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NeuroFusionNet: cross-modal
modeling from brain activity to
visual understanding
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Research Institute, Beijing Economic and Technological Development Zone, Beijing, China

In recent years, the integration of machine vision and neuroscience has provided

a new perspective for deeply understanding visual information. This paper

proposes an innovative deep learning model, NeuroFusionNet, designed to

enhance the understanding of visual information by integrating fMRI signals

with image features. Specifically, images are processed by a visual model to

extract region-of-interest (ROI) features and contextual information, which are

then encoded through fully connected layers. The fMRI signals are passed

through 1D convolutional layers to extract features, e�ectively preserving

spatial information and improving computational e�ciency. Subsequently, the

fMRI features are embedded into a 3D voxel representation to capture the

brain’s activity patterns in both spatial and temporal dimensions. To accurately

model the brain’s response to visual stimuli, this paper introduces a Mutli-

scale fMRI Timeformer module, which processes fMRI signals at di�erent scales

to extract both fine details and global responses. To further optimize the

model’s performance, we introduce a novel loss function called the fMRI-guided

loss. Experimental results show that NeuroFusionNet e�ectively integrates

image and brain activity information, providing more precise and richer visual

representations for machine vision systems, with broad potential applications.
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1 Introduction

In recent years, computer vision technology has experienced rapid development,

achieving significant progress, particularly in the field of cross-modal understanding (Allen

et al., 2022; Anantharaman et al., 2018; Ning et al., 2024). Models such as CLIP and

Diffusion have greatly enhanced the semantic understanding capabilities of vision systems

by incorporating natural language as guidance (Sannidhan et al., 2023; Kodipalli et al.,

2023). These models are not only capable of extracting structured features from images

but also augment the semantic representation of visual scenes through textual input,

enabling richer cross-modal semantic associations (Hao et al., 2024; Bao et al., 2021;

Mann et al., 2020; Chen et al., 2019). However, such methods primarily rely on explicit

mappings between visual and linguistic data, leaving challenges in terms of model depth

and generalization, especially when modeling complex cognitive processes.

Functional magnetic resonance imaging (fMRI) captures the dynamic cognitive

activities involved in recognition processes, offering a novel perspective for computer

vision research (Chen et al., 2020a,b; Wang et al., 2025). For instance, Brain-

Streams explores how modern latent diffusion models (LDMs) generate structurally and

semantically coherent images through multi-modal guidance (text, vision, and image

layouts) (Joo et al., 2024). By extracting text guidance from semantic regions and visual
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guidance from perceptual regions, it provides precise multi-modal

information for themodel.MindLDMproposes a new cross-subject

visual reconstruction method, utilizing a masked autoencoder

(MAE) to extract latent features from fMRI and mapping them to

the CLIP text feature space (Guo et al., 2024). This is combined with

a very deep variational autoencoder (VDVAE) to capture contour

information from visual inputs, ultimately reconstructing visual

stimuli via a latent diffusion model integrated with ControlNet.

DREAM introduces a customized pathway to decode semantics,

color, and depth cues from fMRI data, simulating the forward

pathway from visual stimuli to fMRI recordings (Xia et al., 2024).

It builds two reverse components to infer the associations and

hierarchy of the human visual system. MindEye, on the other hand,

focuses on preserving fine-grained image-specific information,

improving the accuracy of image retrieval (Scotti et al., 2024).

However, these methods predominantly rely on mapping fMRI

signals to the CLIP feature space to model visual cognition, which

leads to the loss of rich spatiotemporal information and cognitive

depth, limiting their ability to comprehensively represent the

brain’s multi-dimensional functional characteristics.

A deeper understanding of brain function is expected to

drive the development of novel deep neural networks. The

cognitive processes in the human visual system are complex

and multidimensional, containing rich spatiotemporal feature

information that could provide more vivid references for artificial

intelligence models (He et al., 2016). In studying how the

human brain processes visual information, many researchers

have found that different regions of the brain perform distinct

tasks and collaboratively contribute to cognition, judgment, and

decision-making (Chen et al., 2023). With a more comprehensive

understanding of brain function, we can gain inspiration for

designing deep neural networks that better align with human visual

cognition. This will raise the bar for future machine vision systems,

enabling models to process visual information at a level closer to

human thinking.

This paper revisits an early key question in artificial intelligence:

if human brain behavior could guide machine vision models,

could it enhance the precision and generalization of visual

understanding? TheNeuroFusionNetmodel proposed in this paper

aims to enhance the depth of visual understanding by integrating

fMRI signals and visual features. First, the image is processed

through a visual model to extract region-of-interest (ROI) features

and contextual information, which are then encoded. Meanwhile,

the fMRI signals are processed through 1D convolutional

layers to extract brain activity features, preserving spatial

information, and embedding them into a 3D voxel representation

to capture spatiotemporal activity patterns. Next, a Mutli-scale

fMRI Timeformer module is designed to process fMRI signals

at different scales, extracting both detailed and global responses.

