
TYPE Original Research

PUBLISHED 29 January 2025

DOI 10.3389/fncom.2025.1513059

OPEN ACCESS

EDITED BY

Chenglong Zou,

Peking University, China

REVIEWED BY

Dulani Meedeniya,

University of Moratuwa, Sri Lanka

Guang Chen,

Peking University, China

*CORRESPONDENCE

Xinliang Lü

lxl230081@sina.com

RECEIVED 17 October 2024

ACCEPTED 07 January 2025

PUBLISHED 29 January 2025

CITATION

Yang L, Dong Q, Lin D, Tian C and Lü X (2025)

MUNet: a novel framework for accurate brain

tumor segmentation combining UNet and

mamba networks.

Front. Comput. Neurosci. 19:1513059.

doi: 10.3389/fncom.2025.1513059

COPYRIGHT

© 2025 Yang, Dong, Lin, Tian and Lü. This is

an open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

MUNet: a novel framework for
accurate brain tumor
segmentation combining UNet
and mamba networks

Lijuan Yang1,2, Qiumei Dong2, Da Lin3, Chunfang Tian4 and

Xinliang Lü1*

1Department of Rheumatology, Inner Mongolia Autonomous Region Hospital of Traditional Chinese

Medicine, Hohhot, China, 2College of Traditional Chinese Medicine, Inner Mongolia Medical University,

Hohhot, China, 3School of Mathematical Sciences, Inner Mongolia University, Hohhot, China,
4Department of Oncology, Inner Mongolia Autonomous Region Hospital of Traditional Chinese

Medicine, Hohhot, China

Brain tumors are one of the major health threats to humans, and their complex

pathological features and anatomical structures make accurate segmentation

and detection crucial. However, existing models based on Transformers and

Convolutional Neural Networks (CNNs) still have limitations in medical image

processing. While Transformers are proficient in capturing global features,

they su�er from high computational complexity and require large amounts of

data for training. On the other hand, CNNs perform well in extracting local

features but have limited performance when handling global information. To

address these issues, this paper proposes a novel network framework, MUNet,

which combines the advantages of UNet and Mamba, specifically designed

for brain tumor segmentation. MUNet introduces the SD-SSM module, which

e�ectively captures both global and local features of the image through selective

scanning and state-space modeling, significantly improving segmentation

accuracy. Additionally, we design the SD-Conv structure, which reduces

feature redundancy without increasing model parameters, further enhancing

computational e�ciency. Finally, we propose a new loss function that combines

mIoU loss, Dice loss, and Boundary loss, which improves segmentation overlap,

similarity, and boundary accuracy from multiple perspectives. Experimental

results show that, on the BraTS2020 dataset, MUNet achieves DSC values of

0.835, 0.915, and 0.823 for enhancing tumor (ET), whole tumor (WT), and tumor

core (TC), respectively, and Hausdor�95 scores of 2.421, 3.755, and 6.437. On

the BraTS2018 dataset, MUNet achieves DSC values of 0.815, 0.901, and 0.815,

with Hausdor�95 scores of 4.389, 6.243, and 6.152, all outperforming existing

methods and achieving significant performance improvements. Furthermore,

when validated on the independent LGG dataset, MUNet demonstrated excellent

generalization ability, proving its e�ectiveness in various medical imaging

scenarios. The code is available at https://github.com/Dalin1977331/MUNet.
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1 Introduction

Brain tumors are a type of malignant or benign tumor

originating from brain cells or metastasizing from other parts of

the body, posing a significant threat to human health (Michael

et al., 2021; Rezaei, 2021). They exhibit diverse pathological

manifestations and progress rapidly, often leading to severe

neurological dysfunctions that affect the quality of life and even

endanger the lives of patients (Abhisheka et al., 2023; Ibrahim

et al., 2020). Due to the heterogeneity, deep location, and complex

anatomical structure of brain tumors, early and accurate diagnosis

and treatment are crucial for improving prognosis and therapeutic

efficacy.

With the widespread application of deep learning in medical

image analysis, researchers have leveraged its powerful feature

extraction capabilities to achieve automatic segmentation and

detection of brain tumors. Deep learning models can utilize large

amounts of MRI data to learn the complex features of tumors,

enabling accurate and efficient analysis and identification (Zebari

et al., 2020; Chaudhury et al., 2022). Notably, structures like UNet

have achieved remarkable results in segmentation tasks, making

automated detection and segmentation of brain tumors possible.

Compared to traditional manual feature extraction methods, these

deep learning-based approaches can more precisely capture the

shape and boundary characteristics of tumors, providing a robust

tool for clinical assistance (Soulami et al., 2021; Houssein et al.,

2021).

In recent years, deep learning models based on Transformers

and Convolutional Neural Networks (CNNs) have made significant

advancements in the field of image segmentation. Transformer

architectures, with their self-attention mechanisms, excel

at capturing global features in images (Wang et al., 2023).

Complementarily, CNNs have unique advantages in extracting

local features, enabling the capture of spatial details within images.

However, these methods also have certain limitations. CNNmodels

face challenges in processing global information and may easily

overlook long-range spatial correlations (Zhu et al., 2024). On the

other hand, while Transformers are proficient at capturing global

features, their high computational complexity and demand for

large-scale training data limit their application in medical image

segmentation (Amgad et al., 2022).

As an emerging deep learning structure, the Mamba network

has achieved significant success in the field of computer vision.

With its efficient feature extraction capabilities and modular

design, Mamba has demonstrated strong performance advantages

in tasks such as image segmentation, object detection, and image

classification (Zhang et al., 2024). Compared to traditional CNN

models, the Mamba network excels in multi-scale feature fusion

and contextual information capture, allowing it to better adapt to

the complexity and diversity of visual data. Moreover, the Mamba

structure significantly reduces computational complexity relative to

Transformers (Badiezadeh et al., 2024). However, medical images

often contain complex textures and structures, especially MRI

brain tumor images, which exhibit considerable heterogeneity and

irregularity in their internal features. The variation in shape, size,

location, and contrast of tumors relative to surrounding normal

tissues makes feature extraction highly complex, posing challenges

for the Mamba network in accurately segmenting and identifying

tumor boundaries (Tang et al., 2024).

