article 2

https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Adams et al. Strengthening Enforcement in APEX

techniques that will safeguard sensitive user data in many
types of environments. This paper describes a comprehensive
architecture for privacy enforcement at Internet websites,
extending the earlier APEX model by adding IBE/PBE to the
XACML, XSLT, P3P, Privacy Bird, and Privacy Seal components
to mitigate the threat of malicious websites that deceive users into
believing that an external audit has been successfully conducted.
We furthermore do a full proof-of-concept implementation to
show that this extended architecture is both usable and effective.

Directions for further research in this area focus primarily
on completeness and efficiency. In particular, it would be useful
to expand our XSLT Stylesheet so that it could input any
XACML document appropriate for a typical Internet website
and output a P3P document tailored for that website; our
implementation experimented with only a few specific source
and target documents. In addition, our user preferences page
should be enhanced to support the remaining categories that the
P3P specification defines, as well as to include more options in
the Warnings section for the different types of alerts that a user
may wish to see (i.e., beyond telemarketing and data retention);
coupled with this, the compareStatement function would need
to be modified to support all the possible categories. Finally, as
mentioned in section results, various methods can be explored to
increase the performance of the data encryption step, especially
for cases in which the user is sending a large amount of data to
the website.

The work described in this paper suggests that privacy
enforcement at Internet websites is possible. With GDPR and
similar legislation now in force in many places around the world,
there is a greater need than ever before for Privacy Enhancing
Technologies (PETs) of this kind.

DATA AVAILABILITY STATEMENT

The project described in this paper has two main components: an
XACML to P3P translator using XSLT (platform-independent,
written in XML, with a project link at https://github.com/
TianyouDai/XACMLtoP3P); and a Chrome browser extension
(platform-independent (but run on Windows), written
in JavaScript, with a project link at https://github.com/
FranciscoAT/priv_bird). There are no restrictions on the use of
this project.

AUTHOR CONTRIBUTIONS

YD and SM did all the implementation of the XACML to
P3P transformation using XSLT. CD, NN, and FT did all
the implementation of the Chrome extension and the user
preferences. CA proposed the project, supervised the research
and implementation work, and wrote major portions of the
final manuscript.

FUNDING

This work described in this paper was partially supported by the
Natural Sciences and Engineering Research Council of Canada
(NSERC) through Discovery Grant #03649.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fcomp.
2020.00002/full#supplementary-material

REFERENCES

Adams, C., and Barbieri, K. (2006). “Privacy enforcement in E-services

environments,” in Privacy Protection for E-Services, ed G. Yee (Hershey,

PA: Idea Group Publishing), 172–202. doi: 10.4018/978-1-59140-914-4.

ch007

Agrawal, R., Kiernan, J., Srikant, R., and Xu, Y. (2002). “Hippocratic

Databases,” in Proceedings of the 28th VLDB Conference (Hong Kong).

doi: 10.1109/TITB.2009.2029695

APPEL (2000). “A P3P Preference Exchange Language (APPEL),” in WWW

Consortium, P3P Preference Interchange Language Working Group, W3C

Working Draft. Available online at: http://www.w3.org/TR/P3P-preferences

(accessed January 24, 2020).

Ashley, P., Hada, S., Karjoth, G., Powers, C., and Schunter, M. (2003).

Enterprise Privacy Authorization Language (EPAL 1.2). W3C Member

Submission. Available online at: http://www.w3.org/Submission/2003/SUBM-

EPAL-20031110/ (accessed January 24, 2020).

Ashley, P., Powers, C., and Schunter, M. (2002). “From privacy promises to privacy

management: a new approach for enforcing privacy throughout an enterprise,”

in Proceedings of the 2002 New Security Paradigms Workshop (Virginia Beach,

VA). doi: 10.1145/844102.844110

Beres, Y., Bramhall, P., Casassa Mont, M., Gittler, M., and Pearson, S.

(2003). Accountability and Enforceability of Enterprise Privacy Policies. HPL-

2003-119. Palo Alto, CA: Trusted Systems Laboratory (TSL), Hewlett-

Packard Laboratories.

Boneh, D., and Franklin, M. (2003). Identity based encryption from the Weil

pairing. SIAM J. Comp. 32, 586–615. doi: 10.1137/S0097539701398521

Canovas Izquierdo, J. L., and Salas, J. (2018). “A UML profile for privacy

enforcement,” in International Workshop on Security for and by Model-

Driven Engineering (SecureMDE). Available online at: https://modeling-

languages.com/a-uml-profile-for-privacy-enforcement/ (accessed August 9,

2019). doi: 10.1007/978-3-030-04771-9_46

Chrome storage (2019). Chrome.storage. Available online at: https://developer.

chrome.com/apps/storage (accessed April 17, 2019).