Finally, cross-modal fusion is performed to combine the visual and

fMRI features, forming a richer visual representation. To optimize

model performance, an fMRI-guided loss function is introduced to

further improve the accuracy of the model in visual tasks.

The contributions of this paper are as follows:

• The NeuroFusionNet model proposed in this paper

successfully integrates fMRI signals and visual features,

combining brain activity information with visual data to

enhance the depth of visual understanding. This innovative

approach overcomes the limitations of traditional methods

that rely heavily on large amounts of manually labeled data,

utilizing the cognitive processes of the brain to guide visual

tasks, and improving the model’s ability to generalize across

diverse scenarios.

• To effectively capture the spatiotemporal patterns of brain

activity, this paper designs a 3D voxel embedding module

that retains the spatial information of the fMRI signals in

high-dimensional feature representations and further extracts

features through 1D convolution layers. Additionally, a Mutli-

scale fMRI Timeformer module is employed to process fMRI

signals at different scales, effectively reducing computational

complexity while ensuring the extraction of multi-level, multi-

scale features, thus enhancing the model’s expressive power.

• This paper also introduces an innovative loss function to

optimize the alignment between visual features and fMRI

features, promoting cross-modal feature fusion. The model

is able to optimize both the accuracy of visual tasks and the

spatiotemporal features of brain activity, further enhancing

visual understanding and brain activity modeling.

The structure of this paper is as follows: Section 2 introduces

related work, Section 3 provides a detailed description of

NeuroFusionNet, Section 4 presents the experiments, and the paper

concludes with Section 5.

2 Related work

2.1 Vision-language foundation models

In recent years, significant progress has been made in

cross-modal learning based on vision and language, particularly

through pre-training on large-scale datasets, enabling models to

perform exceptionally well on various vision-language tasks. CLIP

(Contrastive Language-Image Pre-training) is one of the pioneering

works in this field (Cox and Savoy, 2003; Cui and Liang, 2022;

Ning et al., 2023; Ye et al., 2025). By leveraging contrastive

learning and pre-training on hundreds of millions of image-text

pairs, it has established a strong correlation between images and

text, mapping both vision and language into the same feature

space, which has greatly improved performance on multimodal

tasks. Following closely, BLIP (Bootstrapping Language-Image Pre-

training) enhanced the pre-training strategy and adopted a more

efficient self-supervised learning approach to further improve the

accuracy of vision-language understanding (Deng et al., 2009;

Haxby et al., 2001; Ning et al., 2022; Bandyopadhyay et al., 2025).

In terms of self-supervised training, MAE (Masked Autoencoders)

successfully reduced the reliance on manually labeled data by

masking parts of an image and training the model to recover

the missing parts, thereby improving the model’s representational

capacity. Additionally, many methods have employed dual encoder

architectures, such as ViLBERT and LXMERT (He et al., 2022).

These models separately encode images and text, then pretrain

them using contrastive learning or generative loss, optimizing

the fusion of visual and linguistic information. ALIGN (A Large-

scale Image and Noisy-text embedding) adopts a similar approach,
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training on image and noisy-text pairs to enhance themodel’s cross-

modal learning ability (Devlin, 2018; Haynes and Rees, 2005). These

methods have significantly advanced the development of vision-

language models and provided new solutions for more complex

visual understanding tasks.

In this paper, we use fMRI signals as supervisory signals

to constrain the learning process of neural networks. Unlike

traditional vision models that rely on large-scale labeled datasets,

fMRI signals provide dynamic information about brain activity,

revealing the spatiotemporal features involved in the visual

cognitive process.

2.2 Decoding functional MRI

The application of functional magnetic resonance imaging

(fMRI) in decoding visual information has made significant

progress, with many studies attempting to reveal how the brain

processes visual stimuli and performs cognitive tasks. Early works

proposed that by analyzing the activity patterns in the visual

cortex and their relationship with image categories, it was possible

to link brain activity with specific object categories (e.g., faces,

objects) (Duan et al., 2024; Wang et al., 2025; Screven et al.,

2025). However, these methods have limitations when dealing

with complex visual stimuli and individual differences. They

are also sensitive to noise, which affects their generalizability

across different individuals or scenarios (Dosovitskiy, 2020; Graves

et al., 2016). To address these issues, some studies employed

statistical learning methods such as Support Vector Machines

(SVM), using large training datasets to improve decoding accuracy.

However, these methods still face challenges related to their

reliance on large datasets and their insufficient real-time decoding

capabilities. Another approach used multivariate linear regression

to successfully reconstruct simple visual stimuli from fMRI signals,

but the performance was poor when handling complex images or

dynamically changing visual stimuli, and the decoding speed was

slow (Dwivedi et al., 2021; Gifford et al., 2023; Hu et al., 2025).

