Skip to main content

HYPOTHESIS AND THEORY article

Front. Comput. Neurosci.

Volume 19 - 2025 | doi: 10.3389/fncom.2025.1551960

This article is part of the Research Topic AI and Neuroscience: Integrating Knowledge, Reasoning, and Theory of Mind View all articles

Further N-Frame networking dynamics of conscious observer-self agents via a functional contextual interface: Predictive coding computational neuroscience, double-slit quantum mechanical experiment, and decisionmaking fallacy modeling as applied to the measurement problem in humans and AI

Provisionally accepted
  • Swansea University, Swansea, United Kingdom

The final, formatted version of the article will be published soon.

    Artificial intelligence (AI) has made some remarkable advances in recent years, particularly within the area of large language models (LLMs) that produce human-like conversational abilities via utilizing transformer-based architecture. These advancements have sparked growing calls to develop tests not only for intelligence but also for consciousness. However, existing benchmarks assess reasoning abilities across various domains but fail to directly address consciousness. To bridge this gap, this paper introduces the functional contextual N-Frame model, a novel framework integrating predictive coding, quantum Bayesian (QBism), and evolutionary dynamics. This comprehensive model explicates how conscious observers, whether human or artificial, should update beliefs and interact within a quantum cognitive system. It provides a dynamic account of belief evolution through the interplay of internal observer states and external stimuli. By modeling decision-making fallacies such as the conjunction fallacy and conscious intent collapse experiments within this quantum probabilistic framework, the N-Frame model establishes structural and functional equivalence between cognitive processes identified within these experiments and traditional quantum mechanics (QM). It is hypothesized that consciousness serves as an active participant in wavefunction collapse (or actualization of the physical definite states we see), bridging quantum potentiality and classical outcomes via internal observer states and contextual interactions via a self-referential loop. This framework formalizes decision-making processes within a Hilbert space, mapping cognitive states to quantum operators and contextual dependencies, and demonstrates structural and functional equivalence between cognitive and quantum systems in order to address the measurement problem. Furthermore, the model extends to testable predictions about AI consciousness by specifying informational boundaries, contextual parameters, and a conscious-time dimension derived from Anti-de Sitter/Conformal Field Theory correspondence (AdS/CFT) correspondence. This paper theorizes that human cognitive biases reflect adaptive, evolutionarily stable strategies that optimize predictive accuracy (i.e., evolved quantum heuristic strategies rather than errors relative to classical rationality) under uncertainty within a quantum framework, challenging the classical interpretation of irrationality.

    Keywords: predictive coding, functional contextualism, n-frame, Quantum machanics, Articial intelligence

    Received: 26 Dec 2024; Accepted: 12 Mar 2025.

    Copyright: © 2025 Edwards. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Darren J Edwards, Swansea University, Swansea, United Kingdom

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

    Research integrity at Frontiers

    Man ultramarathon runner in the mountains he trains at sunset

    94% of researchers rate our articles as excellent or good

    Learn more about the work of our research integrity team to safeguard the quality of each article we publish.


    Find out more