Cranor, L. F. (2002a). Web Privacy with P3P. (Sebastopol, CA: O’Reilly &

Associates, Inc).

Cranor, L. F. (2002b). Privacy Bird User Study.Available online at: https://www.w3.

org/2002/p3p-ws/pp/privacybird.pdf (accessed April 17, 2019).

Federal Trade Commission, Privacy and Security Enforcement (2019). See

Available online at: https://www.ftc.gov/news-events/media-resources/

protecting-consumer-privacy/privacy-security-enforcement (accessed August

9, 2019).

FreeFormatter (2018). Free Online Tools for Developers.Available online at: https://

freeformatter.com/ (accessed January 24, 2020).

General Data Protection Regulation (GDPR) (2018). See Available online at:

https://gdpr-info.eu/ (accessed August 9, 2019).

Global Privacy Enforcement Network (2013). See Available online at: https://www.

privacyenforcement.net/ (accessed August 9, 2019).

Gour, K. (2019). Function to Convert XML to JSON. Available online at: https://gist.

github.com/chinchang/8106a82c56ad007e27b1 (accessed April 18, 2019).

Henze, M., Hermerschmidt, L., Kerpen, D., Häußling, R., Rumpe, B., and

Wehrle, K. (2014). “User-driven Privacy Enforcement for Cloud-based

Services in the Internet of Things,” in The 2nd International Conference

on Future Internet of Things and Cloud (FiCloud-2014). Available online

Frontiers in Computer Science | www.frontiersin.org 8 February 2020 | Volume 2 | Article 2

https://github.com/TianyouDai/XACMLtoP3P
https://github.com/TianyouDai/XACMLtoP3P
https://github.com/FranciscoAT/priv_bird
https://github.com/FranciscoAT/priv_bird
https://www.frontiersin.org/articles/10.3389/fcomp.2020.00002/full#supplementary-material
https://doi.org/10.4018/978-1-59140-914-4.ch007
https://doi.org/10.1109/TITB.2009.2029695
http://www.w3.org/TR/P3P-preferences
http://www.w3.org/Submission/2003/SUBM-EPAL-20031110/
http://www.w3.org/Submission/2003/SUBM-EPAL-20031110/
https://doi.org/10.1145/844102.844110
https://doi.org/10.1137/S0097539701398521
https://modeling-languages.com/a-uml-profile-for-privacy-enforcement/
https://modeling-languages.com/a-uml-profile-for-privacy-enforcement/
https://doi.org/10.1007/978-3-030-04771-9_46
https://developer.chrome.com/apps/storage
https://developer.chrome.com/apps/storage
https://www.w3.org/2002/p3p-ws/pp/privacybird.pdf
https://www.w3.org/2002/p3p-ws/pp/privacybird.pdf
https://www.ftc.gov/news-events/media-resources/protecting-consumer-privacy/privacy-security-enforcement
https://www.ftc.gov/news-events/media-resources/protecting-consumer-privacy/privacy-security-enforcement
https://freeformatter.com/
https://freeformatter.com/
https://gdpr-info.eu/
https://www.privacyenforcement.net/
https://www.privacyenforcement.net/
https://gist.github.com/chinchang/8106a82c56ad007e27b1
https://gist.github.com/chinchang/8106a82c56ad007e27b1
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

Adams et al. Strengthening Enforcement in APEX

at: https://arxiv.org/ftp/arxiv/papers/1412/1412.3325.pdf (accessed August 9,

2019). doi: 10.1109/FiCloud.2014.38

ibejs (2016). ibejs—Identity Based Encryption JavaScript library. Available online at:

https://www.npmjs.com/package/ibejs (accessed April 19, 2019).

Jiang, H., and Bouabdallah, A. (2017). “JACPoL: A Simple but Expressive JSON-

Based Access Control Policy Language,” in IFIP International Conference on

Information Security Theory and Practice (Springer LNCS), 56–72. Available

online at https://link.springer.com/chapter/10.1007/978-3-319-93524-9_4

(accessed August 9, 2019). doi: 10.1007/978-3-319-93524-9_4

Kučera, M., Tsankov, P., Gehr, T., Guarnieri, M., and Vechev, M. (2017).

“Synthesis of Probabilistic Privacy Enforcement,” in ACM Conference on

Computer and Communications Security (Dallas, TX). Available online at:

https://acmccs.github.io/papers/p391-kuceraA.pdf (accessed August 9, 2019).

doi: 10.1145/3133956.3134079

Organization for Economic Co-operation and Development (OECD)

(2006). Report on the Cross-Border Enforcement of Privacy Laws (2006).

