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Traditional object detection methods usually underperform when locating tiny 
or small drones against complex backgrounds, since the appearance features of 
the targets and the backgrounds are highly similar. To address this, inspired by 
the magnocellular motion processing mechanisms, we proposed to utilize the 
spatial–temporal characteristics of the flying drones based on spiking neural 
networks, thereby developing the Magno-Spiking Neural Network (MG-SNN) for 
drone detection. The MG-SNN can learn to identify potential regions of moving 
targets through motion saliency estimation and subsequently integrates the 
information into the popular object detection algorithms to design the retinal-
inspired spiking neural network module for drone motion extraction and object 
detection architecture, which integrates motion and spatial features before 
object detection to enhance detection accuracy. To design and train the MG-
SNN, we propose a new backpropagation method called Dynamic Threshold 
Multi-frame Spike Time Sequence (DT-MSTS), and establish a dataset for the 
training and validation of MG-SNN, effectively extracting and updating visual 
motion features. Experimental results in terms of drone detection performance 
indicate that the incorporation of MG-SNN significantly improves the accuracy of 
low-altitude drone detection tasks compared to popular small object detection 
algorithms, acting as a cheap plug-and-play module in detecting small flying 
targets against complex backgrounds.
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1 Introduction

The rapid development of unmanned aerial vehicle technology has led to the wide use of 
small civilian drones for various tasks such as security patrols, agricultural monitoring, and 
disaster relief. However, there is also misuse of drones for illegal activities such as smuggling 
contraband, espionage mapping, and close-range reconnaissance, posing a significant threat 
to public safety (AL-Dosari et al., 2023). Therefore, it is crucial to develop an early warning 
detection system for low-altitude, short-range small drones. Traditional radar detection 
methodologies encounter challenges in identifying small drones due to their limited radar 
cross-section, low operational altitude, slow velocity, and inclination to conceal within intricate 
backgrounds, rendering them susceptible to ground clutter interference (Abro et al., 2022). 
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Recent studies have shown the potential of advanced communication 
and machine learning approaches in improving UAV detection 
capabilities and reducing interference from complex backgrounds 
(Khalil et al., 2022). Conversely, optoelectronic sensors, encompassing 
the infrared and visible light spectra, prove more adept at detecting 
short-range, low-altitude drone targets in complex settings, and the 
image and video data it captures need to be further processed using 
object detection to output results.

Previous research on drone detection has employed various 
techniques, primarily developed based on deep neural networks. 
These techniques are classified into two-stage and single-stage 
algorithms, depending on whether candidate regions are explicitly 
generated. Two-stage methods, such as the Faster R-CNN (Ren et al., 
2015), have achieved success, although they require substantial 
computational resources and have certain limitations in real-time 
processing. In contrast, single-stage algorithms, represented by 
methods like YOLO (Redmon et al., 2016) and SSD (Liu et al., 2016), 
offer faster detection speeds but lower accuracy. These models perform 
effectively on static images and general large-scale datasets but often 
struggle to identify small targets in cluttered and dynamic 
environments, particularly due to the information loss associated with 
small targets. Issues such as motion blur, object occlusion, lighting 
variations, angle changes, and device defocusing in video object 
detection highlight the necessity for more efficient and accurate 
methods for detecting small drones in complex environments (Jiao 
et al., 2021). To address the above challenges, gaining an understanding 
of the operational mechanisms of the biological retina (Yücel et al., 
2003) offers valuable insights. Serving as the initial stage in visual 
information processing, the biological retina is responsible for 
converting optical stimuli into electrical signals. These signals undergo 
preliminary processing by the retinal neuron network before being 
transmitted to the output neurons of the retina—ganglion cells. 
Ultimately, they are transformed into action potentials and conveyed 
to the visual center via the optic nerve. The biological retina is 
endowed with highly specialized functions, encompassing high-
resolution color perception, swift response to dynamic images, and 
effective processing of intricate scenes. These attributes equip the 
retina to manage a wide range of visual information, facilitating 
complex visual tasks such as motion detection, depth perception, and 
image segmentation (Neuroscience, 2020).

Despite drawing inspiration from the biological visual system for 
feature extraction and hierarchical processing, traditional visual 
perception algorithms struggle to adapt to swift-moving targets or 
intricate backgrounds, particularly within dynamic environments where 
erroneous detections are prevalent. Unlike conventional artificial neural 
networks, the biological retina possesses the ability to directly process 
dynamic temporal information and adjust to complex environments 
through mechanisms such as neural plasticity, a trait that proves 
challenging to completely replicate (Wohrer and Kornprobst, 2009; 
Hagins, 1972; Field and Chichilnisky, 2007; Beaudot et  al., 1993). 
Bio-inspired models that emulate the workings of the biological retina 
offer improved capabilities in extracting motion features, thereby 
elevating the precision and dependability of object detection.

