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Time is essential for understanding the brain. A temporal theory for realizing

major brain functions (e.g., sensation, cognition, motivation, attention, memory,

learning, and motor action) is proposed that uses temporal codes, time-

domain neural networks, correlation-based binding processes and signal

dynamics. It adopts a signal-centric perspective in which neural assemblies

produce circulating and propagating characteristic temporally patterned signals

for each attribute (feature). Temporal precision is essential for temporal

coding and processing. The characteristic spike patterns that constitute

the signals enable general-purpose, multimodal, multidimensional vectorial

representations of objects, events, situations, and procedures. Signals are

broadcast and interact with each other in spreading activation time-delay

networks to mutually reinforce, compete, and create new composite patterns.

Sequences of events are directly encoded in the relative timings of event

onsets. New temporal patterns are created through nonlinear multiplicative

and thresholding signal interactions, such as mixing operations found in

radio communications systems and wave interference patterns. The newly

created patterns then become markers for bindings of specific combinations of

signals and attributes (e.g., perceptual symbols, semantic pointers, and tags for

cognitive nodes). Correlation operations enable both bottom-up productions

of new composite signals and top-down recovery of constituent signals.

Memory operates using the same principles: nonlocal, distributed, temporally

coded memory traces, signal interactions and amplifications, and content-

addressable access and retrieval. A short-term temporary store is based on

circulating temporal spike patterns in reverberatory, spike-timing-facilitated

circuits. A long-term store is based on synaptic modifications and neural

resonances that select specific delay-paths to produce temporally patterned

signals. Holographic principles of nonlocal representation, storage, and retrieval

can be applied to temporal patterns as well as spatial patterns. These

can automatically generate pattern recognition (wavefront reconstruction)

capabilities, ranging from objects to concepts, for distributed associative

memory applications. The evolution of proposed neural implementations of

holograph-like signal processing and associative content-addressable memory
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mechanisms is discussed. These can be based on temporal correlations,

convolutions, simple linear and nonlinear operations, wave interference

patterns, and oscillatory interactions. The proposed mechanisms preserve high

resolution temporal, phase, and amplitude information. These are essential

for establishing high phase coherency and determining phase relationships,

for binding/coupling, synchronization, and other operations. Interacting waves

can sum constructively for amplification, or destructively, for suppression, or

partially. Temporal precision, phase-locking, phase-dependent coding, phase-

coherence, synchrony are discussed within the context of wave interference

patterns and oscillatory interactions. Sequences of mixed neural oscillations

are compared with a cascade of sequential mixing stages in a single-

sideband carrier suppressed (SSBCS) radio communications system model. This

mechanism suggests a manner by which multiple neural oscillation bands

could interact to produce new emergent information-bearing oscillation bands,

as well as to abolish previously generated bands. A hypothetical example

illustrates how a succession of different oscillation carriers (gamma, beta, alpha,

theta, and delta) could communicate and propagate (broadcast) information

sequentially through a neural hierarchy of speech and language processing

stages. Based on standard signal mixing principles, each stage emergently

generates the next. The sequence of oscillatory bands generated in the

mixing cascade model is consistent with neurophysiological observations. This

sequence corresponds to stages of speech-language processing (sound/speech

detection, acoustic-phonetics, phone/clusters, syllables, words/phrases, word

sequences/sentences, and concepts/understanding). The oscillatory SSBCS

cascade model makes specific predictions for oscillatory band frequencies that

can be empirically tested. The principles postulated here may apply broadly

for local and global oscillation interactions across the cortex. Sequences of

oscillatory interactions can serve many functions, e.g., to regulate the flow

and interaction of bottom-up, gamma-mediated and top-down, beta-mediated

neural signals, to enable cross-frequency coupling. Some specific guidelines are

offered as to how the general time-domain theory might be empirically tested.

Neural signals need to be sampled and analyzed with high temporal resolution,

without destructive windowing or filtering. Our intent is to suggest what we think

is possible, and to widen both the scope of brain theory and experimental inquiry

into brain mechanisms, functions, and behaviors.

KEYWORDS

temporal coding, time-delay neural networks, oscillations, multiplexing, holography,
wave interference, radio communications, time-domain

1 Introduction

This article outlines a general-purpose time domain framework
for information processing in the brain based on temporal codes,
representations, and correlation operations. In contrast to the
bulk of existing theories of brain functions, which are based on
complex patterns of which neural channels are activated at a
given time (channel codes), here neural information processing is
conceived in terms of interactions of complex patterns of spikes
(temporal codes).

Its long-term goal is to understand how brains work as
informational systems, to reverse-engineer brains, for both
scientific and engineering ends. uapsNeurocomputational

theories of information processing are neurally grounded
functional models in that they attempt to explicate the kinds
of functional organizations and operating principles that brains
use to produce appropriate, effective behaviors. In contrast to,
and complementary with, low-level detailed purely molecular,
structural, dynamical, and high-level symbolic and behavioral
approaches, neurocomputational theories are middle-level
approaches that focus on how information processing might be
realized in biological neural systems (Cariani, 2001b; Carandini,
2012; Cariani and Baker, 2022).

The time-domain perspective presented here arises from our
work in both science and engineering on the perception and
pattern recognition of sound, music, and speech. In the auditory
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domain, stimulus time structure and neural temporal codes are
highly evident in the neurophysiology. Time-domain processing
mechanisms appear compelling from artificial and biological signal
processing perspectives. It has also been inspired by technologies of
holography and radio communications.

The major assertions of the theory are that peripheral
and multiplexed central temporal codes and neural temporal
processing architectures may subserve (1) many, possibly all,
informational distinctions, and central neural representations, (2)
many, possibly all, and major informational functionalities of
brains [see section “2 Basic brain functionalities (what is to be
explained),” Table 1, e.g., sensation, perception, cognition, emotion,
motivation, attention, executive functions, orchestration of action,
and motor programs], (3) correlation-based mechanisms of
segmentation and binding, (4) associative memory representations
and operations, (5) multidimensional cognitive dynamics via
spreading activations of temporally coded neural signals, (6)
emergence of new signals via nonlinear and multiplicative signal
interactions, and (7) temporal coding of the multidimensional
contents of memory traces. We further posit (see section
“4 Time-domain waveforms, signals, and systems: common
signal operations, holography, radio communications, and the
brain”) that time-domain representations and operations can be
effected using temporal correlations, time-domain holographic-like
processing, wave interference patterns, and/or oscillatory cascades.
These points are also outlined in Figure 1.

To our knowledge, no other such comprehensive, pan-temporal
theory of brain function has ever been proposed. Perhaps the
closest would be theories of event timing sequences mediated by
hippocampal replay and time cells (Eichenbaum, 2013; Howard
et al., 2014), where timings of time cell responses and/or which time
cells are activated can encode event sequences on coarse timescales,
but these theories do not propose that the attributes of events, i.e.,
what different attributes distinguish one event from another, are
also themselves temporally coded. There also exist mathematical
models of representations of time that rely on temporal receptive
fields of time cells (Lindeberg, 2023; Howard et al., 2024). Many
functional parallels with Grossberg’s (2021) adaptive resonance
theory can be drawn, except that in this time domain theory the
pattern resonances involve signals consisting of temporal patterns
of spikes, whereas in his theory the functional states consist of
patterns of firing rates among neural channels.

We do not by any means claim that the theory is correct in
all respects, but, given the present, relatively rudimentary state of
brain theory, we do firmly believe that this possibility needs to
be on the table for discussion, consideration, and investigation.
The theory is open to empirical test by neurophysiological and
neuropsychological experiments, some of which are outlined
in section “5 Discussion – testing the time-domain theory.”
Confirmation or dismissal of the theory will require solving the
neural coding problem in central brain circuits, i.e., identifying the
specific neural correlates of the specific informational contents of
the attributes encoded in neural representations. Higher temporal
resolutions and concerted efforts to identify temporal correlations
and embedded patterns amongst spikes will be needed. Observation
of nonlinear wave interactions and oscillatory cascades will require
high resolution multi-region recordings and methods of analysis of
neural responses that, in contrast to windowed Fourier analyses, do
not smear out fine temporal structure.

Although many of the formative ideas that constitute parts
of the temporal theory can be found in our earlier writings, this
is the first time that we have attempted to incorporate them
into a common framework. These elements began with time-
domain analyses of speech (Baker, 1975), temporal coding of pitch
(Cariani and Delgutte, 1996) and surveys of evidence for temporal
coding of sensory information (Cariani, 1995, 2001c). Neural
timing nets and time-domain correlation operations for matching
common attributes of different stimuli, such as pitch, timbre, and
rhythm were proposed (Cariani, 2001a; Cariani, 2002). Separating
instruments and voices with different F0-pitches (auditory scene
analysis and cocktail party problem) was demonstrated using
correlation-based operations implemented via recurrent timing
nets (Cariani, 2004). Work on the neural correlates of sequential
hierarchical stages of speech and language processing has informed
the cascade model presented here (Baker et al., 2011; Chan et al.,
2011). Our previous paper (Cariani, 2022 Cariani and Baker, 2022)
focused on possible types of central temporal codes, processing
architectures, and connections to wave dynamics, holography, and
oscillatory cascades, but did not attempt to relate these in any
systematic way to the gamut of major brain functions. The present
paper attempts to account for all these functions within a unified
temporal representation and processing rubric. A strength of the
study is that it offers an entirely new perspective on brain function.
A limitation is that the theory is in early stages of development such
that many parts of it have not been formalized. As best we know,
this theory is not contradicted by available evidence.

What is novel about this theory? Time-domain approaches
break with longstanding assumptions that regard brains as
connectionist neural networks. In mainstream theories, neural
functional states are described in terms of levels of activation (e.g.,
firing rates) amongst a set of elements (i.e., individual neurons,
ensembles, and populations). In contrast, the time-domain
conception regards brains as temporal correlation machines in
which information is temporally coded. It begins with the
alternative assumption that the signals of the system themselves
(mostly) consist of temporal patterns of spikes. In the standard
view, the functional informational states of brains are large
vectors that represent across-neuron profiles of firing rates. These
vectors are also called rate-place patterns, place being a neuron’s
position within the network, its network connectivity. However,
it is also possible that these functional states are instead vectors
consisting of different temporal patterns of spikes that circulate in
network delay paths.

Rather than a channel-centric theory of neuronal
representations and information processing architectures, an
alternative, time-domain, signal-centric theory is proposed. In
the signal-centric view, different sets of neural signal productions
switch and organize the action of the system to produce different
behaviors. This involves a paradigmatic change of perspective
in which most of the action is in the neural signals and their
interactions rather than in which subsets of neurons happen
to be most active.

Figure 1 illustrates the basic elements of the theory: a neural
coding framework that includes simple, complex, multiplexed,
local and global temporal codes, time-domain neural processing
architectures, grouping operations based on common temporal
patterns, and signal dynamics that support signal competition and
mutual reinforcement, spreading activation, and content-accessible
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TABLE 1 What is to be explained by a general time-domain theory of brain function.

Functionality Functions Temporal codes Operations Structures

Bodily regulation
Maintain homeostasis
Manage bodily processes

Manage circulation,
respiration, digestion,
metabolism, immunity

Repetitive actions and sequences
regulated by central pattern
generators

Set control and timing parameters
for cells, tissues and organs

Hypothalamus
Autonomic NS

Modal control
Switching of global modes of
operation

Wake/sleep/trance
Sequencing sleep stages
Stereotyped behaviors

Possible driving via temporal
patterns (e.g., oscillatory modes)

Switching, maintenance, and
sequencing of modes

Hypothalamus

Sensation
Registration of events
external to nervous system
Registration of sensory
consequences of actions

Readouts on current state of
environment and body
Proprioceptive feedback of
muscle actions

Phase-locked and
non-phase-locked temporal
patterns
Population statistics of temporal
spike patterns

Neural encodings of sensory
distinctions
Encoding of stimulus time
structure
Similarity: correlation

Sensory receptors afferent
pathways

Perception
Organization of sensations

Perceptual organization
Representations
Similarity and invariance
Grouping, binding
Object and event formation
Chunking, separations
Perceptual symbols

Temporal correlation-based
representations
Perceptual distances based on
correlation magnitudes

Object and event
formation/separation via
common temporal correlations
Context-dependent 1’s
Attribute-grouping
Temporal grouping

Afferent and efferent
sensory pathways
Unimodal cortex
Association cortex

Cognition
Pattern recognition
Concepts
Categorical reasoning
Language
Causal models

Pattern recognition
Categorical perception
Multi-D vectorial reps
Compositionality
Spreading activation
Unsupervised and supervised
causal models

New temporal patterns emitted
by trained neuronal assemblies
Perceptual symbols
New symbols: temporal spike
patterns frequencies, tags, labels

Concept mechanics: signal
dynamics of high-D temporal
pattern vectors
Symbol formation
Features→ symbols
Symbols→ features

Cerebral cortex
Distributed concept
nodes: neural assemblies
produce temporal
patterns, signify semantic
pointers

Emotion
Emotion and mood
Affective states

Readouts on current
dispositions re: modes of
prospective action (fight,
flight, mate)

Characteristic temporal patterns
associated with different affective
state (e.g., Clynes, 1977)

Biases all internal processes
according to emotional state (e.g.,
anger biases behavior)

Amygdala
Cerebral cortex
Autonomic NS

Purposive control
Purposes, goals, drives,
task-selection (conation)

• Drives, purposes
• Goal representations
◦ Simple vs. complex
◦ Short-/long-term

• Priorities, competition
• Evaluation/reward: goal

satisfaction
• Steering, stop conditions

Characteristic spike patterns
associated with current system
goals and purposive behavioral
modes that are widely broadcast

• Systemic broadcast of current
goals
• Suppression of secondary goals
• Attentional focus: organize system

for goal-appropriate actions

Orbitofrontal cortex
Amygdala
Other structures
Goal-driven control via
striatal circuits

Executive functions
Decision-making
What to do
How to do it (planning)
Procedural sequences

Goal prioritization
Perceived affordances
Action selection
Anticipation: estimation of
consequences
Orchestration/sequencing of
actions

Temporally coded task-specific
signals for selective activation of
goal-relevant circuits and signals

Retrieval of event sequences and
rewards from memory to predict
and weigh action consequences
Broadcast of chosen
action-sequences

Prefrontal cortex
Premotor cortex
Integration of high level
multimodal information
for action

Attention
Selection/facilitation of
specific channels and/or
signals

• Voluntary: suppression,
activation of goal-relevant
channels, signals
• Involuntary: focus on salient,

unexpected events

Signal enhancement via
• Amplification and attenuation of

signals via
•1 channel gains (gating)
• Top-down injections of matched

signals

• Goal-directed circuit
inhibition/disinhibition
enhancement of goal-relevant
signals, suppression of others

Basal ganglia
Cerebral cortex
Thalamus
Sensory pathways
Cerebellum

Action orchestration
Action preparation: circuit
activations, sequencing and
timings

Priming of motor programs
and circuits relevant for
achieving current goals

Motor programs as temporal
sequences of activations of
muscles
Time structure of motoric action

Task-specific disinhibition of
task-relevant circuits inhibition:
competing action subsystems
Sequencing and timing within
motor programs

Premotor cortex
Basal ganglia
Thalamus
Cerebellum (timing)

Timing relations • Regulation of timing of
internal operations
• Adaptive adjustment of

internal delays
• Time-shifting and -warping

operations

Modal and supramodal temporal
coding of event timings (onsets,
offsets, durations, interevent
delays, formation of event
timelines)

Real-time adjustment of relative
internal delays in perception and
action
Commonalities of event time
structure in perception and action

Cerebellum, basal ganglia
Time warping in sensory
and motor planning
structures

(Continued)
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TABLE 1 (Continued)

Functionality Functions Temporal codes Operations Structures

Action
Motor action

Effecting changes in body
and external environment

Temporal patterns of effector
(muscle, secretory) activations

Central pattern generators
Reflexes

Can be oscillatory or
TDNN

Memory
Short-term (STM): fast
temporary, reverberant,
echoic, visual
Long-term (LTM): slower,
permanent, distributed
LTM mechanisms: trained
neural assemblies
intra-neural resonances
(cellular, molecular)

•Memory: time-shifting
mechanisms (storage and
delayed recall)
• Past history guides present

behavior
• Content-accessible: incoming

signals activate similar traces
• Trained neural assemblies

produce (stored) temporal
traces

• Temporal memory traces (STM,
LTM): multiplexed temporal
spike patterns
• Storage via STM reverberation,

replay and LTM consolidation
• Binding: local and global trace

fragments bound via common
time patterns
Assembly of fragments

STM: reverberation in delay loops
via STDP-mediated
facilitation/inhibition
Consolidation (STM→ LTM)
Hippocampal replay
Time compression
Trace assembly and completion
(slower)
Trace assembly

Cerebral cortex,
hippocampus, striatum,
etc.
Mechanisms:
STM: STDP LTM:
(1) 1 synapses
(2) molecular and cellular
temporal resonances

Reward
Internal feedback from
consequences of action
(enables supervised learning)

Evaluation of desirability of
effects of actions
Reinforcement of
action-sequences that
produce goal-satisfaction

• Broadcast of temporal-coded
reward labels
• Non-temporal control

signals→ reinforce, suppress
signals

Learning
Adaptive adjustments
Supervised training of neural
assemblies
Signal dynamics

Midline dopamine and
basal ganglia circuits

Learning
From system history, 1
internal organization to
(i) better predict future
(ii) better satisfy goals

Adaptive process to improve
prediction, performance via
reward or event correlations

Enhancement/suppression of
temporally coded signals
correlated with rewards or
predictions

One- and multiple-shot learning:
STM→ hippocampal replay and
consolidation→ LTM (1 neural
assemblies)

Plasticity in almost all
sectors of the brain

This table is intended to be a simplified overview of basic mental functionalities and their proposed temporal codes, representations, operations, and types of brain structures thought to be
most directly involved.

activation of memory traces. The theory draws on mathematical
and technological principles of correlation operations, holography,
and radio communications technology for potential means by
which distributed, associative, content-addressable memory storage
and access might be implemented using time-domain neural signals
and mechanisms.