In this paper, we propose a novel network framework named

MUNet, which combines the advantages of Unet and Mamba,

specifically designed for brain tumor segmentation. To achieve

this, we design a new SD-SSM block structure that leverages

selective scanning and state space modeling to capture both global

and local features of the image. Moreover, without increasing

the number of parameters, we introduce the SD-Conv structure,

which consists of SCConv (Spatial and Channel Reconstruction

Convolution) and Depthwise Separable Convolution, aiming to

reduce feature redundancy and improve model efficiency. In

MUNet, we apply skip connections to the SD-SSM block, fusing

the features of the encoder and decoder to retain multi-scale

information. Additionally, we design a new loss function that

combines mIoU, Dice, and Boundary losses to optimize the overlap,

similarity, and boundary accuracy of the segmentation.

Key contributions of this paper include:

• This paper proposes an innovative framework, MUNet, which

combines Unet and Mamba, specifically for brain tumor

segmentation. By fully integrating the advantages of both,

MUNet achieves more precise and efficient segmentation of

tumor regions.

• This paper introduces a new SSM-based structure called the

SD-SSM Block. Utilizing selective scanning and dual-channel

feature extraction, it effectively captures multi-scale global

and local features of the image, enhancing segmentation

performance.

• This paper presents the SD-Conv structure, which combines

SCConv and DW Conv to compress redundant information

between features without increasing the number of model

parameters, thereby improving the efficiency of feature

extraction.

• For the task of brain tumor segmentation, this paper designs a

novel loss function that combines mIoU loss, Dice loss, and

Boundary loss. This approach optimizes the segmentation’s

overlap, similarity, and boundary accuracy from multiple

perspectives, thereby enhancing the performance of MUNet

in brain tumor segmentation.

The remaining structure of this paper is as follows: Section

2 presents the related work, introducing previous works on

brain tumor segmentation using Unet and Mamba. Section 3

covers the methodology, providing a detailed explanation of the

MUNet model concept. Section 4 describes the experiments,

including comparative experiments and ablation studies. Finally,

the conclusion summarizes the entire paper.

2 Related works

2.1 U-Net network and its innovative
evolution

In recent years, the U-Net network has made significant

progress in the field of medical image analysis. As a fully

convolutional neural network (FCN) (Ho et al., 2021), U-Net

employs its encoder-decoder symmetric structure to efficiently

extract and fuse local and global features from images, showing
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exceptional performance in image segmentation tasks (Futrega

et al., 2021).

To further enhance the performance of U-Net in medical

image segmentation, TransUNet (Chen et al., 2021) combines

U-Net with the Vision Transformer (ViT) to propose a hybrid

segmentation model based on Transformers. TransUNet builds

upon the U-Net encoder and utilizes the self-attention mechanism

of Transformers to model global features in images. The

ViT module (Li et al., 2023b) introduces patch-level feature

capturing during the encoding process, leveraging the global

attention mechanism to capture long-range dependencies, thereby

enhancing the model’s understanding of global context in images.

SwinUNet (Cao et al., 2022) further integrates U-Net with the Swin

Transformer, proposing a more efficient segmentation framework.

Swin Transformer is a hierarchical vision transformer model

that introduces a sliding window attention mechanism, effectively

capturing long-range dependencies in images while reducing

computational complexity. By embedding Swin Transformer

modules into the encoder and decoder parts of U-Net, SwinUNet

enhances the model’s multi-scale feature extraction capabilities

and global context modeling abilities. This model demonstrates

excellent performance in medical image segmentation tasks,

particularly for images with rich texture details and complex

structures (Walsh et al., 2022).

To further explore the potential of U-Net, the U-Mamba (Lee

and Kim, 2024) structure was developed. U-Mamba combines U-

Net with the Mamba network, leveraging Mamba’s strengths in

feature extraction and multi-scale information fusion to improve

segmentation accuracy. With its modular design, the Mamba (Xu

et al., 2024) network can be flexibly integrated into U-Net’s encoder

and decoder, enabling the comprehensive extraction and fusion

of features at different scales. Moreover, the Mamba network

exhibits strong generalization capabilities when handling complex

textures and structures, allowing U-Mamba to achieve more precise

segmentation results in medical imaging. Similarly, Mamba-Unet

integrates U-Net with Vision Mamba (VMamba) (Zhu et al., 2024),

fully combining U-Net’s context information capturing abilities

with the feature expression advantages of VMamba, thus proposing

an efficient network suitable for medical image segmentation (Patro

and Agneeswaran, 2024).

In this paper, we propose a novel framework that integrates

the Mamba structure with UNet. Unlike existing approaches, we

introduce the SD-SSM Block, which captures multi-scale features

through selective scanning and dual-channel feature extraction.

This design enables the model to better balance global feature

modeling with detail preservation. Furthermore, we present the

SD-Conv structure, which effectively reduces feature redundancy

without increasing the number of parameters. This enhancement

improves the efficiency of feature representation, enabling the

model to achieve superior accuracy and performance in brain

tumor segmentation.

2.2 Application of deep learning models in
brain tumor segmentation

In recent years, brain tumor segmentation models have made

significant progress in the field of deep learning (Magadza and

Viriri, 2021). ResUNet, for instance, is a model that combines

the residual network (ResNet) (Maji et al., 2022) with the U-

Net structure. By introducing residual modules, it effectively

addresses the gradient vanishing problem in deep networks,

significantly enhancing model stability and convergence speed,

thus improving the segmentation capability for complex brain

tumor features. However, while this residual structure increases the

model’s expressive capacity, it also introduces higher computational

costs, requiring more memory and longer training times. Models

based on DenseNet (Belaid et al., 2024) achieve efficient feature

transmission through dense connections, fully leveraging multi-

level features to improve segmentation accuracy, especially

excelling in capturing tumor edge details. Nonetheless, the

computational complexity and memory requirements brought by

dense connections limit their application in resource-constrained

environments. Attention Gated Networks (Chinnam et al.,

2022) introduce an attention mechanism, utilizing attention

gates to focus on important features related to target regions,

significantly improving focus on target areas and enhancing

segmentation accuracy in complex backgrounds for brain tumors.