Spiking Neural Networks (SNNs), recognized as the third 
generation of neural networks (Maass, 1997), are computational 
models that closely emulate biological neural networks by processing 
information through the spiking activity of neurons. Unlike 
conventional Artificial Neural Networks (ANNs), SNN neurons 

communicate using binary events rather than continuous activation 
values. This approach not only mirrors the structure and function of 
the biological retina but also encodes and transmits information 
through the processing of temporal spike sequences, displaying 
spatiotemporal dynamic characteristics. This intricate activity pattern 
enables the system to maintain overall stability while adapting to 
environmental changes and acquiring new motion information 
through plasticity mechanisms, mirroring the visual filtering observed 
in biological systems. Due to their event-driven nature, SNNs can 
more accurately utilize energy when processing sensor data similar to 
the retina (Jang et al., 2019), which is particularly useful for drone 
applications (Dupeyroux et al., 2021; Sanyal et al., 2024). They can 
be applied to tasks requiring real-time or edge computing and can 
integrate with neuromorphic processors (Calimera et al., 2013) to 
achieve rapid response in challenging scenarios. Recent years have 
witnessed the versatility and efficiency of SNNs across diverse 
domains (Mehonic et al., 2020; Kim et al., 2020), notably excelling in 
speech recognition (Wu et  al., 2020; Wu et  al., 2018), image 
classification (Kim et al., 2022; Vaila, 2021; Zhu et al., 2024), sensory 
fusion (Glatz et al., 2019), motion control (Glatz et al., 2019), and 
optical flow computation (Gehrig et al., 2020; Ponghiran et al., 2022). 
Compared to earlier methods such as Convolutional Neural Networks 
(CNNs) and optical flow techniques, SNNs provide a more biologically 
plausible and energy-efficient solution, particularly well-suited for 
feature extraction of small drones in scenarios where rapid adaptation 
to environmental changes is crucial, and facilitates a synergistic 
balance between the efficient encoding and processing of visual 
information and biological authenticity.

In time-sensitive scenarios, the incorporation of motion features 
proves advantageous for visual perception tasks, particularly in the 
context of processing temporal information and its implications for 
learning mechanisms. Currently, there is no research utilizing SNNs 
to model the dynamic visual information processing mechanisms of 
the retina and apply the motion information extracted by SNNs to 
drone object detection tasks. To address this issue and achieve both 
biological realism and efficiency in handling complex dynamic visual 
tasks, we introduce dynamic temporal information into the retinal 
output model. We have devised a primary motion saliency estimation 
algorithm, exclusively comprising an SNN architecture, serving as a 
visual motion perception model to emulate the processing and output 
of dynamic information by the biological retina in visual perception 
tasks. The acquired motion information is subsequently amalgamated 
with spatial information for utilization in drone object detection tasks.

Our research encompasses several key aspects: First, we develop 
a magnocellular pathway dataset based on the biological characteristics 
of the retinal magnocellular pathway computational model. Second, 
we investigate how SNNs encode and transmit temporal information 
through spike sequences, emulating the biological retina ex-traction 
of dynamic visual information. Third, we  propose a biologically 
inspired visual motion perception model, referred to as the Magno-
Spiking Neural Network (MG-SNN). This model comprises a 
computational framework solely using spiking neural networks to 
process visual information, acting as a primary motion saliency 
estimation model aligned with the retinal magnocellular pathway. 
We validate the accuracy of the SNN model in extracting motion 
features. Finally, the MG-SNN is used as a motion feature extraction 
module, which is combined with the object detection model to form 
a target detection framework, and the experimental results indicate 
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that the framework can accurately identify and detect low-altitude 
drone targets.

Specifically, the main contributions of this paper are summarized 
as follows:

 • This research is the first attempt (to our knowledge) to effectively 
simulate the magnocellular function of extracting motion 
features of objects using a two-layer spiking neural network 
framework, as a motion detection plug-in geared towards 
object detection;

 • Experimental validation shows that the MG-SNN model closely 
matches biological retina processing and enhances object 
detection accuracy and reliability, demonstrating the potential of 
biologically inspired SNN models in drone detection;

 • In conjunction with the magnocellular pathway computational 
model, we design the Visual-Magnocellular Dynamics Dataset 
(VMD) for supervised learning of motion features. The 
MG-SNN, combined with popular traditional object detection 
models, improves small drone detection performance in 
complex backgrounds.