To further improve decoding accuracy, researchers have proposed

deep learning methods based on Convolutional Neural Networks

(CNN) and Recurrent Neural Networks (RNN) (Gregor et al.,

2015). These methods can automatically extract features from fMRI

signals and capture the temporal changes in visual stimuli. While

these methods have shown promising results, they still depend on

large labeled datasets and have high computational costs, limiting

their use in real-time decoding. In recent years, innovative methods

based on Graph Neural Networks (GNN) and Transformers have

been proposed, utilizing the connectivity between brain regions and

self-attention mechanisms to further enhance decoding accuracy

and spatiotemporal dependencies. However, the ability to handle

high-dimensional data and noise remains a key challenge that needs

further optimization (Fong et al., 2018).

These studies demonstrate the potential of fMRI signals in

decoding visual information, but most methods still face challenges

such as high model complexity, strong data dependence, and

large individual differences, which limit their broad application

in practice. Furthermore, it is worth noting that these methods

generally do not leverage the features of regions of interest (ROIs)

in the brain, which contain rich information about visual stimuli.

3 The proposed approach

3.1 The overall network

The proposed NeuroFusionNet, as shown in Figure 1, takes

fMRI signals and images as input to achieve a deep understanding

of visual information. Specifically, the image is processed through

a visual model to extract visual region features (ROI features)

and contextual features, which are further encoded through fully

connected layers for downstream visual tasks. Meanwhile, the

fMRI signals capture brain activity related to visual stimuli, and

these signals are processed through 1D convolution layers for

feature extraction. The features are then embedded into a 3D

voxel representation to capture the brain’s activity patterns across

different spatial and temporal scales. Next, the Mutli-scale fMRI

Timeformer module processes the fMRI signals at different scales,

extracting both fine-grained and global responses of the brain to

visual stimuli. The extracted fMRI features are then combined with

the visual features generated by the visual model and input into

the Transformer Block, where cross-modal feature fusion encoding

takes place, forming a richer visual representation. To optimize the

model’s performance, two loss functions are designed: a guidance

loss (Lcon) to align the fMRI features with the visual features, and

another loss (Lbfg) to further improve the accuracy of the visual

model in visual tasks.

3.2 Brain 3D voxel embedding

In the Brain 3D Voxel Embedding module, 3D voxel

embedding is used to represent the three-dimensional spatial

information in the fMRI signals. Traditional methods that directly

extract features from flattened signals often ignore the spatial

structure of the fMRI signals, making it difficult to capture the

complex relationships between brain regions. To address this

issue, the module first maps the spatial coordinates of each voxel

(xik, yik, zik) to the feature space through a linear transformation,

obtaining a high-dimensional feature representation:

vik = Linear(xik, yik, zik)

where vik is the high-dimensional feature representation of voxel i

at the k-th time step, retaining the spatial location of each voxel to

facilitate capturing its spatial structural information.

Next, the features of all voxels are concatenated to generate a

3D voxel embedding representation of the entire brain:

v(mk) = concat(v0k, v1k, . . . , vN−1k)

where v(mk) is the joint feature representation of all voxels at the

k-th time step, capturing the spatial correlations between the voxels

through concatenation. This joint representation provides multi-

dimensional information for subsequent convolution operations.
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FIGURE 1

The overall network structure of NeuroFusionNet.

Finally, the embedding is further processed through a 1D

convolution operation, combining the 3D voxel embedding

information to obtain a compressed feature representation:

rk = Conv1D(mk)+ v(mk)

where rk is the final voxel feature representation at the k-th

time step, which combines the convolution features from mk and

the 3D spatial information from v(mk). This representation fuses

convolution and voxel embedding information through addition,

retaining the spatial structure and activity patterns of the fMRI

signals.

3.3 Mutli-scale fMRI Timeformer

In the Mutli-scale fMRI Timeformer module, the primary

goal is to address the computational complexity issue that arises

when traditional Transformers process high-dimensional fMRI

signals. To reduce the computational demand, this module employs

a slicing window approach, allowing the model to learn signal

patterns within local regions while maintaining computational

efficiency. The Transformer block is shown in Figure 2.

Specifically, for each fMRI signal representation rk, we apply

a slicing window of width w to process the signal in chunks. This

slicing window starts from the beginning of the signal rk and slides

with a stride s until the entire signal sequence is covered. For each

step i, we obtain a slice qik, which can be represented as:

qik = rk[i ≤ s : i ≤ s+ w]

where 0 ≤ i ≤ n and s =
Nk
s0
, with Nk representing the total length

of the signal rk.

Each slice qik is fed into the Transformer submodule

(transBlock) to learn patterns within the slice and obtain feature

representations:

qik = transBlockk(qik)

In this way, the Mutli-scale fMRI Timeformer captures features of

the fMRI signal in local regions, thereby reducing computational

complexity. Meanwhile, all the slices qik are collected as input to

the next layer of the Transformer.