However, the incorporation of the attention mechanism also

increases the network’s complexity, leading to longer inference

times. SegNet (Almotairi et al., 2020), as an encoder-decoder

structured model, relies on max-pooling indices for upsampling,

maintaining high computational efficiency and exhibiting good

real-time performance in brain tumor segmentation, making

it suitable for scenarios with high requirements for inference

speed. However, compared to other models based on advanced

convolutional structures, SegNet shows slightly lower accuracy

in segmenting complex tumor morphologies. Residual Attention

Networks combine residual connections and attentionmechanisms

to enhance the model’s ability to express target region features

while capturing both global and local information, and addressing

gradient issues in deep network training (Ranjbarzadeh et al.,

2021). However, due to the introduction of residual and attention

modules, this model has high computational resource requirements

during inference and can exhibit certain inference delays (Jyothi

and Singh, 2023). In addition, an interpretable model based on U-

Net and DenseNet has been designed for the segmentation and

classification of brain tumors. This model enhances interpretability

and transparency by generating heat maps that highlight the

contribution of each region of the input image to the classification

output (Wijethilake et al., 2021). This approach not only improves

the model’s interpretability but also increases its trustworthiness in

clinical diagnosis. Although these techniques provide new insights

for tumor survival prediction, they also face several challenges.

For example, existing models still suffer from poor interpretability

and limited generalization ability, which restrict their widespread

application in clinical practice. By combining imaging data with

genomic information, more dimensions of data can be leveraged

to provide a more reliable survival analysis of tumors, further

enhancing the accuracy of predictions (Dasanayaka et al., 2022b).

In this paper, we specifically designed MUNet for the

task of brain tumor segmentation, overcoming the limitations

of traditional CNN and Transformer architectures. MUNet

effectively captures both local and global features of tumors,

enhancing feature representation while also reducing

computational complexity.
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3 Methods

3.1 Preliminaries

State Space Models (SSM) (Zhu et al., 2024) are a framework

for modeling sequential data and are capable of capturing long-

range dependencies. SSM is widely used in visual tasks for efficiently

processing image sequences. It maps input sequences into a hidden

state space and models sequences recursively. This section will

introduce the SSM modeling process from three aspects: state

updates, output generation, and efficient computation.

State space representation The basic form of an SSM uses the

state vector h(t) ∈ R
N to represent the hidden state, mapping an

input sequence x(t) ∈ R to an output sequence y(t) ∈ R. The state

update equation and output equation are as follows:

h′(t) = Ah(t)+ Bx(t), (1)

y(t) = Ch(t), (2)

where: A ∈ R
N×N is the state transition matrix; B ∈ R

N×1 is the

input mapping matrix; C ∈ R
1×N is the output mapping matrix.

Discretization and time scale SSM is often a discretized

version of a continuous system, introducing a time-scale parameter

1 to convert a continuous-time state space into a discrete-time

state space. To achieve this transformation, a Zero Order Hold

(ZOH) is introduced:

Ā = exp(1A), (3)

B̄ = (1A)−1(exp(1A)− I) · 1B, (4)

where Ā and B̄ are the discretized state transition matrix and input

mapping matrix, respectively. The state update equation in the

discrete form is:

ht = Āht−1 + B̄xt , (5)

yt = Cht . (6)

Convolutional form and efficient computation In SSM,

the state update process can be converted into a convolutional

kernel form through convolution operations. Assuming the input

sequence has a length ofM, the convolution kernelK is represented

as:

K = [CB,CĀB, . . . ,CĀM−1B]. (7)

The output sequence of the SSM can then be computed using the

convolution operation as follows:

y = x ∗ K, (8)

where ∗ denotes the convolution operation.

2D selective scan The traditional SSM are primarily designed

for one-dimensional sequential data, which limits their ability to

effectively capture the spatial information inherent in visual tasks.

To overcome this challenge, a two-dimensional selective scanning

(SS2D) method is introduced to model the 2D features in visual

data effectively.

SS2D first divides the input image into a series of patches and

arranges them in four directions: left to right, right to left, top to

bottom, and bottom to top, generating four independent feature

sequences. Let the original feature be z and the direction index be i.

Each directional feature sequence can be represented as:

zi = expand(z, i), (9)

where zi is the feature sequence in the i-th direction, and the

function expand represents the operation of arranging image

patches according to the direction i.

In this way, SS2D achieves a global receptive field without

significantly increasing the computational complexity, enabling the

model to capture the global context of the image. Each generated

feature sequence zi is then processed through the selective scanning

state space model, which performs feature extraction and modeling

to obtain the processed feature sequence z̄i:

z̄i = S6(zi), (10)

where S6 denotes the selective scanning state space model’s

operation on the feature sequence.

After processing all the directional feature sequences, SS2D

merges the sequences z̄1, z̄2, z̄3, z̄4 to reconstruct the 2D feature

representation:

z̄ = merge(z̄1, z̄2, z̄3, z̄4), (11)

where the function merge denotes the fusion of the features from

the four directions to form the final 2D feature representation.

By scanning from four different directions, processing the

feature sequences, and merging them, SS2D effectively captures

the global spatial information of the image, thereby enhancing

the model’s perception and understanding of visual tasks. The

resulting feature z̄ contains rich contextual relationships, providing

a comprehensive and efficient representation for subsequent visual

analysis tasks.