In a nutshell, temporally patterned spike trains arriving
from sensory surfaces interact with each other and with those
produced by existing, trained central neural assemblies to form
regenerated sets of signals that circulate in reverberating short-term
memory delay paths, including echoic and working memory. These
signals in turn interact with those associated with current goals,
affective states, and long-term memories to prepare the system
for appropriate action and to orchestrate corresponding motoric
temporal sequences.

The temporal theory requires a conceptual shift from digital to
analog modes of signal representation and processing. Historically
the dominant theories of brain function have assumed channel-
based neural architectures that rely on inputs from arrays of
dedicated tuned, feature-sensitive neural elements (i.e., “feature
detectors”). These theories paralleled the sequential-hierarchical
organization of information processing in digital electronic
computers. Patterns of activation amongst arrays of these neural
feature detectors or filters were traditionally assumed to be the
default mode of representation in the central nervous system.
Additionally, it was assumed that each neural element was sensitive
to one attribute (feature), i.e., one neuron and one attribute. Their
output signals were assumed to be one dimensional, scalar time-
series signals in the form of moving averages of firing rates or
spiking probabilities over tens to hundreds of milliseconds. Here
for neurons with very low firing rates, a single spike can be
significant. The basic assumption of coding based on moving time-
averaged rates ruled out of hand any concurrent or interleaved

multiplexing of different types of information. Ensembles of these
scalar neural signals were thought to be subsequently processed
using switchboards with highly specific interneural connectivities,
synaptic weightings, and tunings (John, 1972; Eichenbaum, 2018).

Instead, the temporal theory proposes time-domain
representations and operations based on temporal correlations
of spikes. Major central neurocomputational structures (cerebral
cortex, striatum, thalamus, hippocampus, and cerebellum) are
re-envisioned in terms of arrays of neural delays and coincidence
detectors that process temporally structured spike patterns, e.g.,
temporal correlation machines.

As used here, time-delay networks encompass two types
of neural networks: those that dynamically self-organize to
form temporary reverberating short-term representations and
expectancies (e.g., synfire chains, neural timing nets, and wave
interference networks), and those that have been organized through
many repeated rewarded and/or salient unrewarded input patterns
to form quasi-permanent, selective neural assemblies (e.g., classical
time-delay neural networks, TDNNs). In the temporal view,
dynamic and permanent changes in synaptic efficacies enable
adaptive facilitation and selection of delay paths, permitting these
two modes of self-organization and learning. Whereas both modes
are based on spike temporal correlations, the dynamic changes
are mediated by short-term spike timing dependent facilitations,
whereas more permanent changes are mediated by long-term
synaptic and molecular modifications.

The reverberatory networks that subserve short-term memory
are erasable tabula rasas that have no permanent structure, making
them capable of temporarily holding any contents, including novel
input patterns that the system has never before encountered.
In contrast, the permanent neural assemblies are tuned through
accumulated experience to selectively respond to and produce
particular temporal, spatial, or spatiotemporal patterns of spikes.
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FIGURE 1

Summary of a signal-centric time-domain theory of brain function. (Left) Temporal codes, time-domain neural nets, correlation-based binding
processes, and signal dynamics. (Right) Major conceptual components of the theory. Diagrams adapted from Cariani, (1997, 2015) and Cariani and
Baker (2022).

In neural network terms, the reverberating networks can
be regarded in terms of (unsupervised) synfire chains/cycles,
neural timing nets, and oscillator networks, whereas the more
permanent, long-term neural assemblies can be regarded in terms
of (supervised and unsupervised) trainable TDNNs, oscillator
networks, and central temporal pattern generators. All of these
alternative network types are potentially capable of analyzing and
producing temporally patterned neural spike train signals.

In this time-domain theory, reverberatory networks support
labile, temporary short-term memory, whereas permanent synaptic

modifications in neural assemblies, perhaps aided by molecular
mechanisms (Cariani, 2017), support non-labile long-term
memory. For both short- and long-term memory, the time-
domain theory postulates a “tape recorder-like” process in which
memory traces consist of temporal patterns of pulses. Memories
associated with particular objects, events, situations, and episodes
may reside in collections of related local and global temporal
memory fragments that reside in different neural populations. The
fragments are assembled and bound through an iterative, spreading
activation process based on shared temporal subpatterns. This
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mode of distributed, content-accessible storage bears many
similarities to wave interference dynamics, radio communications
and holography (see section “4 Time-domain waveforms, signals,
and systems: common signal operations, holography, radio
communications, and the brain”), albeit in their less common
correlation-based and time-domain variants.

For the most part, this present theory is framed in terms of
temporal codes and neural timing nets, but hybrid combinations
of temporal- and channel-based networks (e.g., TDNNs) are by
no means ruled out of hand. The temporal approach questions
many unexamined, default coding assumptions. Because stimulus-
and situation-specific differences in firing rates amongst neurons
that are widely observed may co-occur with differences in
spike latencies, orders-of-firings, and temporal patternings, it is
important to disambiguate these alternative coding possibilities by
examining how well each candidate code predicts some specific
function, be it a percept, emotional or cognitive state or overt
behavior. Activation of specific sets of neurons can trigger the
subsequent production of temporal patterns of spikes downstream
(as in central pattern generators), or vice-versa. In all cases,
correlations and causal linkages between patterns of firing rates
and spike correlations and behavioral functions need to be carefully
explored. Many of these neural coding questions may be eventually
resolved through fine-grained spike train analyses and targeted
interventions, such as electrical, magnetic, and optogenetic driving,
of individual neurons and local ensembles.

Formulating and proposing a new, tentative theory based
on time-domain signals and their dynamics is a daunting task.
Such a theory needs to be consistent with available experimental
neuroanatomical, neurophysiological, and neuropsychological
evidence. In the past, most neuroscience textbooks have assumed
that temporal coding is limited to sensory peripheries in
specific modalities such as audition, mechanoreception, and
electroreception, where phase-locked spikes are ubiquitous and
obvious and spike timing information can reliably predict percepts
with high precision (Cariani, 2001c; Cariani and Baker, 2025,
under review)1. However, if one looks deeper into the literature,
evidence for temporal coding can be found for virtually all
modalities, including vision, the chemical senses, and pain (Perkell
and Bullock, 1968; Cariani, 2001c). Because stimulus-related
spike timing information is less obvious as one ascends sensory
pathways, most theorists have adopted as a default assumption
that temporal codes must be converted to channel-codes by the
time spikes coursing through these pathways reach the cortex.
However, the present state of understanding of neural coding in
most central stations (e.g., cerebral cortex, striatum, hippocampus,
and cerebellum) is still quite rudimentary, with many unresolved
questions and confounds. Neural coding in these places has proven
to be an extremely difficult problem to solve, such that there are
few examples where even basic sensory attributes, such as shape,
color, texture, pitch, timbre, phonetic distinctions, smell, and taste
can now be reliably predicted with any high precision from cortical
or hippocampal spike train data. Temporal patterns of spikes may
exist interleaved with other patterns or as temporal correlations
across neurons. These are forms of order that are notoriously hard

1 Cariani, P., and Baker, J. M. (2025). Survey of temporal coding in sensory
systems. Front. Comp. Neurosci. (in review).

to detect, unless concerted directed efforts are made to search
for them using well-defined, interpretable stimuli. Even with the
massive neural datasets now available, it is still difficult to rule out
spike correlation codes out of hand.

There are many potential advantages of central time-domain
neural architectures that use temporal codes in whole or in
part, that drive interest in developing a general time-domain
theory. These include the precision, robustness, and invariance
of temporal coding of sensory distinctions; simplicity of encoding
temporal relations between events, a common coding framework
for all types of primitive features; combinations of temporal
patterns for multidimensional representations of objects, features,
situations, and internal procedures; perceptual grouping by
common temporal subpatterns; signal multiplexing in spike
trains of individual neurons and ensembles; multivalent
neurons that are sensitive to multiple stimulus types and
attributes; selective reception of specific temporal patterns;
broadcast-based communication and control; content-addressable
memory; nonlocal and distributed temporal patterns; temporal
memory traces, tape-recorder-like memory storage and readout,
compositionality; creation of new temporal patterns through
nonlinear thresholding and multiplicative operations; and
wave interference and holographic-like distributed storage in
the time domain.

A general time-domain theory proposes that temporally
coded neural spike patterns carry specific perceptual,
cognitive, emotional, motivational, mnemonic, and motoric
distinctions. Behavior is produced through competitive
and cooperative signal dynamics in which the various
signals interact to mutually reinforce, suppress, separate,
or combine. In terms of metaphors, brains appear to be
more like analog radio communication-control systems
and holograms than discrete switchboards and conventional
connectionist networks.

The paper first outlines the basic informational functionalities
that need to be accounted for in any general neurocomputational
theory of brain function [see section “2 Basic brain functionalities
(what is to be explained)]. Then neural architectures,
representations, and operations needed to carry out these
functionalities – temporal neural codes, time-domain neural
networks, multidimensional representations, binding processes,
and signal dynamics are discussed (see section “3 Proposed
time-domain operations and mechanisms”). Prospective
functional principles taken from wave dynamics, holography,
and radio communications systems are then considered (see
section “4 Time-domain waveforms, signals, and systems:
common signal operations, holography, radio communications,
and the brain”).

A great deal of evidence from psychology and neuroscience
strongly suggests to us that neural systems operate on multiplexed
signals in the time domain. However, this theory is in initial
stages of formulation, and far from complete, so this presentation
should be taken as only a rough sketch rather than a fleshed-out,
finished neurocomputational model. The final section (see section
“5 Discussion – testing the time-domain theory”) discusses how the
theory might be tested.
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2 Basic brain functionalities (what is
to be explained)

A general theory of how brains work seeks to explain how all the
various basic, essential modes of internal information processing –
mind-brain functionalities – can be realized by specific types of
neural networks operating on specific types of neural signals. The
schematic of Figure 2 depicts most of these functionalities in
terms of recurrent internal processes embedded in goal-directed
percept-coordination-action loops. These sets of loops are involved
with interactions of the nervous system with the rest of the
body (interoception and autonomic functions) and its external
environment (exteroception and action). The functionalities are
intended as a general framework for explaining animal behavior.

The basic functionalities of Figure 1 are listed in more detail in
Table 1 and in following sections. These include:

• Regulation of bodily functions – Neural management
of cells, tissues, and organs for maintaining system
integrity (homeostasis).
• Modal control – Switching of system-wide functional states,

such as wake-sleep cycles, levels of arousal, hypnotic and
trance states, sleep stages, and stereotyped behavioral modes.
• Sensation – Interaction of sensory organs with the body

(interoception) and world external to it (exteroception) to
provide information regarding their current states.
• Perception – Organized sensations, neural representations,

invariances/similarities/differences, object and event
formation/grouping/separation, pre-attentive non-acquired,
built-in expectancies, bottom-up depending on current
and recent sensory signals, and modulated by top-down
attentional, emotional, cognitive, and mnemonic contexts.
• Cognition – Pattern recognition; categorical perception;

conceptual representations, operations, and dynamics;
language understanding and production; and internal models
and acquired expectancies.
• Emotion – Readout of the global state of the organism

(e.g., anger, fear, interest, and affection) associated with
current dominant mode of prospective action, e.g., fight,
flee, explore, play, approach, and avoid/hide. Emotion-related
neural signals, hypothesized to be temporally coded, are
broadcast widely, biasing behavioral response modes and
priming circuits related to all the other functionalities.
• Purposes – Internal systemic goals (conation and motivation)

that organize neural circuits to steer behavior so as to
bring about attainment (satisfaction) of current goal states.
Goal signals are postulated to be temporally coded and
broadcast widely.
• Executive functions – Deciding which individual goals to act

upon, and in what order, and choosing which actions to
take to attain them. These functions include decision-making
and action selection: recognizing affordances (goals that
are attainable within current situations), weighing priorities
and urgencies of competing goals, assessing their respective
current likelihoods of attainment, and planning appropriate
action sequences. Through competitive, mutually suppressive,
winner-take-all processes one goal or set of related goals
tends to drive behavior at any given moment. Neural

signals for different goals compete (see section “3.5 Signal
dynamics: mutual reinforcement, competition, and spreading
activation”) with the emergent, currently dominant goal-
signals being widely broadcast throughout the brain, where
they facilitate task-relevant attention and action preparation.
• Attention – Selective enhancement of specific neural channels,

circuits, and/or signals. Attentional processes amplify signals
relevant to current goals (voluntary attention) and/or
to unexpected, perceptually salient events (involuntary
attention). Signal-to-noise ratios of relevant signals can be
improved by suppressing irrelevant channels and signals.
Attentional facilitation for detecting particular patterns can
also be realized by injecting matched signals from memory
that are similar to the attributes of the object being sought
(e.g., by imagining the object’s appearance). These top-down
signals then reinforce similar bottom-up signals coming from
sensory pathways.
• Action preparation and orchestration – Priming of motor

programs and circuits relevant for achieving current goals
and suppression of competing programs. Implementing
sequencing and timing of procedures within motor programs.
• Action – Activity by effectors (muscles and secretory

organs) that alter the states of the rest of the body and
the external world.
• Evaluative feedback – Following an action or action sequence,

positive and negative reward signals related to its efficacy in
satisfying specific goals are fed back to decision processes.
Reward signals within dopamine-mediated circuits encode an
evaluation of success or failure that is then widely broadcast
to the rest of the brain. These signals facilitate retention
of recent rewarded action sequences in short- and long-
term memory and promote adaptive reorganization of neural
circuits to bias future action sequences to favor successful ones
(reinforcement learning).
• Memory – Storage and later retrieval of representations

of internal neural events for guiding future behavior.
Internal neural events can be related to unrewarded
recurring perceptual patterns (causal models, expectancies,
and unsupervised learning) or to rewarded percept-action
sequencies (supervised and reinforcement learning).
• Learning – Adaptive adjustment of neural circuits that modify

internal functional states, procedures, and external behaviors
on the basis of previous rewarded and unrewarded histories
of predictions and actions. In their broadest senses, learning
can be regarded as a kind of memory, and memory as a kind
of learning.

The time-domain theory seeks to explain all these basic,
essential psychological, mental functionalities [see section “2 Basic
brain functionalities (what is to be explained)] in terms of
neural temporal processing architectures (see section “3.2 Neural
architectures for temporal processing”) that operate on temporally
coded signals (see section “3.2”).

Omitted from explicit mention in the schematic and the table
are dysfunctional, pathological states (modes of system failure),
and social-psychological dynamics. So too is conscious awareness,
which may be an inherent aspect of organized neuronal activity
in minds and brains rather than an evolved, naturally selected
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FIGURE 2

Functional schematic of brains as networks of circular-causal processes. Process loops consisting of sets of circulating neural signals that link three
realms of environment, body, and nervous system. Each process loop in the diagram is related to a different basic functionality (shown) and its
corresponding underlying neural circuits (not shown). Signals build-up, compete, persist, and decay in the circuits. This is an updated version of an
earlier figure.

function. In accord with global neural workspace theories (e.g.,
Dehaene, 2014), the temporal theory posits that the basic state
of awareness depends on coherent regeneration of neural signals
in global and local recurrent loops. Because signals determine
the functional organization of the system, this is a form of
organizational closure and provisional stability that constitutes
the most fundamental requisite for any conscious, experiential
state, i.e., an essential component of the “neural correlates of
consciousness” (NCCs). The multi-modal, phenomenal contents
of awareness are held to be the sets of particular neural signals
currently circulating in global and local circuits. These signals
constitute the “neural correlates of (the various possible) contents
of consciousness” (NCCCs).

3 Proposed time-domain operations
and mechanisms

Brains function to regulate internal bodily processes and to
coordinate perception and action in a manner that enhances
survival. Brains are purposive control systems that analyze neural
activity patterns associated with sensory, emotional, motivational,
cognitive, and motoric states to produce highly structured neural

activity patterns that subserve complex behaviors. They are
representational systems that enable complex combinations of
attributes to be held in short- and long-term memory stores. They
are internal communications systems that allow information to be
widely broadcast and selectively received.

To understand fully how brains work as informational
systems, one must understand the nature of the signals of the
system, the neural architectures that produce and process them,
the representational frameworks that encode the attributes and
consequences of objects, events, situations, and actions, and the
mnemonic processes that permit stored records of past experience
to inform prospective action.

3.1 Neural codes: signals of the system

Neural codes are the signals of the system, i.e., those aspects
of neural activity that carry informational distinctions that are
relevant to the functioning of the system and its subsequent
survival. As with the genetic code, our working hypothesis is
that there is one common neural coding framework within which
all types of information related to all brain functions can be
encoded, transmitted, stored, retrieved, and used in service of
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preparation and action. This universal framework needs to be
able to account for all the many, diverse distinctions that the
biological brains of a given species can make. It must have
dimensional structure and informational capacity to support the
many neural activity patterns that distinguish different sensory
modalities, cognitive categories, emotional and motivational states,
and possible motoric actions.

3.1.1 What is encoded?
What kinds of specific distinctions are encoded in this

framework? A distinction here is any difference in neural activity
that switches internal functional states or resultant behaviors. These
include all of the sensed properties (“attributes”) of external objects,
events, and situations as well as those related to internal neural
states (internal attributes, such as those related to current goals
and rewards, thoughts, emotions, and internal procedures related
to actions). Only a small subset of the distinctions made by the
nervous system are ever consciously experienced.

3.1.2 Temporal codes
Temporal codes are neural codes that convey informational

distinctions through simple and complex patterns of spike timings.
Temporal coding is found widely throughout sensory systems, and
it has the potential to be a universal strategy for encoding most, if
not all, types of sensory distinctions (Cariani, 1995, 1999, 2001c).

Temporal codes are fundamentally correlation-based codes in
that they depend on the joint occurrences of spiking events that
have particular timing relations in the form of time durations
between events. They are mixed digital-analog signals in that the
signals of the system consist of discrete pulsatile events (action
potentials and spikes), but the various durations between spiking
events can take on continuous sets of values, as in an analog signal.

Temporal codes can be further subdivided into temporal
pattern vs. relative spike timing codes. Temporal pattern codes
rely on specific temporal patterns of spikes within the same
neural channels such that they produce auto-correlation-like
representations (e.g., for pitch, tempo, and echo delay) whereas
relative spike timings across different channels produce temporal
cross-correlation-like representations (e.g., for localization of
sound direction, location of a stimulus on a body surface, and visual
motion detection).