In the multi-layer Transformer, each layer uses the feature

representations obtained from the previous layer as input,

progressively enhancing the model’s expressive power. Ultimately,

in the last Transformer block, we obtain the final feature

representation of the signal. This final feature representation q̄k
integrates multi-level information from the fMRI signal, capturing

multi-scale features within the signal. This hierarchical, multi-scale

processing approach effectively alleviates the computational burden

while ensuring that the model can extract rich spatiotemporal

patterns from the signal.

3.4 Loss function

In this paper, we design a composite loss function L to

optimize the alignment between visual features and fMRI features,

achieved by introducing contrastive loss Lcon and fMRI-guided

loss Lbfg.
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FIGURE 2

(A) Multi-scale fMRI Timeformer overall network structure. (B) Timeformer block network structure.

3.4.1 Contrastive loss
The contrastive loss Lcon is primarily used to align visual

features pi and fMRI features qi, ensuring their similarity within

the same feature space. This loss function enhances the similarity of

matching feature pairs and reduces the similarity of non-matching

feature pairs through contrastive learning. Specifically, for each

sample i, the contrastive loss is defined as:

Lcon = −
1

N

N∑

i=1

log
exp(pi ⊗ qi/σ )∑N
j=1 exp(pi ⊗ qj/σ )

−
1

N

N∑

i=1

log
exp(qi ⊗ pi/σ )∑N
j=1 exp(qi ⊗ pj/σ )

where pi represents the visual feature of the i-th sample; qi
represents the fMRI feature of the i-th sample; ⊗ denotes the dot

product operation used to calculate the similarity between features;

σ is a temperature parameter that adjusts the smoothness of the

contrast; N is the total number of samples.

By maximizing the similarity of matching feature pairs (e.g., pi
and qi) while minimizing the similarity of non-matching feature

pairs, the model learns to align visual and fMRI features in the

same feature space. This contrastive learning mechanism enables

the visual model to effectively leverage information from the fMRI

features, improving the performance of visual tasks.

3.4.2 fMRI-guided loss
The fMRI-guided loss Lbfg is designed to align the local features

of the visionmodel with the ROI features extracted from fMRI data,

mimicking how the brain processes visual stimuli. This alignment

mechanism maximizes the similarity between the vision model’s

local features and the corresponding brain region features, while

minimizing confusion with features from other regions. The loss

function is defined as:

Lbfg = −
1

Nr

N∑

i=1

Nr∑

k=1

log
exp(p̄ik ⊗ q̄ik)∑Nr
g=1 exp(p̄ik ⊗ q̄ig)

where: p̄ik: The k-th local feature extracted from the i-th sample

by the vision model. This feature may represent specific parts of

the image, such as an object, background, or scene region. q̄ik:

The feature extracted from the k-th ROI of the brain for the i-th

sample, representing the brain’s response to the visual stimulus.

For example, the floc-bodies region may correspond to object

perception, while the floc-faces region may correspond to facial

recognition. Nr : The total number of ROIs in the brain, such as

floc-bodies, floc-faces, etc. ⊗: The dot product operation, used to

measure similarity between two feature vectors.

The process of the fMRI-guided loss Lbfg involves three key

steps. First, for each input image, the vision model extracts local

features p̄ik through convolution and pooling layers, which are

then projected into the same dimensional space as the brain’s ROI
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features q̄ik using a linear transformation. Simultaneously, fMRI

data is divided into multiple ROIs, and features q̄ik are extracted

from each region to represent the brain’s functional and stimulus

response characteristics. Next, the similarity between the vision

model’s local features p̄ik and the corresponding brain ROI features

q̄ik is maximized, ensuring alignment between features, such as

facial features aligning well with floc-faces. At the same time, the

similarity between p̄ik and unrelated ROI features q̄ig (g 6= k) is

minimized to prevent misalignment, such as background features

aligning with object-related brain regions. Finally, the loss function

is iteratively optimized during training, progressively guiding the

vision model to learn the localized perception characteristics of the

brain.

By incorporating the fMRI-guided loss Lbfg, the vision model

can capture the regional characteristics of brain activity in response

to visual stimuli. This approach enables the model to align not only

global features (aligned by contrastive loss) but also local features,

effectively emulating how the brain processes objects, backgrounds,

and other localized contents within images. As a result, the model

achieves improved performance and interpretability in visual tasks.

3.4.3 Overall loss
The final total loss function is:

L = λconLcon + λbfgLbfg

where, λcon and λbfg are hyperparameters used to control the

relative weights of the contrastive loss and the guided loss. Through

this combination, the model is able to simultaneously optimize

the similarity of aligned features and the spatiotemporal mapping

relationship when processing fMRI signals and visual tasks, thereby

improving visual understanding and brain activity modeling.