The remainder of this paper is organized as follows. In Section 2, 
we introduce the related work on motion saliency computation and 
motion object detection, biologically inspired retinal models, and 
spiking neural networks for visual tasks. In Section 3, we present the 
retinal-inspired spiking neural network module for drone motion 
extraction and object detection architecture. This includes introducing 
the magnocellular pathway dataset inspired by the retinal 
magnocellular pathway computational model, explaining the 
proposed spike temporal encoding method for processing input video 
frames, and discussing in detail the primary motion saliency 
estimation model MG-SNN based on the SNN architecture, along 
with theoretical derivations and feasibility explanations of the 
proposed method. In Section 4, we  describe the comparative 
experimental conditions and evaluation methods for motion feature 
extraction and object detection, followed by a thorough discussion 
and analysis of the experimental results. Finally, in Section 5, 
we provide a summary of the entire paper.

2 Related work

2.1 Motion saliency computation and 
motion object detection

The initial research into motion saliency calculation initially 
emphasized single visual cues, such as motion speed or direction. 
However, these methods often lacked adaptability to rapidly changing 
scenes. Researchers utilized techniques like Support Vector Machines 
(SVM) to improve the prediction of salient motion areas, but these 
approaches incurred substantial computational loads when handling 
large-scale video data. In recent years, composite models (Wang et al., 
2017; Bi et al., 2021) have gained traction by integrating multiple 
visual cues to enhance overall system performance. Notably, models 
(Maczyta et al., 2019) have been employed to extract motion saliency 
over video segments, leveraging their exceptional feature learning 
capabilities for dynamic scene analysis. Similarly, Guo et al. (2019) 
calculated motion saliency between adjacent frames by analyzing 

optical flow fields to obtain foreground priors. They utilized a 
multi-cue framework to integrate various saliency cues and achieve 
temporal consistency.

In the early research on moving object detection, traditional 
algorithms focused on simple techniques such as background 
subtraction and threshold processing. For instance, reference (Yang 
et  al., 2012) utilized dynamic thresholds to compensate for the 
shortcomings of fixed-threshold background subtraction, enabling 
timely background updates and overcoming the limitations of 
traditional background update methods. While these techniques are 
straightforward to implement, their performance in dynamic 
backgrounds is suboptimal and offers limited potential for 
improvement. With advancements in computational power, methods 
integrating multiple sensory information (such as motion, color, and 
geometry) (Bhaskar, 2012; Minaeian et al., 2015) began to be employed 
to enhance the accuracy and robustness of object detection. Compared 
to traditional algorithms that detect small target locations through 
inter-frame target association, deep learning-based methods operate 
directly on keyframes by generating bounding boxes around targets 
to detect and track moving objects more effectively in complex 
environments. For example, methods from the YOLO series (Redmon 
et al., 2016) and the SSD series (Liu et al., 2016) regress directly on the 
input image to obtain localization and classification information for 
motion objects.

The algorithms exhibit certain limitations in the task of motion 
object detection, potentially resulting in the oversight of smaller or 
infrequently appearing objects, the loss of temporal information, and 
insufficient accuracy in dense scenes. In specific situations, they 
require more computational resources, which may reduce their 
suitability for highly real-time applications. Our approach departs 
significantly from previous methodologies by directly integrating 
biological principles into object motion sensitivity, as opposed to 
relying on arbitrary network architectures or parametric models. 
Opting for spiking neural networks over artificial neural networks 
holds promise in providing a more organic approach to processing 
visual information, thereby enabling the attainment of detection 
outcomes that more closely mirror human visual perception.

2.2 Biologically-inspired retinal models

The initial research into motion saliency calculation initially 
emphasized single visual cues, such as motion speed or direction. 
However, these methods often lacked adaptability to rapidly changing 
scenes. In the realm of bio-inspired retinal models, initial research 
centered on emulating the photoreception and primary processing 
mechanisms characteristic of the human retina. For instance, 
Melanitis and Nikita, 2019 explored the simulation of photoreceptors 
and initial signal processing in computational models of the retina, to 
replicate the early stages of visual processing observed in biological 
systems. Recently, researchers have been investigating the potential 
use of these models in more complex visual tasks for feature extraction 
and decision support. For example, Aboudib et al. (2016) proposed a 
bio-inspired framework for visual information processing that 
specifically focuses on modeling bottom-up visual attention, utilizing 
the retinal model for testing and theoretical validation.