Available online at: http://www.oecd.org/sti/ieconomy/37558845.pdf

(accessed August 9, 2019).

Oxygen XML Editor (2020). SyncRO Soft SRL. Available online at: https://www.

oxygenxml.com/ (accessed January 24, 2020).

P3P (2002). “The Platform for Privacy Preferences 1.0 (P3P1.0) Specification,” in

WWW Consortium, W3C Recommendation. Available online at: https://www.

w3.org/TR/P3P/ (accessed January 24, 2020).

Privacy Bird (2002). Privacy Bird. Available online at: http://www.privacybird.org/

(accessed April 17, 2019).

Shamir, A. (1984). “Identity-based Cryptosystems and Signature Schemes,” in

Proceedings of CRYPTO ’84, LNCS 196 (Berlin: Springer-Verlag), 47–53.

doi: 10.1007/3-540-39568-7_5

Tripp, O., and Rubin, J. (2014). “A Bayesian Approach to privacy Enforcement in

Smartphones,” in 23rd Usenix Security Symposium. Available online at: https://

www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-tripp.

pdf (accessed August 9, 2019).

TRUSTe Privacy Seal Program (2019). See http://www.truste.com.

Visual Studio (2019).Microsoft. Berkeley, CA: ISI ResearchSoft.

w3schools.com (2019a). JSON vs XML. Available online at: https://www.w3schools.

com/js/js_json_xml.asp (accessed April 18, 2019).

w3schools.com (2019b). Browser Statistics. Available online at: https://www.

w3schools.com/browsers/ (accessed April 20, 2019).

XACML (2017). eXtensible Access Control Markup Language (XACML) Version

3.0 Plus Errata 01. Available online at: http://docs.oasis-open.org/xacml/3.0/

errata01/os/xacml-3.0-core-spec-errata01-os-complete.pdf (accessed August

9, 2019).

XMLSig (2013). XML Signature Syntax and Processing Version 1.1, W3C

Recommendation. Available online at: https://www.w3.org/TR/xmldsig-core/

(accessed December 5, 2019).

XSLT (2017). XSL Transformations (XSLT) Version 3.0,

W3C Recommendation. Available online at: https://www.

w3.org/TR/2017/REC-xslt-30-20170608/ (accessed August

9, 2019).

xsltproc — command line xslt processor (2019). Xmlsoft. Available

online at: http://xmlsoft.org/XSLT/xsltproc.html (accessed March

05, 2019).

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Adams, Dai, DesOrmeaux, McAvoy, Nguyen and Trindade. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Computer Science | www.frontiersin.org 9 February 2020 | Volume 2 | Article 2

https://arxiv.org/ftp/arxiv/papers/1412/1412.3325.pdf
https://doi.org/10.1109/FiCloud.2014.38
https://www.npmjs.com/package/ibejs
https://link.springer.com/chapter/10.1007/978-3-319-93524-9_4
https://doi.org/10.1007/978-3-319-93524-9_4
https://acmccs.github.io/papers/p391-kuceraA.pdf
https://doi.org/10.1145/3133956.3134079
http://www.oecd.org/sti/ieconomy/37558845.pdf
https://www.oxygenxml.com/
https://www.oxygenxml.com/
https://www.w3.org/TR/P3P/
https://www.w3.org/TR/P3P/
http://www.privacybird.org/
https://doi.org/10.1007/3-540-39568-7_5
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-tripp.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-tripp.pdf
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-tripp.pdf
http://www.truste.com
https://www.w3schools.com/js/js_json_xml.asp
https://www.w3schools.com/js/js_json_xml.asp
https://www.w3schools.com/browsers/
https://www.w3schools.com/browsers/
http://docs.oasis-open.org/xacml/3.0/errata01/os/xacml-3.0-core-spec-errata01-os-complete.pdf
http://docs.oasis-open.org/xacml/3.0/errata01/os/xacml-3.0-core-spec-errata01-os-complete.pdf
https://www.w3.org/TR/xmldsig-core/
https://www.w3.org/TR/2017/REC-xslt-30-20170608/
https://www.w3.org/TR/2017/REC-xslt-30-20170608/
http://xmlsoft.org/XSLT/xsltproc.html
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles

	Strengthening Enforcement in a Comprehensive Architecture for Privacy Enforcement at Internet Websites
	Introduction
	Related Work
	Method: Proposed Extended Architecture
	Results
	XACML
	P3P
	XSLT
	Browser-Based Translation
	Visual Studio 2019
	FreeFormatter.com
	Oxygen XML Editor
	XSLTPROC
	Translating to P3P

	User Agent
	IBE

	Summary and Future Work
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References