4 Experiments

4.1 Datasets

The dataset used in this study is the Natural Scenes Dataset

(NSD) (Allen et al., 2022), a large-scale fMRI dataset collected

using a 7T ultra-high field MRI scanner at the Center for Magnetic

Resonance Research (cMRR) at the University of Minnesota. The

dataset includes high-resolution whole-brain fMRI data (1.8 mm

isotropic resolution, 1.6-second sampling rate) from 8 healthy adult

subjects. During 30 to 40 scanning sessions, each subject observed

thousands of color natural scene images while participating in a

continuous visual task. The dataset is designed to investigate the

neural responses of the brain to natural scenes and provides high-

quality functional imaging data for in-depth analysis of the brain’s

visual processing mechanisms.

4.2 Model training

During the training process, we used data from seven

participants in the Natural Scenes Dataset (NSD), with the data of

one participant reserved for testing. To ensure consistency of the

input data, all images were preprocessed and resized to a uniform

size of 224× 224 pixels before training. For the processing of fMRI

signals, the brain was divided into six regions of interest (ROIs) to

facilitate targeted analysis. In the model architecture, we employed

1D convolutional layers (Conv1D) to process the fMRI data, with a

kernel size and stride set to 32 and 16, respectively. Subsequently,

the model incorporated a multi-scale fMRI Transformer module,

configured with a window size of w = 64, a stride of s =

32, and h = 2 Transformer layers to capture the multi-scale

features of fMRI signals. During training, the initial learning rate

was set to 0.0001, and the model was trained for a total of 100

epochs. This design and parameter configuration provide robust

support for standardized input, feature extraction, and multi-scale

signal modeling, ensuring efficient feature learning and stable

performance of the model.

4.3 Experimental environment

The experiments were conducted on a high-performance

computing platform equipped with 2 NVIDIA A100 GPUs, a

64-core Intel Xeon processor, and 128 GB of memory, ensuring

efficient data processing and deep learning model training for

large-scale tasks. All experiments were run in the Ubuntu 20.04

LTS operating system environment, using PyTorch 1.10 as the

deep learning framework, with GPU acceleration provided by

CUDA 11.3 and cuDNN 8.2. Additionally, Python 3.8 was used for

writing experimental scripts, and dependencies and environments

were managed through Anaconda virtual environments. For

downstream tasks such as object detection and image segmentation,

the MMDetection framework was utilized. MMDetection offers

a modular and flexible platform for developing state-of-the-art

object detection models, with a rich set of pre-trained models and

task-specific optimization tools.

4.4 Evaluation metrics

In this paper, we use the following metrics to evaluate the

performance of NeuroFusionNet. APbox, APbox50 , and APbox75 are

the core evaluation metrics for object detection tasks. Among

them, APbox represents the average precision across multiple IoU

(Intersection over Union) thresholds and is used to assess the

overall detection performance of the model. The formula for AP

is defined as:

AP =
1

N

N∑

i=1

Precisioni × 1Recalli

where Precisioni and Recalli represent the precision and recall

at the i-th point, respectively, and 1Recalli represents the recall

increment between adjacent points. APbox50 refers to the average

precision at an IoU threshold of 0.5, suitable for evaluating

detection performance under relaxed conditions. APbox75 , on the

other hand, represents the average precision at an IoU threshold

of 0.75, which reflects the model’s ability to meet stricter detection

requirements.

mIoU (Mean Intersection over Union) is an important metric

for evaluating the performance of instance segmentation tasks. It

represents the average IoU across all categories and reflects the

Frontiers inComputationalNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fncom.2025.1545971
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Lang et al. 10.3389/fncom.2025.1545971

overlap between the predicted segmentation results and the ground

truth regions. The definition of IoU is given by the ratio of the

overlap area to the union area between the predicted and ground

truth regions:

IoU =
Area of Overlap

Area of Union

The mean IoU across all categories is defined as:

mIoU =
1

C

C∑

c=1

IoUc

where C represents the total number of categories, and IoUc

is the IoU value for the c-th category. mIoU measures the

model’s segmentation capability across multiple categories and

is a crucial standard for evaluating segmentation performance.

Using these metrics, we comprehensively assess the performance

of NeuroFusionNet in object detection and instance segmentation

tasks.

4.5 Experimental details

In this paper, we adopt Swin-S and ConvNext-S as the

backbone networks for image processing, and use the Mask R-

CNN framework to improve performance and efficiency through

the MMDetection framework. Specifically, we employ three pre-

training strategies: Random init, CLIP, and NeuroFusionNet, to

optimize visual feature extraction and cross-modal fusion.

4.5.1 Random init
Random init refers to training the network from random

initialization. In this process, the image is directly fed into the

backbone network (such as Swin-S or ConvNext-S), and training

starts from scratch without using any pre-trained features. This

is the most basic training method, which can test the model’s

performance without prior knowledge. For Swin-S or ConvNext-S,

training starts from random initialization:

vinit = Swin-Svisual(I) or vinit = ConvNext-Svisual(I)

where I is the input image and vinit is the initial visual feature.