Given the characteristics of various types of neurons and neural 
circuits in the retina, researchers have developed a range of models 
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tailored to distinct task types within the retina-inspired visual motion 
perception domain. Most of these models are multi-scale CNNs and 
Recurrent neural network (RNNs) models, constructed to mimic 
biological visual perception mechanisms. For instance, Zheng et al., 
2021 designed a model comprising feed-forward convolutional filters 
and recurrent units to represent temporal dynamics displayed in 
continuous natural videos and neural responses within the retina; 
McIntosh et al. (2016) developed a deep learning model based on 
CNNs to capture responses to motion stimuli; Parameshwara (2022) 
designed a retinal-inspired visual sensor model and framework, 
integrating CNNs and LSTMs to execute motion perception tasks. 
Moreover, Lehnert et al. (2019) introduced a retinal-inspired visual 
module encompassing CNN and LSTM layers for navigation 
perception tasks in complex settings. These models extract motion 
features from time-series images to identify and analyze motion 
stimuli and thus might lose temporal information.

Furthermore, attention mechanisms, inspired by the biological 
visual system, are used to enhance the recognition accuracy of 
significant motion targets by emulating the retinal focus mechanism 
on crucial visual features to detect prominent moving objects within 
videos. Lukanov et al. (2021) proposed an end-to-end model grounded 
in feature saliency, influenced by the retinal sampling mechanisms 
observed in primates; the BIT model (Sokhandan and Monadjemi, 
2024) employs a bio-inspired mechanism with an attention 
mechanism to effectively track targets in video sequences, and 
Malowany and Guterman (2020) utilize deep feedforward CNNs 
combined with top-down attention mechanisms from the human 
visual system for object recognition tasks.

While drawing inspiration from the multilayered visual systems 
and yielding outputs consistent with visual mechanisms, these models 
fall short of replicating the information-processing pathways of the 
human brain. By simplifying complex biological structures and 
functions to achieve specific capabilities, they do not truly reflect the 
transmission and processing of information in the temporal dimension.

2.3 Spiking neural networks for visual tasks

Furthermore, attention mechanisms, inspired by the biological 
visual system, are used to enhance the recognition accuracy of 
significant motion targets by emulating the retinal focus 
mechanism on crucial visual features to detect prominent moving 
objects within videos. Initially, the application of SNNs in visual 
tasks was primarily focused on basic image and video processing 
tasks, such as image reconstruction and simple object recognition. 
These tasks utilized the temporal dynamics of SNNs to mimic the 
primary stages of visual perception. Despite the tremendous 
success of CNNs in visual tasks, research into SNNs aims to 
leverage their event-driven characteristics for encoding 
information, with the expectation of achieving greater efficiency in 
power consumption and algorithmic complexity. Most relevant to 
processing visual motion information is the SpikeMS model 
(Parameshwara et al., 2021), which accurately segments and tracks 
dynamic moving targets in video sequences. This model uses an 
architecture that combines multilayer CNNs with SNNs to extract 
spatial features from video sequences and ultimately produces 
segmentation results for dynamic targets. Similarly, the Spike-
FlowNet model (Lee et al., 2020) utilizes a deep SNN encoder and 

an ANN decoder architecture for self-supervised optical flow 
estimation. Additionally, the U-Net-like SNN model (Cuadrado 
et al., 2023) integrates the U-Net architecture with SNN neuron 
models to extract motion and optical flow information in the 
temporal dimension, by combining event-based camera data with 
SNNs for optical flow and depth prediction. Another architecture 
(Hagenaars et  al., 2021) designed for optical flow estimation 
processes event data using an ANN-SNN hybrid approach. It is 
evident that most visual motion perception models related to SNNs 
are based on hybrid ANN-SNN architectures. Although SNN 
neurons are introduced to handle the temporal dimension, fully 
simulating the dynamic behavior of neurons remains challenging, 
and there is a performance and accuracy loss during the 
conversion process.

Frame-based images and feature vectors need to be encoded as 
spike trains to be  processed within SNNs. These spike events are 
non-differentiable, making traditional backpropagation methods 
challenging to employ. Early attempts at training SNNs focused on 
biologically inspired Hebbian mechanisms (Sejnowski and Tesauro, 
1989). Spike Time Dependent Plasticity (STDP) (Mozafari et al., 2018) 
strengthens synapses that may aid in neuron firing, thus avoiding the 
gradient issue. In ANN-SNN methods, input representations are 
formed by binning events within time intervals and converting them 
into image-based frame structures, referred to as “event frames.” Most 
dynamic information processed in SNNs also originates from event 
data generated by Dynamic Vision Sensors (DVS) (Haessig et  al., 
2019). However, our method is distinct in that it directly feeds video 
frames into the network through spike encoding, capitalizing on the 
temporal properties of SNNs combined with the temporal properties 
of spike trains. By encoding pixel intensity as spike timing, this 
approach naturally reduces the processing of redundant information 
while preserving all significant information, as only notable visual 
changes trigger spikes.