3.2 Model structure

This paper proposes a network structure called MUNet, which

combines SSM and the encoder-decoder architecture of UNet for

efficient image segmentation. As shown in Figure 1A, MUNet first

partitions the image into patches and performs linear embedding

to obtain initial feature representations. These features are then

processed by multiple SD-SSM block, where each module scans the

feature sequences from different directions, capturing the global

contextual information of the image for feature modeling and

enhancement. The encoder gradually compresses the feature map

to extract multi-scale information, while the Skip Connection

passes features from the encoding process directly to the decoder

to preserve image details. In the decoder, the network progressively

restores the spatial resolution of the feature map and achieves

accurate segmentation by integrating the multi-level features from

the encoder. Patch Merging and Patch Expanding layers are

used for feature compression and expansion, ensuring smooth
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information flow throughout the encoding-decoding process.

Finally, through the combination of multiple SD-SSM block and

skip connections, MUNet effectively captures both global and

local features of the image, enhancing segmentation accuracy and

efficiency.

3.3 SD-SSM block

The SD-SSM Block is a key module in the MUNet network, as

shown in Figure 1B. Its structure comprises two main branches:

X1 and X2. The X1 branch first applies batch normalization

to the input features and then captures multi-scale information

through multiple layers of dilated convolution using the SD-

Conv module. The X2 branch normalizes the features through

layer normalization and linear transformation, combined with the

SiLU activation function to enhance non-linear representation

capability. Subsequently, the features are processed through SD-

Conv and SS2D modules to ensure the capture of global context

information. The features from both branches are finally fused

and connected to the residuals of the input features to enhance

representational capacity.

The core module of the SD-SSM Block, SD-Conv, is

composed of SCConv (Spatial and Channel Reconstruction

Convolution) (Li et al., 2023a) and DW Conv (Depthwise

Separable Convolution) (Huang et al., 2023), as shown in Figure 2.

SCConv reconstructs spatial and channel information through two

units: the Spatial Reconstruction Unit (SRU), which suppresses

spatial redundancy through a separated reconstruction method,

and the Channel Reconstruction Unit (CRU), which eliminates

channel redundancy through a split-transform-merge strategy.

By integrating SCConv and DW Conv, SD-Conv effectively

compresses spatial and channel redundancies among features,

forming an efficient convolutional module. This module reduces

redundant computations while preserving the representational

capacity of the model, enabling better learning of key features in

the image, particularly those in tumors, and enhancing the model’s

segmentation performance.

3.4 Skip connetions

Two SD-SSM Blocks are used in MUNet’s encoder and

decoder to effectively model both local and global features of

the image. Each level of the encoder and decoder employs skip

connections tomixmulti-scale features with the upsampled output,

enhancing spatial details by merging shallow and deep features.

These skip connections ensure that high-resolution features from

earlier layers of the encoder are preserved and fully utilized

in the decoding process, maintaining crucial spatial information

throughout the network and improving segmentation accuracy.

This design enables MUNet to capture fine-grained details and

contextual information simultaneously, achieving more precise

and robust segmentation results, particularly in complex visual

scenarios like tumor boundaries.

3.5 Loss function

In the domain of MRI brain tumor segmentation, the key

evaluationmetrics are the overlap between the segmentation results

and the ground truth, as well as the accuracy and similarity of

the boundaries. To address these metrics effectively, we design a

weighted loss function that combines mIoU Loss, Dice Loss, and

Boundary Loss. Each loss function optimizes a different aspect

of the segmentation task, ensuring that the network achieves

comprehensive and balanced performance.

The mean Intersection over Union (mIoU) loss is used to

optimize the overlap between the predicted segmentation P and the

ground truth G. It is defined as:

LmIoU = 1−
1

N

N∑

i=1

|Pi ∩ Gi|

|Pi ∪ Gi|
(12)

where N is the total number of pixels in the image, Pi is the set

of pixels predicted as part of the tumor in the i-th class, and Gi is

the set of ground truth pixels for the tumor in the i-th class. The

mIoU loss penalizes regions where the segmentation and ground

truth do not overlap well, focusing on improving the overall overlap

accuracy.

The Dice loss aims to maximize the similarity between the

predicted segmentation and the ground truth. It is defined as:

LDice = 1−
2
∑N

i=1 PiGi∑N
i=1 P

2
i +

∑N
i=1 G

2
i

(13)

where Pi and Gi are the prediction and ground truth for each

pixel. The Dice loss emphasizes the correct classification of tumor

regions, focusing on the balance between false positives and false

negatives, thus optimizing both sensitivity and precision.

The Boundary loss is used to refine the accuracy of the

segmentation boundaries, which is crucial for brain tumor

segmentation. It is defined as:

LBoundary =

∑N
i=1 dboundary(Pi,Gi)

N
(14)

where dboundary(Pi,Gi) is the distance between the predicted

boundary and the ground truth boundary for pixel i, and N is the

total number of pixels in the boundary region. The Boundary loss

optimizes the fine details of the segmentation, ensuring that the

predicted boundaries closely match the ground truth boundaries.

The final loss function is a weighted combination of the above

three losses:

Ltotal = αLmIoU + βLDice + γLBoundary (15)

where α,β , γ are the weights that control the contribution of each

loss term.

By combining these three loss components, the total loss

function optimizes the segmentation task from multiple

perspectives: enhancing overall overlap accuracy (mIoU),

improving the similarity between predicted and actual tumor

regions (Dice), and refining boundary precision (Boundary). This

comprehensive approach allows for more accurate and effective

segmentation results in MRI brain tumor analysis.

Frontiers inComputationalNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fncom.2025.1513059
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Yang et al. 10.3389/fncom.2025.1513059

FIGURE 1

MUNet Architecture. (A) Illustrates the overall structure of MUNet, which follows an encoder-decoder design. The input image is processed through

linear embedding, SD-SSM blocks, and multiple rounds of patch merging, with skip connections between the encoder and decoder layers facilitating

information transfer. (B) Provides a detailed view of the internal structure of the SD-SSM block.