4.5.2 CLIP
CLIP is a multi-modal contrastive learning model that maps

images and texts to the same feature space through large-scale

image-text pair training. First, the image is input into CLIP, and

the visual encoder in CLIP extracts the feature vector of the image.

The formula for feature extraction:

vclip = CLIPvisual(I)

where I is the input image, and vclip is the visual feature vector

extracted from CLIP.

Next, the visual feature vclip extracted by CLIP is used as

initialization and transferred to Swin-S or ConvNext-S as the visual

feature extraction part of the backbone network. The formula for

transfer:

vinit = Swin-Svisual(I) or vinit = ConvNext-Svisual(I)

In this way, Swin-S or ConvNext-S gains the pre-trained

advantage provided by CLIP when processing images, allowing

the network to better understand image content, especially when

performing object detection and instance segmentation.

4.5.3 NeuroFusionNet
NeuroFusionNet is a model that performs pre-training by

integrating fMRI signals and images, similar to the idea behind

CLIP. First, the image is input into NeuroFusionNet, where its

visual encoder extracts the feature vector of the image. The feature

extraction formula is as follows:

vNeuroFusionNet = NeuroFusionNetvisual(I)

where I is the input image, and vNeuroFusionNet is the visual feature

vector extracted by NeuroFusionNet.

Next, the visual feature vNeuroFusionNet extracted by

NeuroFusionNet is used as the initialization and transferred

to the Swin-S or ConvNext-S network as part of the backbone

network for visual feature extraction. The transfer formula is as

follows:

vinit = Swin-Svisual(I) or vinit = ConvNext-Svisual(I)

In this way, Swin-S or ConvNext-S benefits from the pre-

trained advantage provided by NeuroFusionNet, which integrates

both visual information and brain activity. This allows the network

not only to extract visual features from the image but also to

incorporate the brain’s response patterns to these visual stimuli,

further improving the precision of image understanding.

4.6 Object detection

Experiments on object detection and instance segmentation

were conducted on the COCO 2017 dataset. COCO 2017 is a large-

scale dataset with numerous annotated images, commonly used to

evaluate the performance of computer vision models in complex

scenes.

The experimental results, as shown in Table 1, demonstrate that

NeuroFusionNet significantly outperforms random initialization

and CLIP pre-training methods across several key evaluation

metrics, particularly in APbox, APbox50 , and APbox75 for object

detection and instance segmentation tasks.

In the object detection task, for the Swin-S backbone,

NeuroFusionNet achieves an APbox of 43.7 (±0.3), representing

improvements of 2.3 percentage points and 1.7 percentage points

over random initialization and CLIP, respectively. For the more
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specific metrics, APbox50 and APbox75 , NeuroFusionNet achieves 65.9

(±0.6) and 47.5 (±0.4), which correspond to increases of 2.4

and 1.9 percentage points compared to random initialization,

and 1.2 and 1.4 percentage points compared to CLIP. For

the ConvNext-S backbone, NeuroFusionNet demonstrates even

greater performance, achieving an APbox of 45.2 (±0.2), which is

2.5 and 2.3 percentage points higher than random initialization and

CLIP, respectively. Furthermore, NeuroFusionNet achieves 68.3

(±0.3) in APbox50 and 50.1 (±0.3) in APbox75 , surpassing random

initialization by 2.8 and 4.1 percentage points, and CLIP by 2.1 and

3.8 percentage points, respectively.

In the instance segmentation task, NeuroFusionNet also

demonstrates outstanding performance. For the Swin-S backbone,

NeuroFusionNet achieves an APbox of 43.2 (±0.3), showing

improvements of 4.7 and 3.9 percentage points over random

initialization and CLIP, respectively. On the APbox50 and APbox75

metrics, NeuroFusionNet achieves 64.1 (±0.6) and 43.4 (±0.3),

representing increases of 3.2 and 2.0 percentage points compared to

random initialization, and 2.7 and 1.4 percentage points compared

to CLIP. For the ConvNext-S backbone, NeuroFusionNet achieves

an APbox of 44.1 (±0.3), outperforming random initialization and

CLIP by 4.2 and 3.2 percentage points, respectively. In terms of

APbox50 and APbox75 , NeuroFusionNet achieves 65.1 (±0.4) and 45.4

(±0.5), with improvements of 2.8 and 3.3 percentage points over

random initialization, and 2.0 and 2.3 percentage points over CLIP,

respectively.

4.7 Semantic segmentation

Experiments on semantic segmentation were conducted on the

ADE20K dataset. ADE20K is a standard dataset with 150 semantic

categories, consisting of 25,000 images: 20,000 for training, 2,000

for validation, and 3,000 for testing. This dataset covers a wide

range of scenes and object categories, making it an important

benchmark for evaluating semantic segmentation models.