3 Materials and methods

This section will provide a detailed overview of the learning and 
inference process of the algorithm developed using SNNs, which 
simulates the retinal channel process of handling motion information 
and extracting accurate motion feature information. The extracted 
visual dynamic features are then used as a motion guidance module 
applied to drone object detection. First, we will introduce the overall 
architecture of the retinal-inspired spiking neural network for drone 
motion extraction and object detection. Then, we will describe the two 
main components: extracting visual motion information with 
MG-SNN and applying it to drone object detection. In the first part, 
the MG-SNN (Magno-Spiking Neural Network) model for motion 
saliency estimation includes the design of the Visual Magnocellular 
Dynamics Dataset (VMD), inspired by the computational model of 
the retinal magnocellular pathway. We will discuss the process of 
handling multiple frames through a spike temporal encoding strategy. 
Subsequently, we propose a Dynamic Threshold Multi-frame Spike 
Time Sequence backpropagation method (DT-MSTS) based on 
dynamic thresholds and the STDP rule to guide the learning of the 
SNN network. In the second part, concerning the application to object 
detection, we will primarily discuss combining MG-SNN with the 
YOLO model to achieve the task of detecting small drone targets.
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3.1 Overall architecture

The overall architecture of the drone motion extraction and object 
detection system based on a retina-inspired spiking neural network is 
illustrated in Figure  1. In the motion feature extraction module, 
MG-SNN is constructed by modeling the structure of the biological 
retina. The input video stream is converted into a temporal spike 

sequence using a spike temporal encoding strategy in the 
photoreceptor simulation layer. These sequences then undergo 
processing in the inner plexiform layer (IPL). During forward 
propagation in the IPL, the integrate-and-fire (IF) neurons in each 
layer integrate the presynaptic spike sequences. By employing a 
dynamic threshold mechanism, thresholds are dynamically calculated 
based on the time steps of the input spikes, enabling IF neurons to 

FIGURE 1

This is the overall architecture of the drone motion extraction and object detection system based on a retina-inspired spiking neural network.
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determine whether to fire at specific moments. This allows for 
synchronous processing of each video frame and the generation of 
corresponding postsynaptic spike sequences. Simultaneously, the label 
information of the magnocellular pathway dataset is also converted 
into spike time sequences using the spike temporal encoding strategy, 
guiding the subsequent backpropagation process. Ensuring that each 
neuron can fire at least once, synaptic weights are adjusted according 
to the spike times of the neurons. This process accurately measures the 
differences between the output spike sequences and the target spike 
sequences for supervised learning. It not only simulates the learning 
process of bipolar cells, horizontal cells, and amacrine cells in the 
biological retina but also preserves temporal precision.

In the ganglion cell output layer, the output corresponds with 
motion saliency estimation consistent with the magnocellular pathway. 
Information is transmitted through discrete-time sequences in the 
network layers, aligning with the dynamic processing characteristics of 
the biological retina. After processing the forward and backward 
propagation of the input spike time sequences within a time step, the 
membrane potentials of all IF neurons are reset to zero, ensuring stability 
and continuity when the network processes multiple frames continuously.

In the object detection module, the visual motion features 
extracted by MG-SNN are combined with the YOLO model (Redmon 
et al., 2016) to perform drone object detection tasks. This combination 
enhances the detection capability of small targets in dynamic scenes, 
achieving accurate detection and rapid response. YOLOv5 is primarily 
utilized in this experiment. All input channels are first sliced and sent 
to the convolutional layer, to create a visual object detection model 
based on SNN motion guidance.

In this implementation, the focus is placed on achieving high 
detection accuracy in challenging scenarios. MG-SNN serves as a 
motion-guidance module that extracts dynamic features from video 
frames and generates a motion intensity map, converting spiking 
activity into a single-channel grayscale image where dynamic regions 
are assigned higher intensity values (e.g., 1) and static backgrounds 
are assigned lower intensity values (e.g., 0). Following the YOLOv5 
framework, all input channels are sliced and sent to the convolutional 
layers. The convolutional responses of the motion intensity map and 
preprocessed video frames are concatenated and passed into the 
detection pipeline. This design ensures that regions with higher 
motion intensity responses are more likely to be activated during 
subsequent processing, thereby enhancing the detection of dynamic 
objects within the scene. The synchronized processing of MG-SNN 
outputs with the original video frames ensures that the entire object 
detection framework operates in real time without introducing 
latency. This architecture highlights the flexibility and utility of 
MG-SNN as a plug-and-play module that enhances object detection 
tasks. It effectively balances computational efficiency with detection 
accuracy, addressing the challenges of detecting small and dynamic 
objects in complex environments.