At the lowest level of neural coding, interspike interval
codes are the simplest temporal pattern codes. Here the time
durations between spikes convey information (Figure 1A). These
can involve durations between pairs of consecutive spikes (first-
order intervals) or non-consecutive spikes (all-order intervals).
Higher order interval sequence codes can involve characteristic
temporal sequences or combinations involving many more than
two spikes. Extended temporal patterns can also encode sequences
of events, including relative event timings and, potentially, all of
each event’s attributes. Such a coding scheme was proposed in
Cariani and Baker (2022), and is schematized in the bottom-most
set of spike trains in Figure 1A.

Temporal codes may be at least as fundamental and
phylogenetically primitive as channel-based codes. Although rate-
channel coding, with its tuned elements and selective receptive
fields, has been by far the dominant assumption in neuroscience,
evidence for temporal coding exists throughout the nervous system,

often in quite unexpected places, such as in vision, pain, and the
chemical senses.

Temporal codes and channel codes are by no means mutually
exclusive – they can exist in combination as hybrid and joint
codes (Cariani, 1999, neural coding taxonomy). For example,
the Jeffress time-delay neural net model of binaural direction
relies on channel-specific encodings of interaural time differences
that combine a spike relative latency code with a channel-coded
output. Activations of specific neuronal channels can produce
temporally patterned outputs, e.g., via TDNNs, temporal pattern
generators, oscillator networks, and rhythm assimilating neurons
(Morrell, 1967).

3.1.3 Types of temporal codes: phase-locked and
non-phase-locked sensory systems

Temporal codes in sensory systems can also be classified in
terms of their relationship to the structure of the stimuli that
they encode, whether their time structure comes from time-locking
to a stimulus or from stimulus-triggered responses whose time
structure is generated by characteristic neuronal interactions.

• Stimulus-locked (“phase-locked”) codes. Virtually all neurons
fire preferentially in response to positive phases of stimuli
that drive their excitatory inputs. In many sensory modalities,
such as audition, vision, mechanoreception (touch), and
electroreception, the timings of spikes produced by primary
sensory neurons follow the time-structures of their respective
stimuli. These stimulus-driven time-locked spikings, widely
known as “phase-locking,” reflect the internal time structure
of stimuli. Stimuli impress their time structure on that
of the spike trains to produce iconic neural time-domain
representations that resemble stimulus waveforms.

The temporal structures of the spike trains produced contain
information directly related to specific perceptual attributes. In
the first stages of neural representation of sounds in the auditory
system, as a direct consequence of phase-locking, all-order
interspike interval codes provide autocorrelation-like temporal
representations of acoustic stimuli, up to the frequency limits of
phase-locking (effectively up to∼ 4 kHz). These provide robust and
precise representations of perceptual qualities related to stimulus
periodicities (pitch and rhythm) and low- and mid-frequency
spectra (aspects of timbre, such as vowel quality) (Cariani,
1999). Analogously, on body surfaces interval codes enable
flutter-vibration discrimination and relative spike timings enable
localizations in tactile perception. For transient stimulus patterns
(onset amplitude, frequency, and phase dynamics of sounds),
spatiotemporal patterns of spike timings across characteristic
frequency (CF) channels can provide cross-correlation-like
representations of instrument timbres and consonant phonetic
categories.

Usable phase-locking extends at least to ∼4 kHz, the highest
note on a piano, in most human listeners enabling temporal
representation of many attributes related to speech, music,
and environmental sounds: periodicity (pitch), power spectrum
(timbre and vowels), sound direction and distance (echo delay
echolocation). In the auditory periphery, interspike interval
representations of pitch and timbre are highly level-invariant
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with precisions that improve with higher sound levels, like
perception but unlike the behavior of rate-place codes (Cariani,
1999; Heinz et al., 2001), such as periodicity (auditory pitch and
cutaneous flutter-vibration frequency), spectrum (vowel timbres),
stimulus direction (auditory and cutaneous localization, and
electroreception) and distance (echolocation).

In vision, spikes phase-lock to temporal modulations of
luminance as moving sinusoidal gratings travel across receptive
fields, providing a precise, interspike interval-based representation
of spatial frequency (Cariani, 2004) and motion (Reichardt,
1961). Many other parallels exist between auditory and visual
systems: coarse temporal modulation tunings of neural elements,
autocorrelation-like representations of timbre and texture,
perception of missing spatial and temporal fundamentals
(Reitboeck et al., 1988; Ando, 2009), as well as analogous
scene analysis principles. Analogous autocorrelation and cross-
correlation models for visual form based on spatial intervals (Uttal,
1975, 1988) and spatial correlation patterns (Kabrisky, 1966),
respectively have also been proposed, but these rely on spatial
rate-place patterns rather than spatial patterns of temporally
correlated phase-locked spikes, as in Reichardt’s (1961) motion
detectors or the texture scanning model of Reitboeck et al. (1988).

• Stimulus-triggered temporal codes for stimulus qualities are
possible even in the absence of phase-locking of receptors.
In sensory systems, such as the chemical senses and color
vision, where there is no time locking of spikes to the stimulus
quality being encoded, an adequate stimulus may generate
characteristic temporal patterns of neuronal response in early
sensory pathways that does not mimic the time structure of
the stimulus quality itself (e.g., Kozak and Reitboeck, 1974; Di
Lorenzo et al., 2009).

3.1.4 Population-based temporal codes
Codes and representations can involve patterns of neural

activity in spike trains of individual neurons or be distributed across
ensembles, sub-populations, and populations. Purely temporal
codes with high reliability and precision can exist at the level
of whole neural populations. Codes based on temporal patterns
of spikes can exist within spike trains of single neurons,
within spike volley patterns produced by neural ensembles,
and within the statistics of temporal correlated spikes within
neural populations.

A strong example of a population-wide temporal
representation for pitch and timbre exists in the mass statistics
of interspike intervals (“population-interval distributions”) taken
across the whole population of tens of thousands of auditory
nerve fibers (Cariani and Delgutte, 1996; Cariani, 1999; Cariani,
2019). Here almost every neuron’s response carries some partial
information regarding acoustic attributes, including pitch, timbre,
and loudness such that the information is widely distributed
across this population. In this representation, the identities of the
neural channels that produce the respective temporal intervals
are not needed, such that one can discard all cochlear place
information and still have highly precise, robust, level-invariant
representations of these attributes (e.g., F0-pitches and timbres of
different single and double vowels; Cariani, 1995; Palmer, 1990).

Being based on interspike intervals within individual neurons,
precise synchronization of spike timing across neurons in the
population is also not required. Here is an existence proof that
temporal, non-place, asynchronous, and population-wide neural
representations are possible.

This strong example from our own experience led us to believe
that similar kinds of population-wide temporal codes might exist
in more central stations and that, in conjunction with temporal
correlation operations, these representations could form the basis
for a comprehensive neural coding framework.

3.1.5 Local and global codes
Such a framework needs to handle all kinds of distinctions,

from those involving but a single-dimension, e.g., loudness or
brightness, to those involving a few dimensions (color, texture,
timbre, odor, and taste) to complex multidimensional spaces (e.g.,
multiple attributes of objects and semantics of words; see section “5
Discussion – testing the time-domain theory”). In order to handle
the full, multidimensional, multimodal encoding of situations,
objects, events, and procedures codes on both local and global
levels may be needed. For example, many unimodal perceptual
and distinctions could be carried by local codes that operate
mostly within unimodal neural populations (e.g., auditory or
visual cortex). Supramodal distinctions (e.g., timing and rhythmic
patterns of events) could be conveyed global codes that span
many brain regions. If combinations of unimodal distinctions
are frequently encountered and/or significantly rewarded, then
characteristic patterns arising from their signal interactions may
also propagate to global circuits. The time-domain theory posits
that common supramodal temporal patterns that are present to
some degree in all global and local circuits bind the various types
of intramodal patterns together. In this manner, not all types
of information for representing complex items with multimodal
attributes need be present in any one brain region.

3.1.6 Finding temporal codes in neural
activity patterns

A critical assumption of the time-domain theory is that
many, possibly all, and informational distinctions are conveyed by
temporal codes. Testing the theory therefore requires positively
identifying the neural codes that subserve representations of
specific attributes (e.g., attributes related to percepts such as
pitch, loudness, apparent direction, shape, color, texture, apparent
location, smell, taste, as well as those related to emotional,
motivational, and cognitive states). Positive demonstration that a
particular candidate neural code is actually used by the system
entails showing a causal linkage between observed neural encodings
and behavioral functions.

Although a great deal of evidence exists for temporal codes
in neurons that are proximal to sensory and motor surfaces, the
nature of the neural coding in central stations, e.g., cerebral cortex,
striatum, cerebellum, hippocampus, and other limbic system
structures, remains mostly an enigma. The further one ventures
from these surfaces to address neural coding of cognitive, affective,
and conative distinctions, the more these distinctions depend on
other, unobserved, ill-defined, and ill-controlled internal states,
and the more difficult it is to clearly identify their precise neural
correlates. When we read reports of observed neuronal responses
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in different brain regions, we ask ourselves what the same analytical
methods applied to the auditory nerve would tell us – would they
be able to detect a temporal code of this sort?

Possible reasons for this difficulty are (1) that each neuron
may be participating in multiple neural assemblies (they are
multivalent elements, not unitary feature detectors), (2)
different types of information may be multiplexed in the
same spike trains, and/or (3) temporal patterns encoding
informational distinctions might be distributed across neurons in
volley patterns.

Reliance on experimental methods that cannot observe
spike trains in individual units and analytical methods that
overlook spike temporal correlations within and across
single units will not detect these kinds of possibilities.
Although observables, such as averaged gross electrical and
magnetic responses (EEG and MEG) are useful in capturing
temporally correlated activity within neuronal populations,
fine timing patterns on millisecond time scales are often
obscured by low-pass filtering of signals and the ways that
signals are averaged.

There is always more timing information available in individual
neurons than in pooled, population-wide responses. If different
parts of a neural population respond with different latencies, the
fine, millisecond-scale temporal structure of those responses can
be smeared out and obscured. In the auditory nerve statistically
significant phase-locking to 5 kHz and beyond can be observed.
However, if one combines spike trains of fibers of all characteristic
frequencies to form a population peristimulus histogram, due to
cochlear delays, all response periodicities above roughly 200 Hz
are obliterated. Even if high sampling rates above several kilohertz
are used, EEG and MEG reflect only the temporally synchronized
components of population responses, such that observed frequency
limits of neural responses may drastically underestimate the
existence of fine timing information.

Enormous progress has been achieved in identifying neural
correlates of memory storage and retrieval processes, salient
examples being hippocampal place-phase-codes, place and time
cells, hippocampal replay/pattern completion, and the roles of
population- and sub-population-wide oscillations. However, the
full problem of the engram – how the various specific attributes of
remembered specific objects, events, and situations are encoded in
neural memory traces in short- and long-term memory – has yet
to be elucidated.

3.2 Neural architectures for temporal
processing

Brains analyze incoming sensory patterns to formulate,
orchestrate, and implement appropriate actions. In order to
formulate a general time-domain theory of brain function, neural
networks must be reimagined as temporal correlation machines
that perform time-domain operations on temporal patterns of
spikes. The same central neurocomputational structures and
operations are used to perform each of the various functions in
Table 1, i.e., to analyze incoming sensory information, to decide
what to do in terms of current goals, and to orchestrate and
implement appropriate actions.

3.2.1 Time-domain neural architectures
Different types of neural processing elements, operations, and

architectures are required for the different types of neural codes
they use for inputs, internal operations, and outputs. Taxonomies
of neural networks can be formulated on the basis of what kinds
of neural signals they use and what constitutes their functional
states (Cariani, 2001a,c). Time-domain architectures in which
spike timings play crucial roles can be contrasted with traditional
“channel-domain” networks whose signals are average spike rates
and whose states are characterized in terms of profiles of channel
activations. These are typically rate-place activation patterns, be
they dense or sparse and/or involving substantial changes in firing
rates or single spiking events. Mixed time-, frequency-, and/or
channel-domain neural signals and processing architectures cannot
be ruled out.

The general-purpose time-domain architecture that is
envisioned here has many properties in common with synfire
networks (Abeles, 1990; Abeles, 2003; Abeles et al., 2004; Hayon
et al., 2005), wave interference networks (Beurle, 1956; Heinz,
2010; Keller et al., 2024), neural timing nets (Cariani, 2001d;
Cariani, 2004), and time-delay neural nets (TDNNs) (Jeffress, 1948;
Licklider, 1951; Wang, 1995).

As with synfire chains and cycles, it consists of feedforward
and recurrent networks of delay lines and coincidence detectors.
As with synfire chains and wave interference networks, due to
the spatial organization of delay lines, spatiotemporal patterns of
spikes propagate spatially through neural populations. Patterns
of interactions between waves of spikes can potentially support
holograph-like distributed representations and memory traces (see
section “4.2 Holography and some holography background”).

As with neural timing nets, but different from synfire networks
and TDNNs, virtually all signals are also assumed to be temporally
coded. TDNNs, broadly defined, are spiking neural networks that
have both coincidence detectors and rate integrator elements
(coincidence counters) with adjustable, stable interconnection
weights and interneural delays. They can convert incoming
temporal spike patterns to outgoing rate-place patterns to analyze
spike temporal structure or convert incoming rate-place patterns to
temporally patterned outputs as in central pattern generators.

As with TDNNs the time-domain network also has adjustable
interconnection weights that can change either dynamically
through spike-timing-dependent plasticity (STDP; Markram et al.,
2012) or through more stable, permanent changes in synaptic
efficacy. Short term memory, including echoic and working
memory, is assumed to be reverberatory and dependent on STDP-
mediated synaptic facilitations and depressions that are driven
by spike timing correlations at synapses. Long term-memory is
assumed to be mediated by more permanent synaptic changes and
perhaps also by other molecular and cellular mechanisms as well
that support formation of stable neural assemblies.

In time-domain networks any spatiotemporal pattern of spikes
can be detected and/or produced by appropriate combinations of
interconnection weights and delays. Specific interneural delays can
be selected by adaptively modifying synaptic efficacies, so as to
permit formation of quasi-permanent trained neural assemblies.
Although these interneural delays are normally conceptualized
at the level of whole neurons, there can exist slightly different
delays for different synapses on the same neuron. Neurons
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with elaborate dendritic trees, such as cortical and hippocampal
pyramidal cells, may be better regarded as trees of synapses and
coincidence elements in which small numbers of well-timed spikes
(spatiotemporal patterns) can trigger action potentials (Beniaguev
et al., 2021). Such neural elements can participate in multiple neural
assemblies by producing interleaved spikes associated with different
sets of inputs (Abeles, 2009). These kinds of elements might explain
why pyramidal cells with thousands of inputs have such irregular
firing patterns.

Because characteristic mono- and multi-synaptic delays exist
between every pair of neurons, every change in the efficacy of a
given synapse produces a change in the interneural delay paths,
and vice versa. Thus, if specific delays can be adaptively modified
(MacKay, 1962; Gutig and Sompolinsky, 2006), then particular
combinations of synaptic inputs can be arranged so as to arrive
simultaneously at spike initiation points, sensitizing the neuron to
those combinations.

3.2.2 Neural delays and spike coincidence
mechanisms

Time-domain architectures appear to be consistent with many
widely observed characteristics of individual neurons. The kinds
of networks that are needed to analyze and produce temporal
pulse codes require neural delays and spike coincidence detectors
that have relatively precise temporal resolutions. Neural delays
offset time durations between spiking events, while elements with
narrow duration spike coincidence windows permit spike intervals
of different durations to be discriminated.

Neural time delays are ubiquitous in brains. They can be
produced within individual neurons or groups of neurons. Well
known neural delays include synaptic, dendritic, and axonal
transmission times, time-to-threshold integration times, recovery
time courses (superexcitable phases and oscillatory resonances) and
post-hyperpolarization rebound times (timings of “anode break
excitations”). All of these delays are potential loci for plasticity and
history-dependent adaptive tunings. Other possible neural delay
mechanisms that could potentially support permanent storage
of temporal patterns include neuroglial-mediated processes,
microtubular transmissions, and molecular storage mechanisms.

By far the most widely appreciated neural delays are “tapped
delay lines,” which use axonal conduction delays, branchpoints,
and collaterals of axons spatially distributed along their lengths to
provide systematic sets of successive delays. Sets of tapped delay
lines are found widely in many canonical central structures: in
cerebral cortex, hippocampus, and cerebellum. Cell types include
pyramidal and granule cells as well as binaural bipolar cells of
the auditory brainstem. It is not surprising then that these major
canonical neurocomputational structures can be modeled as time-
delay processing architectures.

These mechanisms provide for a rich set of delays. Conduction
delays in myelinated and unmyelinated axons of individual neurons
span several orders of magnitude, dependent on axon lengths and
conduction velocities. The most numerous cell type in the brain is
the unmyelinated granule cell, which is also the slowest conducting.

Recurrent delay-paths expand the lengths of delays available
to these systems. Recurrent circuits enable unbounded durations
of neural delays for extensive, iterated processing. Multi-synaptic
delay-paths that traverse multiple neural elements combinatorically

expand the numbers of delays in a network. The brain is nothing
if not a network of delay loops, and its recurrent, cyclic paths,
properly configured, make unbounded, longer and longer, delays
and processing sequences possible.

Spike coincidence mechanisms can be found widely in
brain structures (cerebral cortex, cerebellum, and brainstems of
many sensory pathways). Cortical pyramidal cells famously have
numerous synaptic inputs, irregular spiking, and multivalent
responses to diverse stimuli, which is consistent with the inference
that relatively small subsets of well-timed incoming spikes are
sufficient to cause these cells to fire (Softky and Koch, 1993).
As a result, these cells may be better regarded as structured
ensembles of millisecond-scale coincidence detectors, e.g., as with
the Tempotron of Gutig and Sompolinsky (2006) or the multi-
layered convolutional network of Beniaguev et al. (2021), rather
than running integrators that average input firing rates over much
longer timescales (Abeles, 1982). Complex dendritic coincidence
trees would enable many different sets of synapses, each set having
a specific connectivity and relative delay pattern, to trigger spikes in
these cells, thereby allowing them to participate in multiple neural
assemblies.