As shown in Table 2, in the experiments on semantic

segmentation on the ADE20K dataset and brain activity prediction

on the NSD dataset, NeuroFusionNet showed significant

improvements compared to other pre-training methods (random

initialization and CLIP pre-training). On the mIoU evaluation

metric for the ADE20K dataset, NeuroFusionNet improved by

about 3.4 percentage points for the Swin-S backbone network

compared to random initialization, and by about 1.5 percentage

points compared to CLIP pre-training. For the ConvNext-S

backbone network, NeuroFusionNet improved by about 3.7

percentage points compared to random initialization, and by about

1.6 percentage points compared to CLIP pre-training.

In the brain activity prediction task on the NSD dataset,

NeuroFusionNet also performed excellently. For the Swin-S

backbone network, NeuroFusionNet improved by about 4.2

percentage points on the PCC evaluation metric compared

to random initialization, and by about 3.4 percentage points

compared to CLIP pre-training. For the ConvNext-S backbone

network, NeuroFusionNet improved by about 3.2 percentage

points compared to random initialization, and by about 1.7

percentage points compared to CLIP pre-training. These results

indicate that NeuroFusionNet has stronger feature extraction

capability in complex visual and brain neural activity prediction

tasks, effectively improving the model’s performance and

generalization ability.

4.8 Ablation studies

The ablation studies in this paper evaluate the impact of

different settings on the model’s performance, validating the

effectiveness of each module and hyperparameter. As shown in

Table 3, the brain 3D voxel embedding, brain fMRI guidance

loss, and the hyperparameter optimization of the Mutli-scale

fMRI Timeformer significantly improved the model’s performance,

achieving the best results, particularly in visual tasks and brain

activity prediction tasks.

4.8.1 Brain 3D voxel embedding
We evaluated the performance differences between using brain

3D voxel embedding and traditional position embedding across

various tasks. The results show that the model with 3D voxel

embedding significantly outperformed the position embedding

model in all tasks, particularly in object detection and instance

segmentation, where both APbox and APsegm showed substantial

improvements. Specifically, the 3D voxel embedding achieved a 3.4

percentage point increase in APbox on the COCO dataset compared

to position embedding, and a 2.4 percentage point improvement

in APsegm for instance segmentation tasks. Additionally, 3D voxel

embedding also significantly improved mIoU and PCC metrics on

the ADE20K and NSD datasets.

4.8.2 fMRI-guided loss
To evaluate the impact of fMRI-guided Loss on model

performance, we conducted a comparison experiment with and

without the guidance loss. The results show that introducing

brain fMRI guidance loss significantly improved the model’s

performance, especially in visual tasks. In the absence of fMRI

guidance loss, the model’s APbox and APsegm on the COCO and

ADE20K datasets were slightly lower compared to the model with

fMRI guidance loss. Specifically, after adding the guidance loss,

the APbox on the COCO dataset improved by approximately 2.6

percentage points, and the mIoU on the ADE20K dataset improved

by approximately 1.1 percentage points.

4.8.3 Hyper-parameters for mutli-scale fMRI
timeformer

We also investigated the impact of hyperparameter

configurations for the Mutli-scale fMRI Timeformer module

on model performance. By adjusting the window size (w) and

stride (s), we found that the model achieved the best performance

across all tasks when the window size was 64 and the stride was

32. This configuration performed excellently across all evaluation

metrics on the COCO, ADE20K, and NSD datasets, with APbox

and APsegm reaching 45.2 and 44.1, respectively, mIoU at 42.92,

and PCC at 57.43.
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TABLE 1 Performance of object detection and instance segmentation on the COCO dataset.

Backbone Pretrain APbox APbox50 APbox75

(a) Object detection

Swin-S Random init 41.4 (±0.3) 63.5 (±0.6) 45.6 (±0.5)

Swin-S CLIP (Hafner et al., 2021) 42.0 (±0.2) 64.7 (±0.5) 46.1 (±0.4)

Swin-S NeuroFusionNet 43.7 (±0.3) 65.9 (±0.6) 47.5 (±0.4)

ConvNext-S Random init 42.7 (±0.2) 65.5 (±0.7) 46.0 (±0.3)

ConvNext-S CLIP (Hafner et al., 2021) 42.9 (±0.2) 66.2 (±0.7) 46.3 (±0.5)

ConvNext-S NeuroFusionNet 45.2 (±0.2) 68.3 (±0.3) 50.1 (±0.3)

Backbone Pre-train APsegm AP
segm
50 AP

segm
75

(b) Semantic segmentation

Swin-S Random init 38.5 (±0.3) 60.9 (±0.4) 41.4 (±0.3)

Swin-S CLIP (Hafner et al., 2021) 39.3 (±0.3) 61.4 (±0.4) 42.0 (±0.5)

Swin-S NeuroFusionNet 43.2 (±0.3) 64.1 (±0.6) 43.4 (±0.3)

ConvNext-S Random init 39.9 (±0.5) 62.3 (±0.3) 42.1 (±0.4)

ConvNext-S CLIP (Hafner et al., 2021) 40.9 (±0.4) 63.1 (±0.4) 43.1 (±0.5)

ConvNext-S NeuroFusionNet 44.1 (±0.3) 65.1 (±0.4) 45.4 (±0.5)

Values represent mean performance across multiple runs, with 95% confidence intervals indicated in parentheses.