3.2 Drone motion feature extraction based 
on retinal-inspired spiking neural networks

3.2.1 Magnocellular pathway dataset inspired by 
the retinal magnocellular pathway computational 
model

The structure and function of the retina (Yücel et al., 2003) are the 
cornerstone of the visual system, with its layered structure facilitating 

the efficient transmission and processing of visual signals. As 
illustrated in Figure 2, these layers consist of the Outer Nuclear Layer 
(ONL), Outer Plexiform Layer (OPL), Inner Nuclear Layer (INL), 
Inner Plexiform Layer (IPL), and Ganglion Cell Layer (GCL). The 
ONL houses photoreceptor cell bodies, while the OPL and IPL serve 
as synaptic connection layers. The INL includes horizontal, bipolar, 
and amacrine cells (Stacy and Lun Wong, 2003). Horizontal cells 
regulate the electrical signals of photoreceptor cells through lateral 
inhibition, while amacrine cells are responsible for signal processing 
within the retina by forming synapses with ganglion and bipolar cells. 
Ultimately, the processed visual information is conveyed to the 
primary visual cortex in the form of action potentials (Arendt, 2003; 
Benoit et al., 2010).

The biological visual system processes visual information through 
two parallel pathways, one dedicated to motion information and the 
other to static appearance information (Bock and Goode, 2008). These 
pathways are commonly referred to as the magnocellular path-way 
(Magno) and the parvocellular pathway (Parvo). The magnocellular 
pathway plays a crucial role in the processing of visual 
motion information.

We referred to the magnocellular pathway computational model 
proposed by Benoit et al. (2010). According to this model, video 
streams are processed through photoreceptor cells to acquire visual 
data and normalize light intensity (Beaudot, 1994), thereby 
enhancing the contrast in dark areas of the video frames while 
maintaining the visibility of bright areas. The processed frames 
undergo low-pass filtering and pass through the ON/OFF channels 
of horizontal and bipolar cells, forming synaptic triads. In the 
magnocellular pathway, amacrine cells establish connections with 
bipolar cells and ganglion cells, thereby providing high-pass filter 
functionality that enhances sensitivity to temporal and spatial 
changes in visual information. When processing spatial information, 
ganglion cells act as spatial low-pass filters and compress the 
contrast of video frames, thereby enhancing low-frequency spatial 
motion contour information. This dual functionality allows 
ganglion cells to play a crucial role in integrating visual information, 
particularly in visual tracking and target recognition in 
dynamic environments.

By processing multi-frame historical information, it demonstrates 
exceptional sensitivity to moving objects, effectively filtering out noise 
and static backgrounds, as illustrated in Figure 3. This capability is crucial 
for extracting motion intensity information from visual scenes, 
facilitating attention guidance and target search. Leveraging this motion 
processing response, the magnocellular pathway improves focus on 
potential target areas while adeptly suppressing static backgrounds, 
which is particularly valuable in visual information processing.

In this research, we utilized the output from the magnocellular 
pathway as the label information for our neural network model and 
developed the Visual Magnocellular Dynamics Dataset (VMD) as 
illustrated in Figure 4. This dataset is constructed based on the Anti-
UAV-2021 Challenge dataset1 and the Anti-UAV-2023 Challenge 
dataset (Zhao et  al., 2023). The videos showcase natural and 
man-made elements in the backgrounds, such as clouds, buildings, 
trees, and mountains, realistically simulating scenarios encountered 
in drone surveillance tasks, the dataset includes target objects of 

1 https://anti-uav.github.io/dataset/
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varying sizes, from large to extremely small, intensifying the difficulty 
of object detection. Furthermore, the Anti-UAV-2023 Challenge 
dataset to enrich the VMD dataset, aimed specifically at small target 
recognition tasks, which include more challenging video sequences 
featuring dynamic backgrounds, complex rapid movements, and small 
targets, thereby encompassing a wider range of small target 
drone scenarios.

The VMD dataset comprises a total of 650 video samples, divided 
into 500 training samples and 150 test samples, each showcasing 
various natural and man-made diverse scenes with target objects of 
small sizes, scenes such as open skies, urban environments, forested 
areas, and mountainous regions. Motion complexity is introduced 
with sequences containing both static and dynamic backgrounds, and 
targets moving at different speeds and directions, challenging the 
motion detection capabilities of the model. The VMD dataset is 
created based on the magnocellular pathway computational model 
and is developed using the bioinspired library in OpenCV. Several 
preprocessing steps are applied to ensure the quality and consistency 
of the dataset: normalization of pixel values, setting the video frame 
resolution to 120 × 100 pixels to ensure computational efficiency, and 
adjusting each video segment to a frame rate of 20 frames per second 
with durations ranging from approximately 5 to 10 s, and only the 
content within the salient bounding boxes is retained to ensure precise 
labeling. The choice of a 120 × 100 resolution is a practical balance 
that provides sufficient detail for detecting and identifying small drone 
targets in complex scenarios. Compared to the simpler tasks often 
addressed by existing models, such as MNIST handwritten digit 
classification (32 × 32 resolution), our approach processes more 
complex inputs while maintaining an efficient computational profile. 