FIGURE 2

The architecture of SCConv integrated with the Spatial Reconstruction Unit (SRU) and the Channel Reconstruction Unit (CRU).

4 Experiments

4.1 Experimental setup

Datasets This study utilizes three main datasets for

experiments: the BraTS2020 dataset, the BraTS2018 dataset (Bakas

et al., 2017, 2018; Menze et al., 2014), and an independently

validated LGG segmentation dataset (Buda et al., 2019). The LGG

segmentation dataset is sourced from The Cancer Imaging Archive

(TCIA) and includes MRI images from 110 patients in the Cancer

Genome Atlas (TCGA) Low-Grade Glioma (LGG) collection, with

a total of 3,929 images. These images are used for research on

low-grade glioma segmentation, with the training set containing

2,750 images and the test set containing 1,179 images. Figure 3A

shows an example from this dataset. The BraTS2020 dataset focuses

on brain tumor segmentation, particularly for evaluating advanced

methods in tumor segmentation using multimodal MRI scans. The

BraTS2020 dataset provides a large training set of 369 MRI scan

images and a validation set of 125 scans. Similarly, the BraTS2018

dataset is used for brain tumor segmentation, containing 285

training images and 66 validation images. Each MRI scan has a size

of 240 × 240 × 155, with each case including multiple modalities

such as T1, T1c, T2, and FLAIR. Figure 3B shows an example from

the BraTS dataset.

Experimental environment The experiment was conducted

on a high-performance server with the following hardware

configuration: Intel Xeon Gold 6226R processor, NVIDIA Tesla

V100 GPU (32GB memory), 128GB DDR4 RAM, and 1TB NVMe

SSD storage, running Ubuntu 20.04 LTS as the operating system.

For the software environment, PyTorch 1.10 was used as the

deep learning framework, with CUDA 11.4 and cuDNN 8.2 for

acceleration, and Python 3.8 as the programming language. The

Frontiers inComputationalNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fncom.2025.1513059
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Yang et al. 10.3389/fncom.2025.1513059

FIGURE 3

Dataset sample display. (A) LGG segmentation dataset display. (B) BraTS dataset display.

scientific computing libraries included NumPy 1.21 and SciPy 1.7,

while Pandas 1.3 and Matplotlib 3.4 were used for data processing

and visualization. Additionally, OpenCV 4.5 was installed for

image processing, and scikit-learn 0.24 for data analysis and

model evaluation. All software packages were managed using the

conda environmentmanagement tool to ensure reproducibility and

compatibility of dependencies.

Evaluation metrics The evaluation metrics used in this paper

include Kappa (k), Dice Similarity Coefficient (DSC), Intersection

over Union (IoU), Sensitivity (S), Precision (P), Specificity (Sp),

Accuracy (A), and Balanced Accuracy (BA).

Kappa is used to measure the agreement between the predicted

and actual classifications, considering the possibility of the

agreement occurring by chance.

k =
Po − Pe

1− Pe
(16)

Where: Po is the observed agreement (the proportion of correct

predictions). Pe is the expected agreement (the proportion of

correct predictions by chance).

DSC is used to measure the degree of overlap between two sets,

while IoU measures the ratio of the intersection and the union

between the predicted and the ground truth regions.

DSC =
2× |X ∩ Y|

|X| + |Y|
(17)

IoU =
|X ∩ Y|

|X ∪ Y|
(18)

where X and Y represent the sets of predicted and ground truth

pixels, respectively.

Sensitivity (S) measures the model’s ability to correctly identify

positive instances, precision (P) represents the correctness of the

predicted positive instances, specificity (Sp) measures the ability to

correctly identify negative instances, and accuracy (A)measures the

overall correctness of the model’s predictions.

S =
TP

TP + FN
(19)

P =
TP

TP + FP
(20)

Sp =
TN

TN + FP
(21)

A =
TP + TN

TP + TN + FP + FN
(22)

where TP stands for true positives, TN stands for true negatives, FP

stands for false positives, and FN stands for false negatives.

Balanced Accuracy is used to account for imbalanced data,

providing the average of sensitivity and specificity.

BA =
S+ Sp

2
(23)

Hausdorff95 is a metric commonly used in segmentation tasks

to measure the spatial distance between the predicted boundary

and the ground truth boundary. Unlike the traditional Hausdorff

Distance, which considers the maximum distance between two
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point sets, Hausdorff95 focuses on the 95th percentile distance,

effectively reducing the influence of outliers and providing a more

robust evaluation for medical image segmentation tasks where

extreme outliers might distort the overall assessment.

H95(A,B) = max{h95(A,B), h95(B,A)} (24)

where, h95(A,B) represents the 95th percentile of the set of

minimum distances from points in set A to the closest points in

set B. A and B are typically the sets of points that represent the

boundaries of the ground truth segmentation and the predicted

segmentation, respectively. This measure ensures that 95% of the

points on the predicted boundary are within a certain distance

from the ground truth boundary, making it a more resilient metric

for segmentation accuracy, particularly in scenarios where small

boundary discrepancies are permissible.

4.2 Results

In this paper, the MUNet model demonstrated outstanding

performance on both the BraTS2020 and BraTS2018 datasets,

significantly surpassing other existing models. As shown in Table 1,

MUNet’s performance on the three key metrics-enhancing tumor

(ET), whole tumor (WT), and tumor core (TC)-is highlighted.

On the BraTS2020 dataset, MUNet exhibited a notable

improvement over other methods. Specifically, for ET

segmentation, MUNet achieved a DSC score of 0.835,

approximately 6.6% higher than the traditional U-Net. For

WT segmentation, MUNet reached a DSC score of 0.915,

outperforming ResU-Net by about 2.2%. Additionally, MUNet

showed clear advantages in TC segmentation, improving by

around 2.7% compared to U-Net. In terms of boundary accuracy,

MUNet also performed exceptionally well, with the Hausdorff95

distance for ET reduced by nearly 58% compared to U-Net,

indicating significant improvements in boundary capturing and

morphological recognition.