TABLE 2 Results of semantic segmentation on ADE20K and brain

activities response prediction on NSD.

Backbone Pre-train ADE20K mIoU NSD PCC

Swin-S

Random init 38.38 (±0.2) 40.40 (±0.4)

CLIP (Hafner

et al., 2021)

40.27 (±0.3) 41.26 (±0.3)

NeuroFusionNet 41.76 (±0.3) 44.64 (±0.2)

ConvNext-S

Random init 39.23 (±0.3) 54.21 (±0.3)

CLIP (Hafner

et al., 2021)

41.27 (±0.4) 55.71 (±0.2)

NeuroFusionNet 42.92 (±0.3) 57.43 (±0.4)

Values represent mean performance across multiple runs, with 95% confidence intervals

indicated in parentheses.

4.8.4 Performance on di�erent amounts of data
Finally, we also examined the impact of different amounts

of data on model performance. By increasing the number of

samples, we found that as the sample size grew, the model’s

performance gradually improved, particularly in visual tasks, where

the improvement was especially significant. When using only one

subject, the model performed poorly on the ADE20K and COCO

datasets. However, as more subjects were included, the model’s

performance showed a substantial improvement. When using

seven subjects, the model achieved optimal performance across all

datasets.

4.9 Visual analysis

As shown in Figure 3, we used Grad-CAM to perform feature

visualization for NeuroFusionNet, CLIP, and Brainformer.

Compared to CLIP and Brainformer, NeuroFusionNet

demonstrates a more comprehensive and precise focus on

TABLE 3 Performance on various settings.

COCO COCO ADE20K NSD

APbox APsegm mIoU PCC

pos embed 41.8 41.7 41.73 56.18

3D voxel embed 45.2 44.1 42.92 57.43

w/o Brain fMRI

guidance loss

42.6 40.6 41.81 56.23

w/ Brain fMRI

guidance loss

45.2 44.1 42.92 57.43

w = 128, s = 64 41.8 41.2 40.91 55.81

w = 128, s = 32 42.3 41.7 41.41 56.20

w = 64, s = 32 45.2 44.1 42.92 57.43

# subjects = 1 42.5 39.4 39.16 54.51

# subjects = 3 42.9 39.7 39.36 54.52

# subjects = 5 43.3 40.5 41.81 56.22

# subjects = 7 45.2 44.1 42.92 57.43

Bold value represents the best results.

semantically relevant regions. This indicates that NeuroFusionNet

exhibits superior ability in aligning visual features with cognitive

processes, effectively capturing important information from both

visual stimuli and fMRI data.

4.10 Limitations and future works

One of the limitations of this work lies in the applicability of the

dataset. Although the NSD dataset is representative in the field of

neuroscience and is suitable for brain activity prediction tasks, its

sample size and subject diversity are relatively limited. This may

affect the model’s performance in more complex scenarios. The
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FIGURE 3

Visual attention with respect to fMRI signals.

dataset primarily comes from a specific group, and the sample size

is insufficient to comprehensively represent different brain activity

patterns. Therefore, the generalization ability of NeuroFusionNet

across various subject groups and real-world applications still needs

further validation. Future work could incorporate more diverse and

representative datasets, particularly in clinical medicine or other

application fields, to better assess the model’s effectiveness and

robustness.

Additionally, cross-modal data fusion remains a challenge for

the model. Although NeuroFusionNet has shown promising results

in both visual tasks and brain activity prediction, when integrating

visual information and fMRI signals, the model may be affected by

noise and data inconsistencies. The differences in spatiotemporal

scales between the modalities make it difficult for the model to fully

capture the deep relationships between them in some cases. This

challenge could limit the model’s performance in more complex

tasks. Future research could explore more robust and efficient

data fusion methods, such as adaptive weighting mechanisms

or Generative Adversarial Networks (GANs), to better address

inconsistencies and noise in cross-modal data fusion, thereby

enhancing the model’s stability and predictive accuracy.

4.11 Conclusions

This paper presents the NeuroFusionNet model, which

aims to enhance the performance of visual tasks and brain

activity prediction tasks through cross-modal data fusion. By

combining image features with brain fMRI signals, the model is

capable of simultaneously capturing visual information and brain

responses, providing new insights and approaches for research

in visual cognition and neuroscience. Experimental results

demonstrate that NeuroFusionNet outperforms traditional vision

models and other pre-training methods across multiple datasets,

particularly in object detection, instance segmentation, and brain

activity prediction tasks, showing significant performance

improvements. These findings offer strong support and

important references for future multimodal learning methods and

neuroscience research.
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