3.2.3 Oscillatory networks
Other kinds of architectures are possible that could also

potentially handle some types of temporal codes. Neural networks
that consist of coupled neural oscillatory elements (Greene,
1962) or ensembles of many elements. Oscillator networks have
mainly been studied in terms of their dynamical behavior
rather than specific information processing functions. Neural
oscillations on population-wide scales are generally not thought
to convey specific information about attributes due to their
variability and limited bandwidth, but may nevertheless facilitate
many non-specific integrative functions by synchronizing neural
populations through common and emergent oscillatory frequency
modes (Cannon et al., 2014; Cariani and Baker, 2022). Such
networks can support neural codes that depend on oscillatory
phase offsets (Hopfield, 1995; Cariani, 2022; Cariani and Baker,
2022). By virtue of their oscillatory resonances, such networks
can be used for analyzing incoming coarse temporal patterns
(e.g., beat tracking for musical rhythms), inducing brain states
(e.g., sleep stages) associated with particular oscillatory modes,
producing temporally patterned outputs (e.g., rhythmogenesis in
central pattern generators), storing memories in the frequency-
domain (Longuet-Higgins et al., 1970), visual segmentation
and binding (Baldi and Meir, 1990), or creating new neural
periodicities through emergent oscillatory dynamical modes (see
section “4 Time-domain waveforms, signals, and systems: common
signal operations, holography, radio communications, and the
brain”).

With incorporation of nonlinear, multiplicative and
thresholding processes, oscillatory architectures can potentially
handle complex pulse-coded time-domain signals and operations,
though less directly than time-delay neural coincidence networks,
where specific interspike intervals can be offset with corresponding
delays. Some of these issues are taken up in section “4 Time-domain
waveforms, signals, and systems: common signal operations,
holography, radio communications, and the brain” and elsewhere
(Cariani and Baker, 2022).
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3.2.4 Reimagining canonical neurocomputational
structures

Architectures that include greater neuroanatomical,
cellular, and biophysical detail have also been proposed
that operate on complex spatiotemporal spiking patterns
(as in the polychronous networks, spiking orders, and
spiking order trajectories). For reverse-engineering, the
problem of how neural signal processing works to realize
informational functions, simplified neural models with
limited parameters may be more useful. Although ever more
neuroanatomical and biophysical details can be incorporated,
basic functional principles can be obscured by complex,
inscrutable dynamics.

Beyond general time-domain architectures, canonical
neurocomputational structures such as cerebral cortex,
basal ganglia, hippocampus, and cerebellum will need
to be reconsidered as temporally coded correlation
devices (cf., Marr, 1991). Traditionally these circuits were
functionally conceived in terms of channel connectivities and
activations, but these circuits can be reimagined in terms of
interactions of spike timing patterns in synfire chains and
cycles.

Cerebral cortex can be reimagined in terms of analysis,
processing, and production of temporal patterns. Cortical-striatal-
thalamic circuits have been traditionally regarded in terms of task-
specific motor control, interval timing, and attentional gating of
thalamic sensory and motor channels. More recently, the presence
of short temporal latencies, precisions, and narrow time windows of
striatal action have been recognized (Pouzzner, 2020). In addition
to gating or facilitating relevant channels, attentional modulation
can also plausibly be achieved by matching top-down target
signals with incoming, bottom-up sensory data (e.g., matched filters
through correlational amplification of specific incoming signals).
Given high temporal precisions, striatal spike trains could provide
temporally patterned top-down signals that selectively disinhibit
(amplify) similar temporal spike patterns entering the thalamus
from afferent sensory pathways.

The cerebellum has long been considered as a neural
timing organ (Braitenberg, 1961, 2002; Braitenberg, 1967). In the
cerebellum massive arrays of slow, unmyelinated parallel fibers
the flat, dense dendritic trees of Purkinje cells strongly suggest
functions as canonical temporal coincidence elements. Although
the cerebellum was originally conceived mostly in terms of motor
timing relations and real-time control of sensory surfaces, more
recently more general timing and sequencing roles in perception
and cognition have been proposed (Braitenberg et al., 1997; Rodolfo
Llinas and Negrello, 2015).

The hippocampus has traditionally been regarded in terms of
a recurrent, autoassociative rate-place architecture (Marr, 1971).
However, as in the cerebellum, its arrays of recurrent fibers support
systems of switchable delay-paths. These paths then enable time-
delay operations capable of rebroadcasting specific temporal spike
sequences that can function as temporal-coded memory traces.
In this view hippocampal replay essentially broadcasts selected
temporal memory traces to the rest of the brain. Time compression
of these spike patterns also enables them to be used as anticipatory
guides in real time for prospective action (see section “3.6.1
Temporal memory traces”).

3.3 Brains as purposive, goal-directed
systems

Brains are purposive, goal-driven feedback neural control
systems that have embedded evaluative mechanisms for assessing
goal satisfaction and for weighing the urgency of competing goals.
The term “goal” is used here in a broad sense to mean any
state that a system is organized to preferentially seek. Animal
nervous systems have evolved sets of internal, embedded goals
that promote survival and continuation of the lineage. Most goal-
related operations, as well as their associated planning, and steering
functions are thought to be mediated by neural circuits in pre-
frontal cerebral cortex (Miller and Cohen, 2001).

Basic, immediate, “primary” goals under neural control
involve preservation of internal organismic integrity (homeostasis:
oxygen, water, ionic, nutrient requirements, injury avoidance, and
damage control through pain minimization) and avoidance of
imminent external threats (predation and injury). Longer term,
less urgent, “secondary” goals go beyond basic survival to include
reproduction, rearing of offspring, exploration, learning, play,
stress and uncertainty reduction, and socially mediated rewards.
Learning processes entail tunings of neural assemblies that improve
functions (more reliable goal attainment, better performance, and
better predictions) and can progress in the absence of more
salient primary goals.

Motivations (goals and drives), expectations, and rewards, as
well as emotional and cognitive states, determine what prospective
actions will be taken. Depending on the current external and
internal contexts, such as perceived opportunities for goal-attaining
actions and emotional state, any goal can take potentially take
priority in driving behavior. Internal goals thereby focus attention,
drive decision-making through signal competition, and trigger
task-specific behaviors.

The temporal theory posits that the neural signal for each
goal is a characteristic temporally coded pattern of spikes. The
pattern is broadcast widely throughout the brain to activate task-
relevant local subpopulations, circuits, and signals and to suppress
those that are not. Characteristic goal and reward signals permit
representations to include goals that co-occurred with objects,
events and situations, thereby enabling memories to be accessed
according to the goals they fulfilled. In producing and broadcasting
a goal signal, the system also begins to access memory traces that
contain that signal, and with them still other signals related to brain
states and action sequences that occurred with its past attainment
(Cariani, 2017).

The temporal theory is anticipatory and similar to predictive
coding models (Friston, 2010; Seth, 2013; Seth and Friston, 2016;
Friston, 2019) in that the storage and access of signals related to
perceived objects, events, environmental situations, and internal
goals and procedures forms an internal model of the perceived
likelihood of the efficacy of some particular prospective action in
the context of some particular situation.

3.4 Neural representations

Representations, as used here, are organized systems of
neural codes that signify related attributes. See Lloyd (1989)
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for discussion of representations in neurally grounded theories
of mind. Attributes are informational distinctions, neural
activity “differences that make a difference.” Distinctions
constitute alternative functional states of the system that lead
to different subsequent internal states and/or behavioral outcomes.
Representations can involve attributes that vary along one
dimension (e.g., loudness, lightness, and the pitches of notes
on a piano), a few dimensions (e.g., timbre, color, texture, and
odor), or many dimensions (the neural description of a physical
object that includes basic sensory attributes as well as conceptual
classifications, word labels, perceived affordances, emotional
valences, and memories of similar objects).

Representations of objects, events, situations, and procedures
are groupings of neural signals into unified, chunked, entities. We
will refer to these represented entities as “composites.” Objects
are collections of neural signals associated with sustained co-
occurring attributes. Objects can include collections of perceived
external attributes of particular physical objects (e.g., a specific
fork) or collections of constructed internal attributes that constitute
concepts (e.g., the concept of a fork). Objects are atemporal in that
they are not defined primarily in terms of discontinuities that are
marked in time – they do not have beginnings, ends, and durations.
In contrast, events are collections of attributes that are demarcated
in terms of neural time markers. Events have beginnings (onsets),
ends (offsets), durations, and specific timings. Events can also
contain mixtures of external and internal attributes such as a
knock on the door, the emergence of a thought, or the recall of a
memory. Situations are collections of attributes related to contexts,
again either external or internal. These can be ongoing and quasi-
stationary, as with objects, or emergent and episodic, as with events.
Procedures are internal attributes associated with neural signals and
signal sequences, such as in motor programs and trains of thought.

The time domain theory proposes that virtually all of these
attribute distinctions are encoded in characteristic temporal
patterns of spikes, be they within spike trains of individual neurons,
spike volley patterns produced by neural ensembles, or spike timing
correlations in populations.

3.4.1 Vectorial representations of multiple
attributes

In this theory, the dimensional structure of mental
representations mirrors the correlation structure of the neural
codes. For sensory representations this structure comes directly the
stimulus in phase-locked sensory systems or from characteristic
stimulus-triggered spiking patterns in non-phase-locked systems.
Due to their iconic nature, the various temporal patterns
produced by phase-locked systems can usually be related by
some continuous deformation (affine transformation) that
provides spaces of correlation-based perceptual similarities
and differences. For example, the distributions of interspike
intervals that encode nearby musical pitches (musical C3 vs.
D3) overlap with each other (Cariani, 2019, Fig. 5.8). On the
other hand, the divergent correlation structures produced by
different sensory modalities, such as visual forms or smells, result
in discrete, separate dimensions that highly independent of each
other.

Different, independent attributes are encoded using different,
orthogonal temporal patterns such that combinations of attributes

can be represented as vectors. Each dimension encodes one
attribute which has a characteristic set of temporal pulse patterns
that indicate its signal type. For example, a musical note has a set
of distinct, highly independent attributes that include loudness,
duration, apparent location, F0-pitch, pitch height, and several
dimensions of timbre. The theory posits that each one of these
attributes is represented by characteristic neural temporal patterns
of spikes that indicate which attribute is being distinguished (e.g.,
F0-pitch vs. loudness) and the specific value of that attribute
(e.g., middle C).

The temporal coding thus permits the form of the neural
signal to indicate its signal type, i.e., which attribute the
neural signal signifies to the rest of the system. Because
the signal type and specific value are no longer bound
to particular neural channels or transmission paths, as
they are in channel-domain networks, neural signals can
therefore be liberated from particular nodes and wires. This
in turn enables broadcast of signals and selective reception
by distant neural assemblies that are tuned to respond to
different signal types.

In the temporal theory, the strength (salience) of the neural
signal associated with each attribute at any given time is
indexed by the relative prevalence (fraction) of the characteristic
temporal pattern associated with each attribute currently being
produced within a given neural population or larger network.
It can be described in terms of a positive scalar (ranging
from 0 to 1) reflecting the fraction itself, or binary (0
or 1) reflecting whether its fraction exceeds some threshold
of significance.

At any given time, the current functional, representational
state of a local neural population or global network is the set of
neural signals being produced (regenerated within) that system.
This can be described in terms of N attributes (types), Mi alternative
distinctions (values) for each attribute i, and the strength of each
attribute-value combination. The resulting vector has N × 6

Mi dimensions with one signal strength-salience-prevalence-
intensity scalar for each dimension. As there are typically large
numbers (thousands) of discriminable attribute values for each
external attribute, for cognitive internal attributes, and mnemonic
distinctions, as well as those for emotional and motivational states,
the total number of possible alternative functional states of the
system is quite large.

This signal-based vectorial representational system can support
analogies, i.e., that disparate entities are similar in some ways
(common dimensions in signal space), generalizations, i.e.,
members of sets of entities that share several common attributes
(multiple signal dimensions in common) and interpretability, i.e.,
how they are similar (what attributes the common signals connote).

Because this set is a small subset of possible neural signals,
both in terms of numbers of dimensions (attribute signal types
and of distinctions within each dimension (attribute values),
the representational state vectors are very high dimensional
(reflecting all possible attributes) and sparse (with only a small
number of attributes and their associated spike train signals
in play at any time). These kinds of high-dimension vectorial
representations have many advantages for implementing concept
dynamics, search/retrieval processes, and analogical reasoning
(Widdows, 2004).
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3.4.2 Binding: organization of attributes into
separate, unified wholes

Beyond simple vectorial collections of attributes and signals
currently in play, there is further organization that binds subsets
of attributes into unified, separate, largely independent, objects,
events, situations, and procedures.

The organization of perception has traditionally come under
the rubric of Gestalt processes, segmentation and binding
[the “binding problem” (von der Malsburg, 1981/1994; von
der Malsburg, 1995b)], and scene analysis. The clearest, most
obvious examples are found in vision and audition, with many
parallel principles and analogous transformations between the two
modalities. In vision, regions of images with similar forms, textures,
colors, and correlated timings and motions group together.
In audition frequency components group by common onsets
(roughly synchronous event timings) and common subharmonics
(harmonic relations). Hearing out separate streams of related
events in music (polyrhythms and polyphony) and speech (“the
cocktail party problem,”) involve separation of independent
streams (voice lines, instruments, and speakers) and grouping
together of events related to one or another stream. Within each
stream are also groupings and separations of events in time
(“chunking”). Events close in time tend to group together (the
Gestaltist Proximity Principle): notes into musical phrases and
phonetic sequences into syllables and words.

Similar binding processes also exist in cognition to group
features into categories (concepts), in memory to group related
events into discrete episodes, and in the orchestration of action to
group specific movements and action sequences into wholes.

The temporal theory posits that bindings are realized through
signal interactions. Signals with correlated timings and/or common
subpatterns of pulses interact in delay-coincidence networks to
reinforce each other (Figure 1B; Cariani, 2001a) and to create
new temporal patterns that are related to their co-occurrence (see
section below).

This theory is similar in many respects to Malsburg’s general
theory of correlation-based perceptual and cognitive organization
(von der Malsburg, 1981/1994; von der Malsburg, 1995a), but
more explicitly asserts that the correlation relations are temporal
correlations amongst spikes. There are also similarities to models
of binding based on temporal synchrony (Singer, 1999; Engel and
Singer, 2001). Whereas Singer’s mechanism for binding is based
on temporal synchronies of channel activations, the time domain
mechanism is based on temporal pattern similarities that do not
necessarily require precise (zero-lag) synchronies: in the temporal
pattern theory temporal proximity is sufficient for binding. As long
as the similar patterns arrive at a given location within temporal
integration windows of tens to hundreds of milliseconds, they can
still be bound together. Because near simultaneous events also
create characteristic patterns of signal interaction temporal pattern
representations can also incorporate response synchronies. The two
kinds of binding principles are therefore not at odds with each
other.

3.4.3 Formation of new signals that signify
bound entities

Grouping requires some process that binds the various
attributes that constitute a unified whole that can be represented

and handled as a separate entity. The whole can be an object,
event, situation, or procedure. In the time domain theory,
binding is accomplished through signal interactions that produce
new signal patterns that are characteristic of the whole, such
that patterns that emerge from the relational interactions of
the parts are different from simple superpositions (additions)
of the constituent signals. The whole is more than a simple
combination of parts.

The new, emergent signal patterns then can become tags
that signify the whole entity (Cariani, 1997, 2012). They then
function as markers for compositions (bindings), variously
conceived in terms of concepts, cognitive nodes (MacKay, 1987),
perceptual symbols (Barsalou, 1999), semantic pointers (Eliasmith,
2013), and meta-representations (Lloyd, 1989). Our perspective
is in general accord with grounded cognition (Barsalou, 2008;
Avarguès-Weber and Giurfa, 2015): the same phylogenetically
ancient binding and composition mechanisms subserve perception,
cognition, executive functions, memory, and the organization of
action.

Activation of a cognitive node involves activation of a
specific neural assembly that produces a characteristic composite
signal. The composite signal contains both temporal patterns
related to the constituent features of the cognitive node and
the new, emergent pattern that connotes their composition,
i.e., the whole node. This allows for bottom-up activation of
higher level nodes and production of their tags by virtue
of the co-occurrence of subsets of signals related to their
constituent features.

For top-down access to the constituent signals and their
associated attributes, a process by which the emergent
composite tag is formed needs to be at least partially
reversible. By injecting signals related to node tags, nodal
neural assemblies in turn can produce the signals that signify
the constituent features, i.e., top-down activation of basic
features. It enables comparisons between categories, e.g.,
how a cat is like a dog. By activating the two nodes, their
constituent signals are all produced and the signals related to
attributes the two cognitive nodes have in common mutually
amplify each other.

The new composite signal then interacts with all other
signals in current circulation, activating other nodes that share
temporal pattern components in a process of spreading activation
(Collins and Loftus, 1975; Anderson and Hinton, 1981). The
process is highly parallel, with all signals in local brain regions
and in global circuits interacting at once. Eventually a stable
set of mutually reinforcing signals emerges from the signal
dynamics of reinforcement and competition. The same grouping
and compositional processes that form representations of unified
objects, events, situations and procedures may subserve higher
level cognitive concept dynamics, executive planning functions,
and motoric orchestrations.

If through repeated exposure, rewarded or unrewarded, new
neural assemblies become configured to respond to the tags, then in
essence new signal dimensions, i.e., new primitives (Cariani, 1997,
2012) have been added to the system. The tags become markers
for new attributes that distinguish between composites that have
particular signal combinations from those that do not. They enable
classifications based on common feature combinations, which is
essentially another form of grouping by common time structure.
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Several possible means of producing new signal patterns in
an open-ended way are discussed in section “4 Time-domain
waveforms, signals, and systems: common signal operations,
holography, radio communications, and the brain.” Nonlinear
processes, such as signal multiplication (mixing) and thresholding
(rectifications and triggers) operations produce new characteristic
patterns. This is most simply seen in the frequency domain, where
mixing operations, e.g., modulated carriers of radio, produces new
frequencies that were not present in the constituent signals (see
section “4 Time-domain waveforms, signals, and systems: common
signal operations, holography, radio communications, and the
brain”). In the time-domain, multiplication of pulse patterns that
constitute different signals similarly can produce new patterns.