On the BraTS2018 dataset, MUNet also exhibited substantial

improvements. For ET segmentation, MUNet’s DSC score

increased by about 12.5% compared to traditional U-Net. WT

segmentation accuracy improved by around 5.9%, meaning

MUNet can more effectively capture the global morphological

characteristics of tumors. Notably, MUNet also showed significant

improvements in Hausdorff95 distance, reducing the ET score by

approximately 37% compared to other models.

This result also indicates that, compared to existing CNN-

based and Transformer-based models, MUNet demonstrates

superior performance in tumor segmentation tasks. For example,

although ResU-Net improves feature propagation through residual

connections, it still falls short when handling complex MRI images.

MUNet, by integrating both global and local features and leveraging

the SD-SSM module to effectively capture detailed information,

significantly improves segmentation accuracy. In comparison

to SwimUNet, MUNet also shows a clear advantage in detail

processing.While SwimUNet enhances global context information,

it does not perform as well as MUNet in the reconstruction of fine

boundaries. MUNet ensures precise boundary modeling through

skip connections and multi-layer SD-Conv modules, resulting in a

lower Hausdorff95 distance and higher segmentation accuracy.

Figure 4 visualizes the tumor detection results of MUNet

for brain tumors. As seen in the figure, MUNet demonstrates

remarkable accuracy in segmenting tumor regions, particularly

excelling in delineating boundary areas, where it clearly

outperforms traditional models. The segmentation results

not only provide a clear depiction of the tumor’s morphological

features but also retain critical detailed information. Additionally,

MUNet exhibits excellent global consistency in segmenting both

WT and TC, with the tumor contours and core regions represented

comprehensively and accurately. These results highlight MUNet’s

strong capability in handling complex brain tumor shapes and its

potential for precise tumor analysis in medical imaging.

Computational complexity analysis As shown in Table 1,

we further compared the computational complexity of MUNet

with other existing models, specifically considering the number

of floating-point operations (FLOPs) and the number of model

parameters. The data in the table clearly show that MUNet has

a significant advantage in both FLOPs and parameter count.

Firstly, MUNet has 140.97 GFLOPs, which is notably lower than

most traditional models, especially SwimUNet and TransUNet,

which have 370.31 GFLOPs and 390.76 GFLOPs, respectively.

This indicates that MUNet is more computationally efficient and

can perform the same tasks with fewer computational resources,

reducing both computational cost and runtime. Additionally,

MUNet has 7.27M parameters, which is significantly fewer

compared to models such as ResU-Net (25.75M), SwimUNet

(25.18M), and TransUNet (20.45M). The smaller parameter count

not only helps accelerate model training but also reduces memory

usage, facilitating efficient deployment even under hardware

constraints.

4.3 Ablation study

In the ablation experiments of this paper, we conducted a

detailed analysis of MUNet’s performance on the BraTS2020 and

BraTS2018 datasets by progressively adding each of its modules.

Additionally, we analyzed the impact of the proposed loss functions

on MUNet’s performance.

4.3.1 Ablation experiments between components
Performance on the BraTS2020 dataset As shown in Table 1,

the baseline U-Net model achieved DSC scores of 0.783, 0.882,

and 0.801 for ET, WT, and TC segmentation, respectively,

with Hausdorff95 distances of 5.835, 5.447, and 7.123. With

the introduction of the SD-SSM Block, the model’s ability to

capture global and local features improved, resulting in increased

DSC scores of 0.795, 0.895, and 0.805 for ET, WT, and TC,

along with a reduction in Hausdorff95 distances. Notably, the

Hausdorff95 distance for WT decreased from 5.447 to 4.358,

indicating a significant improvement in boundary accuracy.

When the SD-Conv structure was further added, the model’s

performance improved again, with DSC scores increasing to

0.815, 0.899, and 0.810 for ET, WT, and TC, respectively, and a
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TABLE 1 Comparison of di�erent methods using DSC and Hausdor�95 metrics for BraTS2020 dataset and BraTS2018 dataset.

Method DSC (BraTS2020) Hausdor�95
(BraTS2020)

DSC (BraTS2018) Hausdor�95
(BraTS2018)

ET WT TC ET WT TC ET WT TC ET WT TC

U-Net 0.783 0.882 0.801 5.835 5.447 7.123 0.724 0.851 0.747 6.554 12.645 11.035

Attention U-Net (Oktay et al., 2018) 0.775 0.859 0.798 4.586 5.253 7.174 0.765 0.869 0.758 7.596 10.253 11.174

ResU-Net (Maji et al., 2022) 0.812 0.895 0.813 4.759 5.789 6.597 0.795 0.892 0.758 6.993 8.597 10.046

FE-HU-NET (Nizamani et al., 2023) 0.802 0.870 0.815 4.859 5.253 5.764 0.742 0.872 0.745 5.894 8.243 9.765

HC-Mamba (Xu, 2024) 0.795 0.899 0.812 5.358 4.125 7.766 0.812 0.883 0.787 5.459 6.248 9.764

Mamba-UNet (Wang et al., 2024) 0.813 0.902 0.798 3.389 4.243 6.766 0.802 0.906 0.801 5.127 6.873 6.766

SwimUNet (Cao et al., 2022) 0.792 0.892 0.745 5.347 6.729 8.588 0.776 0.847 0.759 6.798 8.257 8.712

TransUNet (Chen et al., 2021) 0.798 0.877 0.712 3.598 5.871 6.766 0.762 0.850 0.765 6.389 8.247 8.153

MUNet 0.835 0.915 0.823 2.421 3.755 6.437 0.815 0.901 0.815 4.389 6.243 6.152

The optimal results are indicated in bold.