This resolution ensures that the detection framework operates 
effectively without compromising the precision required for small 
drone detection.

3.2.2 Video frame processing based on spike 
temporal encoding

To replicate visual processing akin to that of the human brain and 
extract motion features, it is crucial to effectively retain and transform 
the wealth of information present in external stimuli into sequences 
of neuronal action potentials. The selection of an appropriate encoding 
strategy is vital for connecting neuronal action potential sequences 
with behavioral information and for closely integrating the 
mechanisms of processing in the primary visual cortex with spiking 
neural networks (Field and Chichilnisky, 2007). Currently, two main 
types of spike encoding are employed in SNNs (Brette, 2015) rate 
coding and temporal coding.

In most sensory systems, neurons adjust their firing frequency 
according to the frequency and intensity of stimuli. However, rate 
coding (Field and Chichilnisky, 2007; Salinas et al., 2000) does not 
fully account for the rapid response capability of the visual system. 
Furthermore, accurately representing complex values with single 
neuron spikes is challenging and results in a loss of temporal 
information. Visual information transmission involves multiple 
synaptic transmissions, with each processing stage being extremely 
brief. Consequently, the firing frequency of neurons in the primary 
visual cortex is relatively low in these rapid response processes, a 
single neuron may only fire 0 or 1 action potential, making it 
impossible to estimate instantaneous firing rates based on the interval 
between two action potentials (Thorpe et al., 2001; Salinas et al., 2000), 

FIGURE 2

Conversion of the retina to the magnocellular pathway computational model.
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the use of changes in firing frequency to encode specific features of 
complex stimuli is inadequate.

To simulate the flexibility and adaptability demonstrated by the 
primary visual cortex in processing images or video data, this study 
adopts a temporal encoding strategy for spike encoding of input 
information. By representing specific values at precise moments of a 
single spike, the temporal structure of action potential sequences can 
encode information related to temporal changes in stimuli (Bair and 
Koch, 1996), such as the temporal variations in stimulus intensity. This 
allows for a more accurate representation of input grayscale value 
information in the temporal dimension.

 ( ) max1.0i iT I T= − ×  (1)

In subsequent experiments, we determine the activation time iT  
of each input neuron based on the normalized intensity value of 
the i-th pixel as shown in Equation 1. For this purpose, we employ a 
spike temporal encoding method to process the input video frames. 
The specific encoding formula is described as follows:

maxT  represents the maximum time step of the input spike 
sequence, while iI  is the normalized intensity value of the i-th pixel. 
Under this encoding mechanism, each pixel in the input layer 
generates a single spike at a specific moment iT , forming a temporal 
spike sequence. The higher the intensity value of the input, the earlier 

the corresponding spike firing time. Figure  5 illustrates the 
visualization result after encoding a video frame.

Temporal encoding utilizes earlier spike firing times to represent 
pixels with higher grayscale values, while higher thresholds cause 
neuronal discharge to delay, indicating that the pixel has a lower 
grayscale value. Our experiments make use of this time encoding 
mechanism to accurately map the temporal dimension of visual 
information, enabling efficient and sensitive processing of visual 
stimuli within the spiking neural network.

3.2.3 Spiking neurons
In this study, we  utilized Integrate-and-Fire (IF) neurons to 

develop a motion saliency estimation model using a pure SNN 
architecture. IF neurons operate by accumulating incoming signals 
until a certain threshold is reached, after which an action potential or 
“spike” is generated, and then resets its state, mimicking the basic 
behavior of biological neurons (Smith et al., 2000).