If the operations afforded by nonlinear signal interactions
permit inversion, i.e., extraction of constituent signals from
their interactive mixtures, then both bottom-up formation of
perceptual symbols and the top-down extraction of constituent
signals (features) and their attributes can be realized. Convolution
is one operation that enables these partially reversible bottom-
up top-down operations (Longuet-Higgins, 1989), but its time
domain implementation may require some signals to be reversed
in time (as the existence of reverse hippocampal replay might
suggest). Alternately, similar operations might be carried out
using temporal cross-correlation operations involving simpler
addition, subtraction, multiplication, and thresholding operations
(see section “3.4.3 Formation of new signals that signify bound
entities”) that are quite straightforward for delay-coincidence
networks.

3.5 Signal dynamics: mutual
reinforcement, competition, and
spreading activation

In the time-domain theory the functionalities of Table 1 and
the operations of Figure 1 are carried out by interactions of
temporally patterned signals (signal dynamics). The theory parallels
many conventional neurocomputational theories except that the
functional states of the system are time domain signal productions
rather than patterns of neural channel activations.

Cognitive nodes, in the time-domain theory, are implemented
by signal productions. Following some triggering event, such
as an external stimulus, neural signals are produced that have
temporal structure that encodes particular features (attributes).
The signals course through pathways, interacting and sequentially
activating neural assemblies that, through training, are sensitive to
their temporal structure. In turn these assemblies emit similarly
patterned signals that reinforce the incoming ones. They may
also emit characteristic tag signals of their own (Figure 1E) that
signify the co-occurrence of specific sets of features. These signals
propagate to activate yet other assemblies in a “spreading activation
process” (Collins and Loftus, 1975; Anderson and Hinton, 1981;
MacKay, 1987). Here cognitive nodes are sets of signal productions
by neural assemblies (sets of interacting neurons that operate
together to realize some function). Multiple neurons can form
neural assemblies, and each neuron can participate in multiple
assembles.

3.6 Memory

Memory is integral to virtually all behavioral functions. Neural
memory mechanisms maintain, store, access, and retrieve records
of past internal neural events related to all aspects of experience
(perceptual attributes of objects and events, cognitive states,
affective and motivational states, event sequences and timings, and
rewards). The memory traces encoding these various aspects can
then function as internal models of event correlations that can
positively guide prospective action. The purpose of remembering
the past is to anticipate the future so as to more wisely choose
actions that have been found successful in similar past situations.

3.6.1 Temporal memory traces
The temporal theory proposes that information is stored in the

form of temporal memory traces. These are held to be temporal
patterns of spikes associated with all attributes of objects, events,
and situations, including their relative sequencing and timing
as well as internal orchestrations of action, and any rewards or
punishments that ensued (Cariani and Baker, 2022; Cariani, 2017).
Memory traces consist of the same multiplexed, multitemporal
patterns that originally encoded this information. Temporal coding
lends itself to direct representations of event timings because of
widespread spiking and bursting responses at event onsets and
offsets. We have proposed a general temporal coding framework by
which all event attributes might be encoded by characteristic spike
latency patterns (Figure 1A; Cariani and Baker, 2022).

Such a framework enables tape recorder-like memory
mechanisms for both storage and readout of temporal memory
traces that contain event timings, sequencings, and specific
attributes. If the tape recorder mechanism can be sped up, then
faster-than-real-time readouts of internal events and their ultimate
consequences can be accessed. There is a sizable literature on
hippocampal replay processes (Foster, 2017), which resemble
such tape recorder memory mechanisms. Replays both forward
and reverse in time have been found in both sleep and waking
states of rodents, monkeys, and humans. Studied mainly through
rat maze running experiments and recording of place cells, their
contents correlate with recent experience, salient but less common
experiences in the recent past, or even alternative paths that were
never taken. Replay appears to be not only about the replication of
past event sequences. Various theories posit their function in terms
of memory consolidation, reinforcement learning, and cognitive
maps.

An advantage of temporal memory traces is that the timing
and sequencing of events is an integral part of the representations
that are stored. Not only are the events recorded, but also
when rewarding and reward predicting events will be expected
to occur. This comports with the behavior of dopamine neurons
in reward timing prediction (Balsam et al., 2024). Behavioral
evidence from conditioning experiments suggests that humans and
animals readily construct timelines of multiple events that occur
at predictable timings relative to each other (Miller and Barnet,
1993). The timelines of whole event sequences can be constructed
even when only pairs of events are presented. This not only points
to a general mechanism for assembly of memory traces from
fragments but also the assembly of a unified timeline from the
relative timings of the individual events. For a mechanistic theory
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of the construction of timelines based on “time cells” using Laplace
transforms (see Howard et al., 2015).

Whereas psychological treatments of memory (e.g., Howes,
2007) focus mainly on the kinds of information that is stored
(e.g., declarative-semantic, episodic-autobiographical, procedural,
categorical recognition, verbal, echoic, iconic-visual, haptic, and
emotional memory), we focus here on their general neural
substrates. Modality-specific contents of memory traces appear to
reside in modality-specific brain regions, where their attributes are
represented in terms of modality-specific local codes. Supramodal
contents, such as event timings, are held to be distributed over
much wider sets of brain regions and to be represented in terms
of global codes. This means that the complete memory trace of an
event, object or situation with multimodal attributes is not available
at any one location, and instead is distributed across brain regions.

The spatially distributed nature of the information in turn
necessitates a process of either assembling the various local
fragments into a whole or binding together the local and global
parts such that all aspects of the trace can be accessed and activated.
This process has been termed “hippocampal pattern completion”
(Horner et al., 2015). In the time domain theory, because the
supramodal temporal patterns are available everywhere, their
common temporal patterns co-occur with locally coded patterns,
which provides a basis for binding based on temporal correlation.
This pattern completion process takes time, as the fragments
are activated, their signals begin to be produced, and related
patterns are then coactivate. This is an iterative assembly process
may explain why some memories are assembled and retrieved
quickly, whereas others, particularly episodic sequences of events
and their details, may take much longer. In general, the more
frequent a stimulus is presented to the system, the more recent
the presentation, the more valued any associated reward, and/or
the more perceptually salient (e.g., surprising and unpredicted)
it is, the more neural assemblies will be tuned in some way
to resonate with it. The more neural assemblies participating
in producing fragments of a full memory trace, the shorter the
latency of neural responses, and consequently the faster the signals
produced by these assemblies will enter the signal space to interact
(amplify or compete) with incoming and already circulating
patterns.

As in dual-store theories of memory, the time-domain theory
assumes that there are two types of neural processes that store,
maintain, and retrieve temporal memory traces. These are a short-
term, temporary reverberatory memory (STM) and a long-term
(quasi-) permanent memory (LTM). In hippocampal replay, the
hippocampus broadcasts rewarded and salient contents of STM to
the rest of the system, during both sleep and waking states, where
repeated presentation causes synaptic and possibly other changes
that create permanent LTM records.

Both short-and long-term memory stores are content-
accessible in that temporally coded incoming signals activate and
amplify circulating memory traces with similar temporal structure,
and vice versa. Memory is thus regarded as a temporal pattern-
resonance process. If circulating signals and memory traces both
share temporal structure, then there is no need for “pointers” or
physical addresses of items in memory. The form of the message is
its own pointer that permits the contents of a memory trace to be
accessed (addressed).

3.6.2 Short term memory
Short-term memory (STM) actively regenerates incoming spike

patterns that constitute temporal memory traces in reverberatory
delay paths. Short-term reverberatory memory is a temporary
store that functions as an erasable buffer for recent sensory inputs
(echoic, visual-iconic, and haptic memory) and internal functional
states (working memory). It is temporary (labile) in that it does
not persist if interrupted by anesthesia, coma, sleep, or subsequent
strong, overriding signals (distractions and masking inputs).

In the time-domain theory, the neural mechanism supporting
short-term memory is active regeneration of circulating neural
signals in facilitated reverberatory delay loops. The mechanism
enables rapid response because the circulating neural signals
conveying memory traces can interact directly with incoming
signals. The circulating signals provide a recent context for the
incoming signals to be processed.

By themselves, the network delay paths that constitute the
loops do not favor any particular incoming signal over any other.
However, if particular trace signals are already circulating in
reverberatory loops, then they will interact with incoming signals
with similar temporal structure to build up circulating memory
traces. Differences between circulating and incoming signals can
also generate new mismatch signals that enter delay loops. The
phenomenon of mismatch negativity (MMN) is highly suggestive of
this kind of running, comparative, temporal correlational process.
Given the astronomical number of alternate delay paths, any
incoming temporal pattern of spikes can be propagated though
the delay networks.

Regeneration of signals in these loops can be dynamically
enhanced by bursting activity, transient activations of NMDA
receptors, and ensuing STDP processes that modulate synaptic
efficacies based on recent spike correlation history (Markram et al.,
2012). Signals in the loops can be attenuated through inhibitory
inputs. How long a neural signal persists in delay loops (delay paths
through global networks and local circuits) depends on loop gains.
In most circumstances, loop gains are slightly negative, resulting
in gradual attenuations of signals in reverberatory delay loops.
However, when the loop-gains are positive, signals build up in
neural circuits and spread across networks. Loop gains can be
moved from negative to positive when incoming signals are strong
and self-reinforcing (periodic) or when neural populations that
participate in the loops are disinhibited (attentional mechanisms).

3.6.3 Long-term memory
Long-term memory (LTM) is a nonlabile, permanent store that

can, in some cases, persist over the lifespan of an individual. The
temporal theory presumes that this type of memory is supported
through neural assemblies trained to respond to and/or to produce
specific sets of spike temporal patterns. Hippocampal replay of
neural correlates of temporal sequences of events in activations of
place and time cells is widely appreciated (Eichenbaum, 2016). Less
well known is the phenomenon of the “assimilation of rhythm” that
is observed in single units, whereby a neuron repeatedly electrically
stimulated at a particular pulse frequency will reproduce the
rhythmic pulse pattern when subsequently activated (John, 1967;
Morrell, 1967; Bogdanov and Galashina, 2012) Either individual
neurons themselves and/or neural assemblies to which they are
connected have the capacity to produce temporal patternings that
are repeatedly presented to them.

Frontiers in Computational Neuroscience 18 frontiersin.org

https://doi.org/10.3389/fncom.2025.1540532
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-19-1540532 February 18, 2025 Time: 13:37 # 19

Baker and Cariani 10.3389/fncom.2025.1540532

Acquisition of such long-term temporal pattern resonances
could be mediated by two types of mechanisms. As in current
mainstream thinking, long-lasting changes in synaptic efficacies
(“weights”) associated with specific sets of interneural delays,
as in TDNNs, can tune neural assemblies. Another possible
type of mechanism encodes neural activity patterns in molecular
modifications of microtubules or of stable polymers. Molecular
mechanisms that could potentially provide a durable physical
basis for encoding engrams were proposed in the 1960s (John,
1962; Landauer, 1964; John, 1967; Byrne, 1970), but following
controversies over related planaria-based experiments, the field
was defunded and rendered dormant for several decades. More
recently, these hypotheses have been reconsidered and refined
(Landry et al., 2013; Gallistel, 2017; Langille and Gallistel, 2020;
Gallistel, 2021; Gershman et al., 2021). Molecular mechanisms for
encoding time sequences in spatial patterns of sidechain markers
along the lengths of nucleotide polymers are also conceivable
(Cariani, 2017).

In the temporal theory, temporally compressed, faster-than-
real-time temporal patterns are widely broadcast to subsequently
become fixed into temporally compressed memory traces. The
sped-up patterns can serve as predictors of the future. Because the
traces hold representations of early events in some remembered
sequence of salient events, the traces can be activated when
situations similar to past ones arise. Because the traces hold the
sequences of encoded internal processes, they can serve as triggers
for replicating action sequences. Because they also contain neural
reward signals related to the consequences of prospective actions,
they can serve as guides for whether the same action sequences
should be facilitated and replicated (positive reward) or inhibited
and avoided (negative reward) this time around. Because memories
link action sequences with goals (rewards) and these are both stored
in content-accessible form, injection of signals characteristic of
particular rewards can call up related actions, and vice versa. This
may be the basis of how mirror neurons behave. Observing another
animal’s actions activates one’s own memory traces that contain
similar actions that in turn through pattern completions retrieve
whole action sequences and the rewards that were obtained.

Reverse replay sequences encode reward states first, so this
permits searching for what prospective actions might lead to a
particular reward by sending that reward signal and activating
internal and external action sequences that led to it in the
past. This kind of mechanism is simple, not requiring elaborate
internal models, and universal. Even in the absence of significant
reward or goal-directed action, such a mechanism can also record
correlations between environmental events (external attributes) to
extract causal linkages.

The memory is associative, storing individual items and also
their combinations. Both memory stores are content- or pattern-
addressable (content-accessible) in that the memory traces that are
circulating and/or produced interact directly with other incoming
neural signals. If an incoming signal has some similarity with
that of a memory trace (common subpatterns), then both the
trace and the incoming signal are amplified (mutually reinforced).
This enables content-based search processes. By injecting a signal
related to some attribute of interest, all of the memory traces
that contain temporal patterns associated with that attribute will
eventually be activated. A series of spreading activations ensues as
other related nodes are activated in turn. Those neural assemblies

that are highly tuned to specific patterns due to repeated, frequent
and rewarded presentations will respond earliest (fast response
memory). Examples would be the phonetics and words or printed
characters of one’s native language. Those memory traces that are
seldom accessed will have weaker responses such that it may require
an iterated slower process for them to be activated.

4 Time-domain waveforms, signals,
and systems: common signal
operations, holography, radio
communications, and the brain

Waves are fundamental. Their mechanical and electromagnetic
forms and interactions dynamically define our universe and
our perceptions of it, from the Big Bang, to seeing and
recognizing each other. Starting from basic principles, we take
a time domain perspective to describe how simple physical
laws applied to waves, may explain many of the functional
mechanisms of brain observations and behaviors. We focus
on neural spikes, codes, dynamic interactions and integrations,
communications, etc. operating in the context of self-organized,
recurrent, massively distributed, parallel processing network
architectures. Neural networks are effectively, hybrid analog-
digital systems characterized by a combination of linear and non-
linear operations. The signals by which they respond to complex
stimuli, process and communicate information to achieve their
functions [see section “2 Basic brain functionalities (what is to
be explained),” Table 1], i.e., perception, motor control, cognition,
decision making, etc., are simply spikes and (not so simply) spike
patterns.

4.1 Temporal perspective leads to
emergent processes

We take a temporal perspective to understand and explain
primary brain functions and mechanisms. The system uses
patterns based on precise spike timings, e.g., interspike intervals.
These are integrated and coupled through phase-sensitive wave
dynamics, to drive brain mechanisms for perception, motor
activity, memory, as well as cognition, executive functions,
etc. We hypothesize that plausible brain mechanisms may be
employing holographic- and radio-like principles, with neural
systems performing common mathematical operations (auto-
and cross correlational, convolutional) inherent in these. These
principles may help explain the integration and coordination
of multimodal information flow across the cortex, and predict
the natural emergence, elimination, and sequencing of routinely
observed oscillations and other neural phenomena.

We suggest that holographic and radio communication
principles, employing correlations (auto/cross) may be applicable
much more holistically, not only to memory models and
pattern recognition specifically, but much more broadly to
sensory, memory, cognitive, decision making, and affective
processes, in general.

Adopting a temporal perspective, per se, is not new. It has
an extensive and distinguished history (summarized below) which
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identifies and associates how wave dynamics support common
holographic and radio communication principles. What is new is
the extent to which we hypothesize and propose that temporal
principles and laws of physics, may determine, consistently and
coherently, many brain functions and behaviors.

Much of the underlying science for the basic understanding
of the principles supporting our temporal perspective, builds
on notable research findings, both theoretical and experimental,
from 50 or more years ago. We contend that many empirical
observations, of neural behaviors both locally and globally, may
rather simply, emerge from these basic principles!

We briefly review this work to show how it motivates
this time-domain signal-centric theory. We are “standing on
the shoulders of giants” and their many decades of pioneering
research to support this vision. The work of Lashley (1958)
demonstrated broadly distributed, non-localized neural processes
and memory traces (Eichenbaum, 2016), “mass action” and
modifiable “equipotentiality.” See reviews Orbach (1998), Nadel
and Maurer (2020). Extending it, Hebb (1949) proposed principles
of neural assemblies (Eichenbaum, 2018), plasticity (Markram
et al., 2012), synchronized neural ensembles, and phase sequences,
notably asserting the general organizing principle that neurons
that fire together, wire together (Nadel and Maurer, 2020;
Almeida-Filho et al., 2014).

What follows is a discussion of these principles, including a
timeline of some relevant milestones and influences, primarily
starting in the 1940s. These contributions span multiple disciplines,
especially drawing on neurophysiology, physics (biophysics),
experimental and mathematical psychology (psychophysics),
and mathematical modeling. Experimental and theoretical
threads are interwoven. Some of these pioneers worked
on experimental research, some exclusively on theory, and
others on both. Many were trying to figure out how brains and
neural systems work. Others were focused on other disciplines,
especially signal processing, holography, radio communications,
etc. The temporal perspective presented here draws on all of
these, and more.

4.1.1 Common correlation and convolution
operations

It starts with how information contained in waveforms is
represented by signals and how these are processed in the
time and/or frequency domains. The two domains are formally
equivalent, such that any signal representation or operation in
one has an exact counterpart in the other, but their neural
implementations may be very different. The information in a
digitized waveform is identical, but decomposed differently in
the two domains. In terms of neural signals, the time-domain
decomposition consists of individual spike responses, whereas the
frequency domain decomposition describes neural responses in
terms of sinusoidal Fourier components.

As is evident in following sections, the mathematics
relating wave dynamics, to pattern coding, pattern detection,
retrieval, reconstruction, and holographic principles, share
common numerical operations, especially correlation and
convolution operations. These operations are tightly related
between the frequency and time domains: multiplication in
frequency corresponds with convolution in time (Smith, 2003).