FIGURE 4

Display of MUNet segmentation performance on the BraTS dataset.
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reduction in Hausdorff95 distances across all metrics, especially

for ET, which decreased to 4.524. This improvement suggests

that the SD-Conv structure helped reduce feature redundancy

and enhance computational efficiency, contributing to better

segmentation accuracy while maintaining high-resolution features.

Finally, after the introduction of the newly designed loss function,

the model reached optimal performance. The DSC scores for

ET, WT, and TC rose to 0.835, 0.915, and 0.823, respectively,

significantly outperforming all previous combinations. Notably,

the Hausdorff95 distance for ET decreased to 2.421, a reduction

of approximately 58%. This demonstrates that the new loss

function played a crucial role in optimizing the overlap,

similarity, and boundary accuracy of the segmentation results,

significantly improving the model’s ability to handle complex

tumor morphologies. From these ablation experiment results, it

can be seen that the SD-SSM Block and SD-Conv modules work

synergistically, not only improving the model’s ability to capture

global and local features but also enhancing efficiency by reducing

feature redundancy. Moreover, the new loss function played a

critical role in improving boundary accuracy and preserving fine

details. Together, these components have enabled MUNet to

demonstrate significant advantages in brain tumor segmentation

tasks.

Performance on the BraTS2018 dataset In the ablation

experiments on the BraTS2018 dataset, the results followed a

similar trend to those observed in the BraTS2020 dataset. As

shown in Table 2, the baseline U-Net model achieved DSC scores

of 0.724, 0.851, and 0.747 for ET, WT, and TC segmentation,

respectively, with corresponding Hausdorff95 distances of 6.554,

12.645, and 11.035, serving as the baseline performance. When

the SD-SSM Block was added, although the DSC for WT slightly

decreased to 0.779, the DSC for ET and TC improved slightly

to 0.764 and 0.728, respectively. In addition, there was an

improvement in Hausdorff95 distances, particularly for WT, where

the distance decreased from 12.645 to 11.273, indicating some

enhancement in boundary accuracy. With the introduction of the

SD-Conv module, the overall performance of the model improved

significantly. The DSC scores for ET, WT, and TC increased to

0.796, 0.885, and 0.787, respectively, and the Hausdorff95 distances

dropped considerably, especially for WT, where it decreased from

11.273 to 8.597. This suggests that the SD-Conv module greatly

contributed to feature extraction and boundary handling. Finally,

when the new loss function was introduced, the model reached

its optimal performance. The DSC scores for ET, WT, and TC

rose to 0.815, 0.901, and 0.815, respectively, and the Hausdorff95

distances significantly decreased across all metrics, particularly

for ET, where the distance dropped to 4.389. This indicates that

the new loss function greatly enhanced the model’s segmentation

accuracy, especially in handling boundaries and complex tumor

morphologies.

4.3.2 Ablation experiments on the loss function
Performance on the BraTS2020 dataset As shown in Table 5,

the complete MUNet model achieved a DSC score of 0.835

for ET segmentation. However, when the mIoU loss function

was removed, the DSC significantly dropped by around 20%,

TABLE 2 Comparison and analysis of dataset model e�ciency.

Methods FLOPs (GFLOPs) Number of
parameters (Millions)

U-Net 142.05 6.53M

Attention U-Net 156.21 7.49M

ResU-Net 242.96 25.75M

FE-HU-NET 241.97 11.75M

HC-Mamba 169.25 9.38M

Mamba-UNet 199.89 22.65M

SwimUNet 370.31 25.18M

TransUNet 390.76 20.45M

MUNet 140.97 7.27M

The optimal results are indicated in bold.

TABLE 3 Ablation experiments on di�erent combinations of MUNet on

the BraTS2020 dataset.

Method DSC Hausdor�95

ET WT TC ET WT TC

U-Net 0.783 0.882 0.801 5.835 5.447 7.123

U-Net + SD-SSM

Block

0.795 0.895 0.805 5.105 4.358 6.578

U-Net + SD-SSM

Block + SD-Conv

0.815 0.899 0.810 4.524 3.698 6.581

U-Net + SD-SSM

Block + SD-Conv +

Loss function

0.835 0.915 0.823 2.421 3.755 6.437

The optimal results are indicated in bold.

TABLE 4 Ablation experiments on di�erent combinations of MUNet on

the BraTS2018 dataset.

Method DSC Hausdor�95

ET WT TC ET WT TC

U-Net 0.724 0.851 0.747 6.554 12.645 11.035

U-Net + SD-SSM

Block

0.764 0.779 0.728 6.586 11.273 10.175

U-Net + SD-SSM

Block + SD-Conv

0.796 0.885 0.787 5.993 8.597 7.046

U-Net + SD-SSM

Block + SD-Conv +

Loss function

0.815 0.901 0.815 4.389 6.243 6.152

The optimal results are indicated in bold.

down to 0.665. At the same time, the Hausdorff95 distance

increased substantially from 2.421 to 6.586, almost a 2.7-fold

increase, indicating the critical role of mIoU in enhancing overall

segmentation accuracy. When the Dice loss was removed, the

DSC for ET decreased to 0.709, about 15% lower than the

complete model, and the Hausdorff95 distance increased to 8.687,

highlighting the importance of Dice loss in improving regional

similarity. Similarly, removing the Boundary loss resulted in a

DSC drop to 0.642, a reduction of approximately 23%, while

the Hausdorff95 distance increased to 9.126, nearly quadrupling,
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TABLE 5 Ablation experiments on the loss function of MUNet.

