
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
BRIEF RESEARCH REPORT article
Front. Comput. Neurosci.
Volume 19 - 2025 | doi: 10.3389/fncom.2025.1548620
This article is part of the Research Topic Unraveling Information Encoding and Representation in Memory Formation and Learning View all articles
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Creativity is a fundamental aspect of human cognition, particularly during childhood. Exploring creativity through electroencephalography (EEG) provides valuable insights into the brain mechanisms underlying this vital cognitive process. This study analyzed the power spectrum and functional connectivity of interhemispheric and intrahemispheric brain activity during creative tasks in 15 Argentine children aged 9 to 12, using a 14-channel EEG system. The Torrance test of creative thinking (TTCT) was used, incorporating one figural and one verbal task. EEG metrics included relative power spectral density (rPSD) across Delta, Theta, Alpha, Beta, and Gamma bands. Spearman's Rho correlations were calculated between frequency bands and performance on creativity tasks, followed by functional connectivity assessment through coherence analysis across the [1-50] Hz spectrum. The results revealed significant increases in rPSD across all frequency bands during creative tasks compared to rest, with no significant differences between figural and verbal tasks. Correlational analysis revealed positive associations between the Beta band and the innovative and adaptive factors of the figural task. In contrast, for the verbal task, both the Beta and Gamma bands were positively related to flexibility, while the Alpha band showed a negative relationship with fluency and originality. Coherence analysis showed enhanced intrahemispheric synchronization, particularly in frontotemporal and temporo-occipital regions, alongside reduced interhemispheric frontal coherence. These findings suggest that creativity in children involves a dynamic reorganization of brain activity, characterized by oscillatory activation 1 Krumm et al.and region-specific connectivity changes. Our study contributes to a deeper understanding of the brain mechanisms supporting creativity during child development.
Keywords: creativity, divergent thinking, TTCT, Children, EEG, power spectrum, coherence, Correlation
Received: 19 Dec 2024; Accepted: 19 Feb 2025.
Copyright: © 2025 Krumm, Arán Filippetti, Catanzariti and Mateos. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Diego Martin Mateos, National Scientific and Technical Research Council (CONICET), Buenos Aires, C1425FQB, Buenos Aires, Argentina
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.