Because computation of a Discrete Fourier Transform (DFT)
and multiplication of its complex spectrum is much more
computationally efficient than a time-domain convolution,
correlations made in the time domain are typically transformed
to the frequency domain using the Fast Fourier Transform (FFT),
the spectra are multiplied, and then transformed back to the time
domain using the Inverse Fourier Transform (IFT).

Although Fourier analysis often offers substantial
computational convenience, it is seriously disadvantaged in that it
imposes a window of time over which both high resolution time
and high-resolution frequency information are not simultaneously
available (uncertainty principle). This windowing requirement
inherently limits its resolution in characterizing aperiodic and
rapidly changing waveforms.

The order in which correlational operations are performed is
important for maintaining precision in sequential relationships.
Despite the similarity otherwise in convolutional computations,
a reversal or flip of temporally ordered parameters is required
for convolutions. Therefore, convolutional operations are
commutative; correlational operations are not. In the time-
domain, we largely focus on auto correlations and cross
correlations of signals and sequential patterns of these that
maintain temporal ordering.

Early in his prolific career, Licklider and Pollack (1948) and
Miller and Licklider (1950) conducted a series of psychoacoustic
experiments, demonstrating the high intelligibility of infinitely
peak-clipped speech. This demonstrated a proof-of-concept for the
preservation of speech information, using a transformation similar
to neural phase-locking. His work on speech masking (Licklider,
1948) underscored the critical role for precision phase-locked
spike timings. His auditory models combined cochlear filtering
with correlation operations that used phase-locked spikes, tapped
delay lines and coincidence detectors. The earlier duplex model
(Licklider, 1951) implemented an autocorrelation analysis for pitch,
whereas the later triplex model added cross-correlation operations
to account for binaural perception (Licklider, 1959) as well as a
self-organizing central processor.

Licklider (1951) observed that the “basic operations of
autocorrelational analysis are delay, multiplication, and
integration. The nervous system is nicely set up to perform
these operations. A chain of neurons makes an excellent delay line.
The spatial aspect of synaptic summation provides something very
close to multiplication. And the temporal synaptic summation is
essentially running integration.” These observations still ring true
today.

In the same timeframe, Meyer-Eppler extensively explored
applications of auto- and cross-correlations to characterize
signal processing for speech, music, radio communications, and
information theory (Meyer-Eppler, 1953; Lange, 1967).

4.1.2 Correlational models
In addressing the need for understanding global mechanisms

by which brain cells can be selectively activated and deactivated,
von der Malsburg (1981/1994) proposed a “Correlation
Theory of Brain Function.” He stressed that correlations of
neural activation patterns for fine temporal structure (e.g.,
spike trains and spike bursts) could characterize and drive
the structure and coordination of brain dynamics. Parallel
temporal correlations could form the basis for a series of
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sequential synaptic modulations, neural switches, channel
selectivity, and neural plasticity for short- and long-term memory
mechanisms. Such mechanistic processes are efficient and enable
high-capacity memory storage. In discussing single neuron
limitations with respect to firing rates, noise variability, etc.,
he proposed that “composite elements” (neural ensembles)
could overcome these to establish correlation driven “specialized
connectivity patterns” and support “global brain organization.”
Although not offering an explicit algorithm, he explained how
interacting spikes may act as coincidence detectors, and enable
synchronous neural binding in an approximate range of 1–10 msec
(von der Malsburg, 1999).

Autocorrelation and cross-correlation-based mechanistic
arguments are well-founded. A time-domain brain theory relies
on the importance of high temporal resolution mechanisms
for global brain organization and function. Poorer temporal
resolution measurements and analyses necessarily afford
poorer approximations.

4.1.3 Coding waveforms to preserve high
resolution time, amplitude, and phase
information

As described in section “3.1,” temporal coding can take different
forms. Temporally coding and processing of neural interspike
intervals, directly captures detailed spike train information. Spike
trains and bursts expressed as temporal interspike intervals and
spike order codes, can capture unique patterns, and can be
represented as time series and manipulated with vectors and
matrices (Gautrais and Thorpe, 1998; Xie et al., 2024; see section
“3.4.1 Vectorial representations of multiple attributes”).

In the 1960s, the neurophysiologist Jerome Lettvin designed
a simple electronic device to generate and record logarithms of
interspike interval durations (Chung et al., 1974). When a fixed
frequency sinusoid was combined with thresholded band-limited
noise, “a pattern reminiscent of interference fringes emerges. . .such
bands of preferred and forbidden interspike intervals are frequently
encountered in endogenous activities of neurons in the central
nervous system. Rhythmic bursts of impulses reveal the interburst
interval as well as the range of interspike intervals within each
burst.” Lettvin (1970) referred to this analysis in terms of radio
signal processing, as a kind of “single sideband sampling theorem”
(see section “4.3 Radio communications principles generate
emergent brain signals”).

This time- or phase-locking analysis is a unified representation
that can be applied to arbitrary mixed signal waveforms,
irrespective of their periodic or aperiodic nature. Phase-locking
analysis applies to any kind of waveform (e.g., acoustic,
electromagnetic, seismic, etc.), as well as to neural spiking patterns,
both for fine millisecond timescales and for population-wide
responses on much coarser timescales. Because such analysis
characterizes neural responses, as well as speech, music, and other
waveform signals, it can easily be used to relate these to one
another. Time intervals are computed phase-consistently (e.g., peak
amplitude and zero-crossings) between successive waveform cycles.
Excellent temporal, amplitude, and phase resolution is preserved.
This is especially useful for precisely detecting signal discontinuities
(e.g., onsets and offsets) and for characterizing transient events
of short duration (millisecond and sub-millisecond) (Baker et al.,

1972; Baker, 1975, 1979). Such discontinuities frequently act
as segmentation markers (state of change indicators) between
successive signal states.

As discussed in section “3.1,” neural phase-locking is a broadly
observed synchronous response to both external stimuli (acoustic,
visual, tactile, etc.) as well as to internal events (respiratory,
cardiac, etc.). Many sensory and sensory-motor systems phase-
lock to diverse stimuli to produce correlated spike patterns.
These patterns can be easily induced and assimilated to generate
corresponding replication/synchronization of motor actions (e.g.,
finger/toe tapping and dancing). Furthermore, such time-domain
patterns are readily observed and conserved across a number
of animal species (e.g., parrots, Asian elephants, apes, and sea
lions). The high temporal, amplitude, and phase resolution of
phase-locked signals enable their correlational relationships and
interactions, to be precisely measured and assessed. As such, it
can be a powerful tool for analyzing many stimuli as well as spike
trains and spike bursts, for synchronization, coherence, oscillatory
dynamics, and other characteristics.

4.1.4 Phase matters: interference and delay lines
There are many ways of modifying information at

synapses, with excitatory and inhibitory neurons interacting,
neurotransmitter effects, etc. Another simple mechanism directly
arising from wave dynamics, is to combine two waveforms
in different phase relationships to one another. For example,
consider simply summing two waveforms of the same frequency,
either totally in phase to gain max amplification (constructive
interference), or combining them in antiphase (destructive
interference), where the waveforms completely cancel each
other out, thereby fully suppressing both. Combining these two
waveforms at different relative phase relationships will render
intermediate results.

The same signal transmitted (broadcast) over two or more
pathways with different delays (e.g., via direct and/or indirect
pathways) can be combined together at a later stage such
that relative to any of the interacting waveforms, the resulting
shifted waveform will accordingly be amplified, suppressed, or
partially modified. The consequences of such wave dynamics could
potentially have major effects on our understanding, and ability
to control (e.g., inhibit and amplify), multiple neural functions
and behaviors. For example, such a delay line mechanism could
plausibly operate to enhance or suppress selective attention.
Research to assess how such mechanisms work, can best be
performed when raw waveform data is available.

Phase alignment and coordination, via constructive and
destructive wave interference dynamics is a standard control
mechanism for establishing the likelihood of combining or
suppressing signal amplitudes in communications signal
integration, and signal propagation (e.g., traditional echo
cancellation technique for long distance landline telephone
communications).

Positive phases are excitable (“windows of excitation”); negative
phases are suppressive (“windows of suppression”). The relative
phase relationships, or degree of coherence, between interacting
signals can linearly control the degree of interaction.

Furthermore, the phase relationships themselves can also be
directly modified by the presence, absence, or shifts of time-delays
in the interacting signals (e.g., combination of multiple direct and
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or indirect signals). Delay lines produce phase shifts. Interactions
are further controlled by a variety of nonlinear processes; threshold
mechanisms (e.g., “integrate and fire”), neural competition (e.g.,
“winner-takes-all”), neural mixing (see section “4.5 Radio cascade
neural mixing model”), system resets, etc.

4.1.5 Phase matters: effects on neural signals
Many lines of research have explored the evidence and effects of

phase interactions. Hirsh (1948) discovered that phase differences
were the critical factor in discriminating signal from noise with
binaural presentations of signal plus noise in one ear, contrasting
with just noise in or out of phase, in the other ear. Applying cross-
correlations, Jeffress et al. (1956) demonstrated how to detect and
localize acoustic signals both bi- and monaurally.

Working with macaques, Canolty et al. (2010) demonstrated
oscillatory phase coupling in single neurons and neural ensembles,
across multiple brain regions, both distal and proximal. Using
transcranial stimulation, Dugue et al. (2011) asserted that
oscillatory phase mediated human visual perception. McAfee
et al. (2019), simultaneously recording in cerebellar Purkinje
cells (mouse), medial prefrontal cortex, and hippocampus,
found differential frequency-sensitive phase relations in coherent
oscillatory interactions between these, indicative of temporal
coordination.

Ten Oever et al. (2020), found evidence that different
oscillation phase differences modulate human discriminations of
different pitch stimuli. Using ferrets, Galindo-Leon et al. (2024)
reported causal phase- and amplitude-coupled interactions, by
analyzing similarity measures across multiple ECoG channels,
tested across different cortical brain regions. Their human resting-
state MEG studies reproduced these results, as did computer model
simulations. There is also now evidence that diverse anesthetics
causing loss of consciousness, disrupt the phase alignment in
cortical oscillations (Bardon et al., 2024).

In a small study of subjects suffering from sleep onset insomnia,
the administration of acoustic pulse stimuli delivered antiphasically
to subjects’ alpha oscillations resulted in a reduction in the time it
took for them to fall asleep (Bressler et al., 2024).

4.1.6 Phase matters: synchronization and
selective attention

Phase relations, phase-shifts, and time-delays determine
the degree of phase synchronization of interacting signals,
both constructively and destructively, to variously facilitate or
inhibit active pathways. Evidence of these phase interaction and
synchronization effects have been broadly observed across the
brain, in sensory, motor, cognitive, and behavioral regions (Singer,
1994; Sauseng and Klimesch, 2008; Kopell et al., 2010; Kopell et al.,
2011; Schmidt et al., 2013; Stetson and Andersen, 2014; Fries,
2015; Sacchet et al., 2015; Fischer, 2021; Gupta and Bahmer, 2021).
Specific oscillation bands and their interactions (alpha, beta, and
gamma) are shown to exhibit these effects. A novel time-domain
“phase-autocorrelation function” has been proposed to improve
time-frequency resolution, and to better characterize rhythmicity
for phase synchronization of oscillations (Myrov et al., 2024).

Attentional control has also been associated with
synchronization effects between alpha and beta oscillations,
specifically suppression to non-attended visual stimuli in MEG

studies (Sacchet et al., 2015). We hypothesize that such push-pull
synchronization mechanisms could serve, not only to support
attention, but more broadly, to determine selective brain network
activations and suppressions, for efficient functional information
processing.

We propose that understanding basic wave dynamics is key
to understanding information processing in biological networks.
Maintaining high resolution temporal and phase information
for characterizing stimuli and neural responses is essential for
best doing that.

4.2 Holography and some holography
background

4.2.1 Wave interactions drive holography and its
patterns

In 1948, while trying to improve the resolution (reduce
blurriness) of electron microscope images, Dennis Gabor suddenly
realized that he could possibly use coherent (phase-aligned)
electron beams to correct optical aberrations. Based on Thomas
Young’s 1801, double-slit light experiments to produce light wave
interference patterns, Gabor employed a mercury arc lamp with
a narrow-band green filter as a common coherent light source to
create an interference pattern from two beams, a reference beam
interacting with an object beam reflected off a small transparency
inscribed with the names of three wave dynamics pioneers,
“Huygens, Young, and Fresnel.” The resulting interference light
pattern was recorded on a photographic plate, the first “hologram.”
Subsequently when the hologram was illuminated by the same
coherent light with which it was produced, a visual image of the
object appeared in the same place as where the original physical
object had been placed. In contrast to photographic images that
only record amplitude information, the hologram records both
amplitude and phase information. Furthermore, the information
of the interference pattern is distributed throughout the entire
holographic image, such that the object can be reconstructed by
any piece of the hologram, although resolution decreases as piece
sizes are reduced. This unusual characteristic came to be recognized
for its striking similarity to the human brain for its ability to recall
memories when prompted by one or more memory attributes.

Gabor dubbed his invention “wave-front reconstruction.”
Although his invention was quickly acknowledged, and Gabor
continued working on it, the reconstructed images remained
frustratingly fuzzy, and interest in his methodology waned, until
the invention of lasers providing highly coherent light sources, and
other improvements.

With the advent of the laser in 1960, a renewed interest in
holography and its applications, exploded. Notably amongst
these were significant improvements in the three-dimensional
holographic methodology, advancing from Gabor’s on-axis
holography to off-axis “carrier frequency” holography by Leith
and Upatnieks (1962, 1965). Further major advances, relaxing
strict coherence requirements, and enabling white-light viewable
holograms are attributed to (Denisyuk, 1962; Hoffman et al., 1965;
Stroke and Labeyrie, 1966; Benton, 1969; Hartman, 1970) and
many others. Gabor was later honored for this discovery with the
1971 Nobel Prize in Physics.
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As reviewed by Leith (1976, 1997), some scientists in the late
1940s and 1950s productively applied the same physical principles
as used by holography, in their work on wavefield dynamics
and interactions, but did not frame it in holographic terms.
Lohmann (1956) pursued single side-band radio communications,
and Cutrona et al. (1966) worked on improving the optical
processing of radar signals (see section “4.3 Radio communications
principles generate emergent brain signals”).

4.2.2 Wave interference and holographic
processes

Holographic architectures and processes are attractive for
many reasons. Their appeal arises from such properties as their
self-organizing organic structure, distributed (local and non-
local) content representations, computational efficiency, holistic
images/entities can be constructed from arbitrary portions,
resolution scalability, graceful degradation, and especially, their
emergent object reconstruction (e.g., multi-perspective three-
dimensional image).

They are created by interference wave patterns, either through
analog or digital processes. In optical holograms, a coherent light
source is split such that a reference beam is directed toward a
recording substrate (e.g., film) where its light waves interact with
an object beam, the other portion of the split light source which
has bounced off one or more objects placed in its path before
interacting with the reference beam. The pattern of the wave
interactions of the reference and object beams is recorded on a
film substrate and referred to as a hologram. The film is analogous
to the self-organized biological memory substrate. In contrast to
inert film, biological memory is much more dynamic, and may be
modified by subsequent signal interactions.

When the hologram is subsequently viewed using the same
coherent light source with which it was generated, a virtual image
of the original object itself appears. This holographic image is
a product of the reference and object beam wave interactions.
It is an emergent property. In contrast to a two-dimensional
photograph, the object appears three-dimensionally, and the viewer
can view it from multiple angles. Multiple holograms can be even be
superimposed on the same film substrate. In contrast to a standard
photograph, you can cut up the hologram, and see the entire
virtual image through any of the pieces, although the resolution and
viewing angles decline as the pieces get smaller.

Digital holography cost-effectively replaces the recording
substrate with a digital sensor array (e.g., CCD camera) to
capture the interference pattern data (interferogram) which is then
analyzed and processed digitally, overcoming many of costs and
obstacles of analog holography. Using digital holography, major
industries have developed three-dimensional image reconstruction,
optical microscopy, medical imaging, industrial measurements and
quality control, data storage and mining, military applications,
weather forecasting, and more.

4.2.3 Holographic brain analogies
Like holography, neural systems appear to employ wave

mechanics and auto-/cross correlations in their operations.
Memory, and possibly other biological processes, may be viewed
as a self-organized dynamic mesh of competing elements and
ensembles. The elements/ensembles themselves are in a state of

constant adaptation and modification. Different cell types can
respond to different signal attributes. The pattern of ensemble
behavior is likely an amalgam of diverse cell states and responses.

In conjunction with previously learned signals and patterns,
the neuronal system both auto- and cross-correlates (i.e., compares
and contrasts) its background or “reference” state against new/old
“object” signal patterns. These new signals can encompass
externally or internally generated sensory, motor, cognitive,
affective, or other stimuli. Typical familiar contexts can be
regarded as reference conditions against which novel stimuli can
be detected and compared.

Temporal spike-derived patterns enable the highest resolution
for precisely characterizing the spike train signals, -correlating
them, synchronizing, and coupling them with others. It is
understood that two or more patterns being correlated may co-
occur, or be delayed relative to each other (due to different delay
lines, recurrence loop dynamics, etc.). Alignment and correlation of
two or more such patterns may be triggered automatically through
potential threshold triggering and/or designated by discrete bursts
or resets. Bursts or resets may act as markers for correlating and
coordinating multiple signal pattern interactions and integrations.

Highly correlated patterns can serve to amplify signals
(constructive interference). Amplification of signals serves to
maintain them as they propagate through the system, analogous
to radio signal broadcast repeaters. Alternatively, the combination
of antiphasic patterns on either excitatory or inhibitory channels
can cancel one another. Interacting signals of different strengths
can also provoke a “winner take all,” mechanism where the weaker
signal is swamped by a stronger signal, and only the stronger
signal survives.

These mechanisms, working in conjunction with recurrent
loops, could be the means, by which amplification for learning,
reinforcement learning, and habituation is achieved, and by
which cancellation mediates variable time course memory loss
(e.g., forgetting).