Method DSC (BraTS2020) Hausdor�95 (BraTS2020) DSC (BraTS2018) Hausdor�95 (BraTS2018)

ET WT TC ET WT TC ET WT TC ET WT TC

MUNet 0.835 0.915 0.823 2.421 3.755 6.437 0.815 0.901 0.815 4.389 6.243 6.152

w/oLmIoU 0.665 0.689 0.728 6.586 11.253 15.174 0.710 0.724 0.763 7.258 15.254 14.184

w/oLDice 0.709 0.714 0.708 8.687 10.543 11.258 0.684 0.692 0.719 8.573 12.574 13.245

w/oLBoundary 0.642 0.671 0.665 9.126 10.374 12.149 0.601 0.679 0.712 10.589 14.153 15.766

The optimal results are indicated in bold.

TABLE 6 MUNet independent validation on the LGG segmentation dataset.

Method Kappa DSC IOU Sensitivity Specificity Precision Accuracy BA AUC

MUNet 0.678 0.702 0.581 0.658 0.975 0.762 0.981 0.808 0.812

FIGURE 5

Display of MUNet segmentation performance on the LGG segmentation dataset.

Frontiers inComputationalNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fncom.2025.1513059
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Yang et al. 10.3389/fncom.2025.1513059

emphasizing the significance of Boundary loss in ensuring

segmentation boundary accuracy. For WT and TC segmentation,

similar trends were observed. Removing the mIoU loss led to a

roughly 25% decrease in WT’s DSC, and the Hausdorff95 distance

more than doubled. Removing Dice and Boundary losses resulted

in approximately 20% reductions in segmentation accuracy, with

significant increases in Hausdorff95 distance, indicating that each

loss function plays a key role in optimizing performance for

different segmentation targets.

Performance on the BraTS2018 dataset For the BraTS2018

dataset, the complete MUNet model achieved a DSC score of 0.815

for ET segmentation. After removing the mIoU loss, the DSC

dropped by approximately 13%, to 0.710, while the Hausdorff95

distance increased by 65%, from 4.389 to 7.258. This shows

that mIoU is equally crucial for improving global segmentation

performance on this dataset. Removing the Dice loss reduced

the DSC for ET to 0.684, a decrease of around 16%, and the

Hausdorff95 distance increased to 8.573, nearly doubling. Similarly,

removing the Boundary loss led to a 26% reduction in ET’s DSC,

while the Hausdorff95 distance increased to 10.589, almost 2.4

times higher, demonstrating the essential role of Boundary loss in

capturing accurate boundaries in complex tumor morphologies.

The segmentation for WT and TC also showed similar declines.

Removing the mIoU loss resulted in a 20% reduction in WT’s DSC,

while the Hausdorff95 distance roughly doubled. Removing Dice

and Boundary losses decreased segmentation accuracy by about

20%, with significant increases in Hausdorff95 distance, confirming

the multi-dimensional improvement in segmentation performance

provided by these loss functions.

4.4 Independent validation

The independent validation on the LGG segmentation dataset,

as shown in Table 6, demonstrates that the MUNet model

performs well across several key performance metrics. The model

exhibits high accuracy and balanced accuracy, along with excellent

performance in specificity and AUC, indicating its robustness and

generalization ability in the LGG segmentation task. These results

validate the effectiveness of MUNet in handling medical image

segmentation tasks. Figure 5 visualizes the LGG segmentation

dataset, and from the figure, the segmentation results of the model

can be intuitively observed. MUNet is able to accurately identify

brain tumor segmentation regions, and the overlap between the

segmentation results and the ground truth is highly consistent,

further demonstrating the model’s superior performance and

reliability. This high-quality segmentation result also lays a solid

foundation for automated processing in medical image analysis.

4.5 Limitations and future work

Although MUNet performs well in the task of brain tumor

segmentation, there are still some limitations that require further

research and improvement. Firstly, while the SD-SSM block in

MUNet effectively combines global and local features, the model’s

accuracy may decline when dealing with extremely complex

or highly heterogeneous tumor regions. In such cases, unclear

tumor boundaries or irregular shapes may result in insufficient

precision in segmentation. Future work could focus on enhancing

boundary detection mechanisms to improve boundary recognition

in complex tumor regions.

Secondly, as a black-box model, MUNet lacks interpretability,

which may limit its widespread application in clinical settings.

Although MUNet performs excellently in brain tumor

segmentation tasks, in clinical practice, doctors often need to

understand the decision-making process of the model, especially

when faced with critical diagnoses (Dasanayaka et al., 2022a).

Future research could focus on designing transparent reasoning

processes or explanation modules within the model, allowing

doctors to clearly understand each decision step and the weight

distribution, thereby increasing trust in the model’s predictions.

In addition, although MUNet has achieved good performance

on the current dataset, it still faces the issue of overfitting, especially

when the data is limited or the data distribution is imbalanced.

Overfitting may result in good performance on the training set,

but poor predictive performance on unseen data in practical

applications. To reduce the risk of overfitting, future research can

enhance the diversity of the dataset by increasing the amount

of annotated data or employing data augmentation techniques

to expand the training set. Meanwhile, regularization methods

can help reduce model complexity and decrease the probability

of overfitting. Additionally, transfer learning could be employed,

where the model is pre-trained on large publicly available datasets

and then fine-tuned for the specific brain tumor segmentation task,

thus improving the model’s generalization ability.

5 Conclusion

This paper presents a novel network framework named

MUNet, which combines the advantages of UNet and Mamba

to achieve efficient and accurate brain tumor segmentation. By

introducing the SD-SSM module, which utilizes selective scanning

and state space modeling, MUNet can capture both global and

local features of images, thereby improving segmentation accuracy.

Additionally, the integration of the SD-Conv structure reduces

feature redundancy without increasing the number of parameters,

enhancing the overall efficiency of the model. Experimental

results show that MUNet outperforms existing methods on

the BraTS2020 and BraTS2018 datasets, achieving superior

segmentation accuracy. Moreover, MUNet demonstrates excellent

generalization capabilities when validated on the independent

LGG segmentation dataset, further proving its effectiveness in

various medical imaging scenarios. Future work may focus on

extending the application of MUNet to other imaging modalities

and exploringmore advanced learning strategies to further enhance

its clinical applicability.
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