4.2.4 Holographic patterns and reconstructions
Beurle (1956) theorized the wave dynamics by which simple

threshold-sensitive neuronal cell ensembles could (1) propagate
waves (cf. Keller et al., 2024), (2) show how those waves could
be initiated, amplified, attenuated, and adapted, (3) show how
their interactions (interference patterns) could be stored, and
subsequently retrieved (regenerated) from memory, and (4) show
how they could be gated through a series of cellular on/off switches,
analogous to attentional focus (Beurle, 1956). Though not referring
to holography per se, he demonstrated how wave dynamics and
interactions are related to holographic principles and properties,
and how those mechanisms might operate in living organisms.

The significance of this demonstration was later pointed
out by Longuet-Higgins and co-authors: “. . . one particularly
attractive idea emerged from Beurle’s analysis, namely that two
different waves spreading across the cortex might together generate
an interference pattern from which either wave alone could
subsequently regenerate the other. . . it was explicitly referred to
by Van Heerden in a pair of papers (Van Heerden, 1963a,b) which
first took seriously the analogy between associative memory and the
optical technique of holography” (Beurle, 1956).

Invoking holographic principles, though not holography
itself, Roy (1960, 1962) proposed widely distributed sparse
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representations for robust, associative learning and memory
models, “where the stream of information is itself the encoding
and decoding device. . ..” Composed of variable delay lines, his
“nerve nets” stored autocorrelations to be compared and contrasted
to incoming signals, and switched accordingly. Information was
conveyed via statistical distributions of variable threshold states
between interacting neural ensembles. He proposed recurrent
memory replay loops as well, like a “tune running around his head.”

Van Heerden (1970) described the holographic-like
reconstructive process, as “the sudden flash of recognition (of
a specific person with) absolute certainty (with) extremely reliable
and fast information processing in the brain,” a trained recognition
process we may regard as “chunking” (see section “4.5 Radio
cascade neural mixing model”).

4.2.5 Self-organizing pattern construction and
reconstruction

Spatial-temporal signal patterns and their interactions with one
another, may be much more fundamental to neuronal processes,
at all levels, than is typically conceived. It is the occurrence and
recurrence of patterns that (through plasticity and positive/negative
reinforcement) generate, and produce our realizations, perceptions,
actions, and understanding of the world, underpinning our
reactions and responses to it.

The brain can be viewed as a goal/attention-directed,
wave pattern interaction machine. Holographic principles and
representations are instantiations of that perspective.

Mechanistically, internal/external input signals are waveforms
which are encoded (temporally and/or spectrally), propagated
and integrated through multiple parallel processing stages of a
neuronal network to produce a variety of outputs (perceptions,
motor actions, cognition, etc.). These outputs emerge naturally as
the resulting consequence of the combined effects of multiple
competing processes in the organism (e.g., physiological,
psychological, motivational, cognitive, etc.).

For example, when a stimulus waveform is detected by one
or more modalities, sensory neurons (ensembles) encode the
waveform as a series of spike bursts and spike interval sequences.
This pattern, and variants of it, can be propagated, projected, and
distributed to other regions of the brain, both locally and globally,
for further processing and integration.

Early-stage parallel neuronal pattern projections are analogous
to the splitting of holographic reference beams. Subsequent
processing of these patterns with other patterns, result in new
patterns that are analogous to holographic reference and object
beams. These neuronal object beam patterns automatically capture
multidimensional representations of the object.

If/when these reference beam patterns and object beam
patterns subsequently interact with each other, they can
interact to form new pattern representations (interference
patterns), analogous to holograms. When stored in associative
memory, these holographic representations can subsequently
be wholly or partially reconstructed (reactivated) when similar
(coherent) stimuli are later processed by the neuronal system
through memory recall.

Like holograms, partial representations of stored constructs
and memories, can be used as object beams, to reconstruct the full
original construct or memory representation. This reconstruction

incorporates all of that object’s features and attributes. With
distributed processing, neuronal pathways coding for partial
information (e.g., features like color, sound, timeframe, concept,
etc.) can provide multiple entry points for content addressability
of that memory. Sufficiently specifying key attributes of any
given topic, event, etc., enables unique identification of any entity
stored in memory.

Memories have multiple entry points that operate as content
addressable access cues or links. Some cues or links are more
central or powerful (more distinctive) than others, and provide
readier/faster access. Examples include hearing the opening notes
of Beethoven’s 5th Symphony, hearing or reading Shakespeare’s
“To be or not”..., or seeing a hexagonal red sign post at
a traffic intersection. Others may be much more indirect or
weaker, requiring the successive activation of multi-synaptic and/or
iterative recurrent processes (e.g., delayed recall).

The sensitivity or effectiveness of such cues are directly affected
by states of consciousness, attentional selectivity, affective state,
and other factors.

4.2.6 Evolution of holographic memory concepts
In his book, Mechanisms of Memory (John, 1967), Roy

John harkens back to Lashley’s ideas concerning nonlocal,
distributed neural representations (Lashley, 1942). Referencing
wave dynamics, he cites “nervous networks (developing) a pattern
of activity reduplicated throughout an entire functional area by
way of excitations, much as the surface of a liquid develops an
interference pattern of spreading waves. . . This means that. . .
the nerves must be sensitized to react in certain combinations,
perhaps in complex patterns of reverberatory circuits, reduplicated
throughout the area.” He extends existing ideas, discusses multiple
mechanisms for brain functions including multimodal integration,
synchrony of cortical and thalamic waves, potential roles of neural
transients, correlation coefficients related to EEG studies, statistical
information processing, etc.

During the mid to late 1960s, a flurry of fertile ideas, theories,
and models integrating associative memories, cerebellar and motor
learning, with holography were raging and igniting robust debate.

Brindley (1964, 1969) proposed applying the concepts of
associative nets, in terms of idealized neuronal structures, using
parallel criss-crossed delay lines and modifiable Hebbian synapses,
first in the cerebellum for motor control, and then cortically, for
learning and sequential recall. Marr (1969) substantially extended
Brindley’s work on the cerebellum.

Pribram (1966) quickly embraced relating brain activations
to wavefront interference patterns captured in holographic
representations. “I have already made the suggestion that arrival
patterns in the brain constitute wave fronts which by virtue of
interference effects can serve as instantaneous analogue cross
correlators. . . for reconstructions of. . .holograms (which) have
many of the attributes of perceptions. . ..” Although advocating
for “temporal coding,” a specific mechanism was not proposed.
Pribram (1969) suggested that “transformations that are performed
within the input channels can be described in terms of
convolutional integrals.” And that these generate “. . .wave fronts
. . .that set up interference patterns . . .resembling a hologram.” In
his 1971 book Languages of the Brain (Pribram, 1971) devoted a
whole chapter to holography, its potential neural implementations,
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and some evidential pros and cons of hypothetical holographic
neural mechanisms.

Having written his Ph.D. dissertation (Westlake, 1968) on the
theoretical application of neural holographic processes to brain
functions, Westlake then directly related his work to corresponding
models by Hebb, Pribram, Beurle, and others, to explain how
holographic properties (e.g., visual object coding/reconstruction,
distributed associative memory, and recurrent loops) could
be instantiated with neural pulse waveforms (Westlake, 1970).
Along similar lines (Cavanaugh, 1975) proposed a holographic
mechanism based on wave interference patterns.

4.2.7 Holographic associative memory models
A brief paper by Longuet-Higgins (1968a) titled “A

Holographic Model of Temporal Recall” quickly attracted
attention. He proposed a temporal analog to optical holography,
using an adaptive filter bank of narrow band pass resonators
(filters) coupled to the input signal for recording the temporal
signal, and to which when a subsequent response is fed back into
the filter bank, the original signal will be regenerated. A series of
discussion papers ensued. Another paper that year, “Non-local
Storage of Temporal Information” (Longuet-Higgins, 1968b),
presented a Fourier-based frequency-domain theory of a temporal
holograph, the “holophone,” which could function as a content-
addressable memory and reconstruct full temporal sequences from
partial sequences.

In response, Chopping (1968) suggested an alternative based
on using unique complex patterns determined by the frequency of
pulses (spikes), also avoiding the requirement for coherence in filter
bank resonances. He proposed an implementation using widely
distributed, highly redundant, self-selected, adaptive cells.

In addressing Longuet-Higgins quest for a temporal
holographic model, Gabor (1968) weighed in with his own
holographic memory models. He proposed storing memories
in the form of truncated autocorrelograms, and implementing
recall using truncated convolutions, in order to recall an entire
temporal sequence from a memory fragment. Further refining his
models, he demonstrated that holographic recording and recall
functions could be performed with only three operations; shift,
multiplication, and summation (Gabor, 1969). Note that in the
time-domain a shift corresponds to a delay. He further asserted
that, in principle, McCulloch-Pitts neurons ought to be able to
implement these operations, though leaving the details to others.

Questioning the biological plausibility of the brain Fourier
analyzing incoming signals, Willshaw et al. (1969) suggested
that correlations or convolutions of signals might be used as
an alternative to sufficiently imitate the behavior of a Fourier
holograph.

While acknowledging that holographic functions of the brain
were in an early state, Van Heerden (1970) understood and asserted
that the foundation was clear. “This foundation is information
theory, the same theory which is used in radio, television,
radar, and photography. In information theory, recognizing, or
speaking of the quantitative degree of two things being alike, is
described by the correlation function of two time functions, or
two images. . .The computation of the correlation function can be
described mathematically as a (matched) filtering operation. . .The
fact that the hologram performs this filtering function. . .is due to

the fact. . .that a propagating wave field carries out automatically
this laborious computation demanded by the theory.”

Longuet-Higgins et al. (1970), observed the “that the power
spectrum and the autocorrelation of a pattern are Fourier
transforms of each other, so that to record the one, is equivalent,
in terms of information, to storing the other.” Furthermore, they
suggested “storing directly the correlations between or within
various input signals without the need for Fourier analyzing
the signals. . .” (Longuet-Higgins et al., 1970). By “storing the
correlations directly rather than as power spectra. . .the associative
net resembles the holograph,” but “differs from the holograph in
not requiring any transformation of the input and output signals,
or any coherent source of excitation for this purpose, in employing
threshold elements to get rid of unwanted noise in the recall, and
in using on-off switches. . ..” The holographic theory predicts the
feasibility of achieving a content-addressable associative memory.
One of his last papers (Longuet-Higgins, 1989) outlined how
holographic memory could be implemented in the time domain
using temporal correlations and convolutions of pulse trains.

Drawing on the work of Gabor (1968), Longuet-Higgins
(1968a), and Barsellino and Poggio (1972) used convolutions
and correlations to propose a holographic mathematical model
of temporal memory analogous to Reichardt’s insect optomotor
response theory (Reichardt, 1957; Reichardt, 1961; Reichardt
and Poggio, 1976). Later Kohonen (1987) incorporated delayed
feedback as a key feature in his autoassociative model for the
temporal coding and recall of sequences.

Further extending holographic models in his book Holographic
Reduced Representation, Plate (2003) described his methodology for
using circular convolutions for efficiently associating and binding
distributed complex composite representations, and applied these
to associative sequential memories, learning, chunking, and more.
Nickel et al. (2016) proposed using circular correlations for
holographic embeddings of knowledge graphs. See Hinton and
Anderson (1981) for a review of alternative associative memory
models.

Characterized by temporal signals and processes, wave
interference patterns may generate holographic-like patterns and
representations. These may include memory traces of variable
duration/persistence (short- and long-term memory), which can
be modified to create new patterns and representations, as well as
reactivated by pattern similarity matching operations.

The holographic patterns are more general than memory traces
per se. These patterns and representations could potentially be
propagated and communicated in a manner analogous to radio
broadcast operations. In contrast to radio broadcasts though,
neural signal patterns may be modified and integrated with other
signal patterns along the broadcast route.

4.3 Radio communications principles
generate emergent brain signals

Radio communications typically deal with broadcasting
high frequency transmissions through space. Driven by wave
dynamics, their principles support a host of applications from
garage door openers to satellite communications, radios, TV,
long distance telephone echo cancellation, etc. Echolocation is
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used for radar, sonar, seismological exploration, etc. as well
as by animals; bats, whales, dolphins, etc. Despite their many
differences, radio communication systems also bear some striking
similarities to brains and their neural communications. These
principles, applied at physiological frequencies, may be useful for
understanding some specific brain mechanisms, especially, with
respect to coordinating different oscillation frequency bands and
their interactions in the course of processing, propagating, and
communicating information.

4.3.1 Superheterodyne radio: single-sideband
carrier suppressed

Audio radio broadcasts, first transmitted in the early 1900s,
rapidly evolved to become a household sensation by the 1920s.
Basically, transmitters connected to antennas and receivers are
able to communicate signals with which they share common
signal characteristics. Transmitters engage signal modulations to
propagate waveform information over designated channels from
one place to another, where it is decoded (see Figure 3).

An Amplitude Modulated (AM) radio architecture typically
incorporates a superheterodyne circuit that mixes (multiplies)
two signal frequencies F1 and F2 to produce new frequencies.
The process of “mixing” is a nonlinear multiplicative operation
which results in two new sideband signals, at their F1 + F2
sum frequencies, and their F2 − F1 difference frequencies. Lower
amplitude harmonics of these may also be generated. In this
fashion, modulated signals can be frequency shifted as needed.

After broadcast transmission, propagation, and reception, the
modulation signal is then demodulated and the original signal
reconstructed (recovered) for output (playback) at the target site.
The original signal information is carried by the sidebands, but not
in the carrier itself. The two sidebands are redundant in so far as
each contains a representation of the information in the original
signal. Typically, the upper sideband is eliminated by a low-pass
filter for efficiency and power savings, so that only the new F2− F1
sideband is transmitted.

A succession of these stages can be multiplexed, processed, and
cascaded for flexible signal integration and propagation. A cascade
occurs when the output of one system stage serves as the input
for another system stage. When the carrier itself is suppressed,
the operation is referred to as single-sideband carrier suppressed
(SSBCS), an especially efficient and widely used transmission mode
(Silver, 2012). A reduced–carrier single sideband mode preserving
some of the original carrier signal, can also be used to facilitate
demodulation.

4.4 Brain wave oscillations as potential
signal carriers

In researching human electrical brain activity, Hans Berger
first observed periodic alpha oscillations (8–10 Hz), and
subsequently beta oscillations (15–30 Hz). In 1924, he developed a
recording technique using non-invasive scalp electrodes, dubbed
electroencephalography (EEG), actively used today. He published
his work in 1929, and instigated a vast field of brain research,
research tools (e.g., MEG, ECoG, and intracranial electrode arrays),
diagnostic and therapeutic applications, etc. (Berger, 1929).

A number of endogenous brain oscillations have since been
observed and explored in different frequency bands; alpha, beta,
delta, gamma, mu, theta, ripples, spindles, etc. and narrower band
ranges of these; e.g., multiple gammas, multiple betas, multiple
deltas, etc. (Buzsaki and Draguhn, 2004; Buzsáki, 2006; Buzsaki
and Watson, 2012; Han et al., 2021; Garrett et al., 2024). Periodic
activities, typically described as oscillations in these frequency
ranges are associated with diverse feed forward, feedback, memory
access, attention, excitatory, inhibitory, and other processes.

Commonly observed aperiodic spiking signals, such as spike
bursts or volleys, or other aperiodic events, even single spikes, may
mark new stimuli (e.g., onsets and offsets), phase resets, signal
discontinuities, state changes (e.g., shifts to different frequency
bands or processing stages, integration events), initiation of new
signal paths and processes (e.g., plasticity), etc. Vinck et al.
(2024) has reviewed possible roles of periodic oscillatory vs.
aperiodic transient signals in the context of hierarchical predictive
processing of bottom-up gamma and top-down alpha/beta rhythm
interactions. Xie et al. (2024) has demonstrated that categorization
information can be embedded in spike sequences of population
transient spike bursts, separable from averaged spike rates and
latencies from stimulus onset.

Despite extensive research, the fundamental nature, roles, and
relationships of periodic oscillations and aperiodic spike bursts,
etc., are still a subject of uncertainty and active debate.

Neural systems are likely to process incoming signals
in a consistent manner, irrespective of whether or not the
incoming signals are periodic or aperiodic. They seamlessly must
accommodate diverse signal to mediate, integrate, and control
local and global information processing throughout the body.
Physical wave dynamics and interactions drive these signal-
centric processes.

Understanding oscillation interactions appears to be one means
of doing this, such as gamma oscillations, typically associated
with bottom-up sensory input, interacting with beta top-down
predictive and/or inhibitory activity, etc. The interacting signals in
these different bands, combine, couple, and mix with each other.
Such interactions can act to amplify, suppress, modulate, tune,
and coordinate a broad range of neural signals. Massively parallel
crosslinked network channels can provide redundancy, sharpen
SNR, amplify and attenuate signals, detect and correct errors, etc.
for robust signal processing and propagation.

4.5 Radio cascade neural mixing model

Oscillation co-occurrence and coupling of diverse frequency
bands have been broadly observed across the brain. Co-occurring
phase-locked ripple oscillations (∼90 Hz) are observed to
synchronize across widely separated brain regions, during both
sleep and waking states (Lestienne, 2001; Dickey et al., 2024;
Verzhbinsky et al., 2024). These can increase during reading and
semantic decisions (Garrett et al., 2024), and may be preceded
by very high gamma bursts (120–190 Hz). Increasingly, studies
have invoked basic frequency signal mixing principles, as a key
mechanism, to explain oscillation signal band interactions serving
various functions (Ahissar et al., 1997; Ahrens et al., 2002;
Haufler and Pare, 2019; Dickey et al., 2022; Staresina et al.,
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FIGURE 3

(A) Functional signal processing schematic for an AM radio receiver (from Cariani and Baker, 2022). The shaded box with the IF stages contains
sequential mixing operations that are analogous to an oscillatory cascade. (B) Oscillatory cascade. Emergent frequency band oscillations and
approximate corresponding stages of speech and language processing. Carrier cascade of single sideband (F2 – F1) oscillatory frequencies. For
graphical clarity, additional putative loops (self, level skipping forward and backward) are omitted.

2023; Staresina, 2024; Tye et al., 2024), including demonstrating
signal mixing without using band-pass filters (Kleinfeld and
Mehta, 2006). An extensive analysis of diverse signal mixing of
exogenous and endogenous frequencies has been conducted in
rodent brains. A subsequent study of human EEG signals identified
brain regions where different oscillation bands predominate and
demonstrated with which other bands they preferentially mix in
the context of an attentional feature-matching task (Luff et al.,
2024).

Applying radio communications theory, we hypothesize that
these different oscillation frequency bands could broadly operate
as signal carriers, within the brain and neural system. If this is
the case, then specific oscillation bands could be more closely
associated with different stages or types of information processing
and multimodality integration, for speech, image, motor action,
cognition, homeostatic functions (blood pressure, orthostatic
stability), etc. The constant generation of new signal channels
with new frequency, phase, and amplitude characteristics could
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enable the progressive flow of phase-sensitive, channel selective
synchronous coupling with other neurons, networks, and sub-
networks (e.g., lexical networks coupling with semantic networks).
Commensurably, as new frequencies are being emergently
generated, the mixing frequencies from which they are generated,
will be reduced or eliminated. Recurrent activations could maintain
and reinforce information while it remains relevant, as well as
attenuate or suppress it when it is not.

In support of these ideas, we extend a radio communications-
based model, previously introduced (Cariani and Baker, 2022).
In radio terms, this specific design is referred to as “single side-
band” (SSB) or “single side-band suppressed carrier” (SSBSC). It
is a superheterodyne circuit typically applied to AM radio where
one of the two sidebands, and optionally, the carrier wave itself,
are beneficially suppressed to conserve power and bandwidth.
In this model, neural oscillation frequency bands are the carrier
waves corresponding to AM radio intermediate frequencies. Each
stage is characterized by a different oscillation frequency carrier
(Figure 3B).

When a carrier frequency is mixed (multiplied) with another
frequency (the local oscillator), two new frequencies (F2 + F1 and
F2− F1) are automatically generated. In the heterodyning process,
only the lower F2 − F1 frequency is transmitted as the new carrier
frequency for the modulated signal. The summed F2 + F1 frequency
is typically eliminated by low-pass filtering.

Thus, the frequency of each carrier, is emergently determined
by the difference frequency of the two previous oscillation bands
(carrier and local oscillator). Since there is a succession of difference
frequencies being generated and propagated, later stages necessarily
produce lower frequency oscillation carriers than previous stages.
Successive stages of these intermediate frequencies are sequenced
in a “cascade,” where the output of one stage feeds the input
of the next stage.

As a theoretical illustration, consider a hierarchy of neural
processing states for speech/language processing, approximated
as a progression and integration of sensory to cognitive
processing stages; sound detection, speech detection/activation,
speech acoustics, phones, syllables, words, phrases, sentences,
and concepts/understanding. Suppose that each of these
speech/language stages, is represented by the center frequency
(mean) of the frequency band with which it is typically associated,
e.g., for example, 180 Hz (very high gamma), 90 Hz (high gamma,
ripples), 45 Hz (gamma), 24 Hz (beta), 10 Hz (alpha), 6 Hz (theta),
2.5 Hz (delta), and 1.5 Hz (low delta).

When each of these frequencies is mixed (multiplied) with the
previous carrier frequency, a new carrier frequency is produced.
For example, multiplying a 180 Hz (very high gamma) signal with
a 90 Hz (high gamma) signal produces a 90 Hz carrier, a 90 Hz
(high gamma) carrier multiplied with a 45 Hz (gamma) produces
a 45 Hz (gamma) carrier, a 45 Hz (gamma) signal multiplied with
a 24 Hz (beta) oscillation produces a 21 Hz (beta) carrier; a 21 Hz
(beta) carrier multiplied by a 10 Hz (alpha) oscillation produces an
11 Hz (alpha) carrier, which mixes with a 6 Hz (theta) oscillation to
produce a 5 Hz (theta) carrier, mixing with a 2.5 (delta) oscillation
to produce a 2.5 (delta) carrier, mixing with a 1.5 Hz (low delta)
oscillation, to produce a 1 Hz (low delta) carrier. This sequence
of emergently generated carrier frequencies; 90, 45, 21, 11, 5, 3,
and 1 Hz, closely recapitulates the sequence of the commonly
observed oscillation frequencies, as noted above; i.e., 90 Hz (high

gamma), 45 Hz (gamma), 24 Hz (beta), 10 Hz (alpha), 6 Hz (theta),
2.5 Hz (delta), and 1.5 Hz (low delta), approximately reducing the
dimensionality of the original frequencies, by a factor of 90–180X.

Here we observe a trend of higher frequency carriers
corresponding to lower-level processing stages, and lower
frequency carriers corresponding to later higher-level processing
stages, indicative of hierarchical consolidation (e.g., sequence of
sound/speech detection and phone acoustics consolidated to words
and to conceptual understanding). Not surprisingly, the initial,
lowest level stages for sound/speech detection and acoustics, are
the fastest. The mechanism proposed here generates oscillatory
sequences similar to those of Kramer (2022) in which neighboring
neural frequency band relationships are related by the (Fibonacci
sequence derived) “golden ratio” (∼1.618).

The cascade example above in Figure 3B demonstrates a
hierarchical sequence corresponding to characteristic speech and
language stages. Most of the neuronal mixing literature to date, has
dealt with only one or two mixing stages in localized areas. We
hypothesize that longer sequences of mixed oscillatory bands might
well exist in different brain regions and at different times. The above
cascade model predicts a specific sequence of oscillatory bands for
speech and language processing, such that it could be tested using
data from neurophysiological recordings.

Note that when two frequencies (F1 and F2) mix to produce
(generate) a new frequency (F2 − F1), the frequencies F1 and F2
themselves, are abolished in the process. In actual practice, with
electronic SSBCS circuits, remnants of the generating frequencies
may remain, as well as low amplitude frequency harmonics. In
neural systems, the rapid creation and abolition of observed
oscillations could explain transient durations.

Given the large frequency range of individual neural oscillation
bands, often spanning an octave or more; e.g., gamma (∼40–
180 Hz), beta (∼13–30 Hz), and delta (∼0.5–3.5 Hz), it is hardly
surprising that there are meaningful distinctive narrower bands
reported within these. Furthermore, the F2− F1 generation of new
carrier frequencies, can easily result in the same carrier frequency,
e.g., alphas, betas, simultaneously serving comparable or different
functions with different functional connectivities, in different
regions (sub networks) of the brain. If so, that might partially
explain the diverse roles (sensory, motor, cognitive, attention,
memory, etc.) commonly observed for multiple distributed alphas
(Klimesch, 2012) and betas (Weiss and Mueller, 2012; Lundqvist
et al., 2020).

The distinctions between different frequency carriers enable
rapid selection of allowed, and rejection of disallowed cross-
frequency channel synchronizations and couplings. This general
signal mixing principle is broadly applicable across different
processing stage levels, not just neighboring levels. For example,
this principle applies to interactions of afferent and efferent
signals, e.g., bottom-up, top-down information combinations
and integrations.

This mechanism enables the processing, adaptation, and
propagation of information across and within multiple channels
and networks, locally and globally across the cortex. It is likely
that most transitions are to elements within a given level, e.g.,
between alternative syllables, between alternative words; that is to
whichever level element is most likely, i.e., best predicted by stimuli
(feedforward) and historical context (feedback). The elements
within any given level consist of pretrained (tuned) adaptive cell
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assemblies. For example, in a speech processing hierarchy, such
pretrained cell assemblies can correspond to separate levels for
phones, syllables, words, syntactic relations, concepts, etc.

In this model, we hypothesize that there are necessarily
backward loops from higher processing levels to lower processing
levels (e.g., theta to beta and delta to theta) to enable reprocessing of
ambiguous or low confidence signal interpretations. Reprocessing
can take place at all levels; e.g., acoustic uncertainty (was the
word “affect” or “effect,” “fine” or “find”), semantic (word sense)
uncertainty (“overlook,” “rent,” “back up,” and “remains”), etc.
Confidence (certainty) levels are determined by the relative
likelihoods of bottom up (feed forward) signal processing and top
down (feedback) predictions. Reprocessing triggers occur when the
confidence disparity of the most likely candidate(s) falls below a
threshold, or confidence discrimination between top candidates
falls below a threshold. Likely neural signals reflecting such triggers
for reprocessing include the N400 (Kutas and Hillyard, 1980, 1984;
Wang et al., 2012) and P600 (Osterhout and Holcomb, 1992;
Schneider and Maguire, 2018).

Note that in automatically generating text, Artificial Neural
Networks (ANNs) typically emulate this kind of behavior by
predicting the next most likely word based on Large Language
Models (LLMs) using n-gram statistics, weights, and thresholds to
choose paths through their graphical networks.

4.6 Multilevel processing and chunking

When there are larger trained cell assemblies, encompassing a
higher level of processing elements e.g., words, concepts, etc., the
direct pattern detection and recognition of these chunks enables
much more rapid information processing than working lockstep
up from lower levels in the hierarchy. However, when there is
a high level of ambiguity or uncertainty (e.g., did she say “nice
peach” or “nice speech”), then lower levels of the hierarchy must
be analyzed. Use of higher-level chunks is gated by thresholds,
and confidence level differences between competing chunks. Max
confidence determines choice selection.

Basically, as long as there is a close fit between a top-down
prediction and a bottom-up confidence score, processing can
advance. But if there a disparity (simple difference) between two
(or more) measures, that exceeds a threshold, and/or confidence
levels in bottom-up signals are too low, then additional analysis or
re-processing, and the associated processing time, is required.

A similar very rapid hierarchical categorization or chunking
process is described by Serre et al. (2007) for high performance
visual object detection and recognition by macaques and humans.
The methodology reflects a hypothesis for the ventral stream
generating a “large vocabulary of shape-tuned units” (high level
visual chunks) derived from a succession of processing stages
between primary visual cortex (V1) and the prefrontal cortex
(PFC). A similar hierarchical feature clustering, aggregation, and
rapid recognition process also appears evident for gisting in visual
scene analysis (Oliva and Torralba, 2006). Gestalt recognition
and other invariance properties may be served by chunking
mechanisms. From this and other evidence, we view chunking as
a very powerful adaptive processing and learning methodology.

In the field of automatic speech recognition, substantial speed-
ups in processing are achieved using a chunking like technique

known as “rapid match” or “fast match” (Gillick and Roth, 1990).
Beginning word acoustic clusters are categorized and trained for
all vocabulary words. The search space for recognizing subsequent
speech is then sharply pruned by restricting search only to those
word paths containing similar start clusters. As a consequence, the
speech recognition process often reliably recognizes the word being
spoken well before the speaker has finished speaking the entire
word!

4.7 Recommendations for observing
precision timing

Because most studies to date are based on averaged, frequency-
domain processing perspectives, rather than employing or
incorporating analytical techniques with high temporal resolution,
there is necessarily ambiguity in currently testing these studies
for more direct correspondence, or lack thereof, to our ideas and
theory. We are eager to have our hypotheses tested.

Reporting frequency results with observations measured in
exact hertz with variance, standard deviations, etc., rather than
broad frequency bands would clearly help (Hadjipapas et al., 2022).
It would enable better characterization and understanding of neural
activity, especially for signal integrations and interactions. Some
studies already do this routinely, but many do not. Despite these
disparities, it is informative to examine current empirical studies to
assess areas and timeframes of activity correspondence across the
brain (Luff et al., 2024; Lundqvist et al., 2024). Spike-interval based
measures and patterns (e.g., phase-locking analysis for spike trains
and bursts) can provide higher temporal resolution, which could
potentially prove very valuable.

Many physiological studies have generated empirical evidence,
typically in specialized areas and domains, supportive of these
kinds of mechanisms, and the broad framework we are proposing.
Much more testing from a temporal perspective, will be required
to confirm or reject their predictive power, and extent of
their applicability.

5 Discussion – testing the
time-domain theory

Many of the mechanisms of the neural system can be
parsimoniously described in the time domain by basic laws of
physics and wave dynamics, using correlations, convolutions,
and delay lines.

Evidence for these is widely observed in neuroscience research,
and has been for decades.

Recent research findings increasingly support the need for
high temporal, amplitude, and phase resolution, as well as for
mechanisms (e.g., delay line integrations, phase-sensitive coupling
dependent on these).

A temporal perspective can facilitate a highly integrated,
consistent, and holistic framework for understanding the brain
operations from which diverse significant neural functions (e.g.,
perception, motor action, cognition, etc.) may simply emerge!

The theory proposes that signals, signal patterns, and
their dynamics are central to shaping their interactions, brain

Frontiers in Computational Neuroscience 29 frontiersin.org

https://doi.org/10.3389/fncom.2025.1540532
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-19-1540532 February 18, 2025 Time: 13:37 # 30

Baker and Cariani 10.3389/fncom.2025.1540532

activations, and the brain architecture itself. It focuses on the
emergent nature of pattern creation and reconstruction, arising
from the laws of nature (rather than elaborate algorithmic
constructions) applied to signal-centric codes and patterns, and
processed by plausible brain mechanisms.

This signal-centric brain theory is demonstrated using
holographic principles and heterodyned radio communications
theory. Spatial-temporal signal patterns, and sequences of these,
may be coded, modulated, modified, stored, retrieved, integrated,
demodulated, etc. for propagation and transmission through widely
distributed, networks of parallelized cell ensembles to support
many brain functions and behaviors. An evidence-based sketch of
how this could work, and an illustrative model based on putative
oscillation interactions are offered.

We do not contend that we have “figured it all out” or anything
of the sort. We warmly encourage further research in this direction
and propose some specific recommendations to facilitate it. There
are significant gaps in putting it all together. Experimental evidence
is required to test these hypotheses, and their extent. That will
require that neural data collections first take care to preserve
the temporal resolution inherent in the signals themselves, by
adequate sampling, and avoiding destructive filtering in subsequent
processing and analysis. Preserving temporal resolution means
avoiding automatically imposing windows with their inherent
time-frequency resolution tradeoffs. It means not averaging
signals across variable populations or data during non-steady
states. These conventional practices, though computationally
convenient and supported by popular tools, often destroy
critical information, especially temporal information in biologically
meaningful complex signals. More detailed investigation needs
to be undertaken to study interspike intervals for coding and
processing, for single neurons, ensembles, and populations.
Critically, a willingness to try out new practices will be required
to pursue this perspective. Breaking with convention is never easy!
Some new tools would be helpful. These will definitely take some
work and development

Preserving high temporal (spike timing) resolution is
fundamental for characterizing, coding, and explaining the
brain signals and signal processing which support brain
mechanisms, functions, and behaviors. More and more
evidence confirms that many brain signals and interactions
(spike bursts, phase-locking, phase-amplitude coupling, etc.),
operate on much more rapid (millisecond and sub-millisecond)
timescales than are captured by traditional spectral power
windows (tens to hundreds of milliseconds). Like telescopes and
microscopes, better temporal resolution will allow us to see and
understand much more.

A number of general suggestions for empirical
investigations were listed in our last paper
(Cariani and Baker, 2022).

To recapitulate, the main assertion of the time domain theory
presented here is that the neural codes used to realize the
major informational functions listed in section “2 Basic brain
functionalities (what is to be explained)” and Table 1 may consist
of temporal patterns of spikes rather than rate-place patterns.
This includes the neural coding of sensory, perceptual cognitive,
affective, conative, executive, and motoric distinctions. The theory
holds that segmentation and binding processes are subserved
by temporal correlation-based mechanisms. Multidimensional

vectorial representations consist of co-occurring temporal patterns
associated with individual attributes of objects, events, situations,
and procedures. Memory traces may consist of complex temporal
patterns of spikes that encode the attributes of events as well as their
timings and sequences.

Testing the validity of these assertions entails solving the neural
coding problem for each of these domains. This involves looking
for the postulated temporal spike codes with sufficient temporal
resolution to determine whether they can accurately predict
with precision and robustness the corresponding informational
functions. The coding differences need to be shown to be causal
for the functions they are postulated to support.

Search for complex and multiplexed temporal codes will require
analysis of spike patterns that possibly occur across spike trains
of different neurons (see section “3.1.6 Finding temporal codes in
neural activity patterns”). Electrical, magnetic, optical, and acoustic
stimulation in different temporal patterns may also constitute
evidence for the efficacy of temporal patterns in evoking different
functional brain states.

We further posit (see section “4 Time-domain waveforms,
signals, and systems: common signal operations, holography,
radio communications, and the brain”) that time-domain
representations and operations can be implemented using temporal
correlations, time-domain holographic-like processing, wave
interference patterns, and/or oscillatory cascades. Mathematical
analysis and signal-processing simulations would be useful for
demonstrating the feasibility of these operations. Extending
experiments along the lines of Luff et al. (2024), more extensive
evidence of nonlinear multiplicative and thresholding operations,
especially in the context of oscillatory cascades (see section
“4.5 Radio cascade neural mixing model”) could be carried
out. Frequency-tagged stimuli could prove useful for such
experiments.

To the best of our knowledge, our model is novel in
applying signal processing principles to relate oscillatory band
interactions predictively across the range of commonly observed
neural oscillation bands. Empirical testing will be required to
further refine, support, or refute our hypotheses explicitly. Ways
to do that would be to inject additional oscillatory stimuli
and observe interactions, both for generating and/or disturbing
endogenous oscillations under different task paradigms (Takahashi
et al., 2024), to apply external stimuli to antiphasically abolish
endogenous oscillations, and to pharmacologically disrupt known
communication pathways. The logistics for performing such
research, especially simultaneous recordings at multiple sites,
precision temporal recordings, etc. will prove challenging but are
not perceived to be beyond the state-of-the-art.

6 Conclusion

A time-domain, signal-centric theory of brain function is
possible and plausible. Here we propose a set of principles for
temporal coding and processing that rely on the dynamics of
signal interactions. Relatively simple time-domain mechanisms
are proposed. These are integrated and coordinated in a
coherent functional organization that can support widely
observed complex brain functions and behaviors. These
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principles and mechanisms operate at multiple levels, both
locally and globally.

Starting with basic codes and operations (e.g., temporal
spike codes, correlational processing, signal synchronization,
signal mixing principles, and spreading activations), certain
functions and processes (e.g., spatiotemporal holographic object
and sequence reconstruction, content-addressable memory, and
oscillation interactions for propagating information selectively),
may efficiently and elegantly, simply emerge.

We believe this temporal perspective will prove useful in
formulating a coherent consolidated framework for understanding
the brain. There remain many open questions that are amenable
to empirical testing, and which we hope, with others, to investigate
more fully in the future.
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