As Figure 6 illustrates, input video frames are encoded into a time 
spike sequence of length [0, maxt ], then the presynaptic spike sequence 
enters the network. Through IF neurons, when the membrane 
potential of an IF neuron exceeds the threshold potential thV , it 
generates a postsynaptic spike sequence. To ensure that non-firing 
neurons also transmit video frame information, it is defined that 
non-firing neurons emit a single spike containing minimal 

FIGURE 3

Input video images of flying birds with magnocellular pathway outputs, respectively, are the results of the two frames before and after. In order to 
obtain better viewing results, we performed min-max normalization of the dynamic motion.
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information at time maxt . The simplified formula for IF neurons is 
shown in Equation 2:

 

( ) ( ) ( ) ( )

( ) ( ) ( ),

−= − +

≥ = =

∑ 1

1

l l

l
th reset

t V t T w t S t

if V t V then r t V t V  
(2)

where ( )V t  represents the membrane potential of the neuron, lw  
is the synaptic weight between layers, and ( )1lS t−  is the incoming 
spike sequence from the previous layer. The spike firing rate ( )r t  is 1 
when a spike is emitted and 0 when no spike is emitted. When the 
membrane potential exceeds the threshold thV , the membrane 
potential is immediately reset to the resting potential resetV , which is 
typically set to 0.

FIGURE 5

The visualization depicts a single drone video frame along with its spike temporal coding sequence spanning 256-time steps.

FIGURE 4

The Anti-UAV2021 challenge dataset and VMD dataset contain large and small objects on clear backgrounds, as well as complex backgrounds (clouds 
and cities).
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During the processing of video frames after spike temporal 
coding by IF neurons, the threshold of the neuron affects its moment 
of discharge and maintains the system homeostasis (Abbott, 1999). 
Based on the leaky adaptative threshold (LAT) mechanism (Falez, 
2019), this study introduces a dynamic threshold mechanism that 
linearly increases with the input time steps. This mechanism is the 
first attempt to combine dynamic threshold adjustment with a video 
frame time encoding strategy, aiming to emphasize the importance 
of spike information in early time steps, which are considered to 
contain more distinct features compared to later information. This 
strategy, by enhancing the sensitivity of neurons to high-intensity 
inputs in early time steps, optimizes the efficiency of information  
processing.

The dynamic threshold mechanism contains a baseline threshold 
thV , which is linearly with the increase in input time steps to preserve 

the unique response characteristics of each IF neuron as in Equation 3. 
The threshold adjustment thD  occurs when the neuron is excited and 
upon receiving inhibitory spikes, reducing the discrepancy between 
the actual firing time iT  and the expected firing time labelT . The 
introduction of a dynamic threshold allows the neuron threshold to 
adjust automatically, encouraging the firing time iT  to approach the 
target time labelT , while maintaining the system equilibrium. The 
threshold learning rate θ  allows for adjustment of the rate of threshold 
change based on specific circumstances. The specific adjustment rule 
is as follows:

 th th iD V Tθ= +  (3)

This rule is designed to correct the timing error between the 
actual firing timestamp iT  and the target timestamp labelT  each time 
the neuron fires. The specific value of the threshold learning rate θ  
depends on the dataset and characteristics of the input video frames 
and requires an exhaustive search within the range [0, maxt ] to 
determine the optimal value. Since the membrane potential is 
determined by synaptic weights and the input spike sequence, 
designing an appropriate dynamic threshold rule can effectively 
enhance the influence of the input spike sequence on the membrane 
potential, thereby significantly improving the overall performance of 
the network.

3.2.4 Backpropagation method
The Spike-Timing Dependent Plasticity (STDP) rule adjusts 

synaptic strengths based on the precise timing of neuronal spikes. This 
rule leverages the temporal relationships between neuron firing times 
(Diehl and Cook, 2015), not only effectively encoding temporal 
information within neural circuits but also facilitating the update of 
specific synaptic weights. By adjusting synaptic weights based on the 
relative timing differences between input and output spikes, a 
biologically plausible learning mechanism is achieved.

 
( )

( ){ }
( )

1l

l
total

t r t
V t V t

∈ =
= ∑

 
(4)

This study introduces a method that combines the STDP rule 
(Bi and Poo, 1998; Caporale and Dan, 2008) and a time error 
function—Dynamic Threshold Multi-frame Spike-Time Sequence 
Backpropagation Method (DT-MSTS)—to perform 
backpropagation computations after temporal encoding of video 
frames. Our approach made improvements based on the BP-STDP 
method described in the literature (Sjöström and Gerstner, 2010). 
As shown in Equation 4, an IF neuron with no leak characteristics 
accumulates membrane potential over time with the output spike 
sequence and fires when it’s membrane potential ( )V t reaches the 
neuron threshold thV .

Considering that network decisions rely on the first spike signal 
from the output layer, earlier spikes thus contain more information. 
Under the same input and synaptic weights, the membrane potential 
of an IF neuron approximates the activation value of the Rectified 
Linear Unit (ReLU) neuron Tavanaei and Maida, 2019 as in 
Equation 5. We  can assume there is an approximate relationship 
between the output of the ReLU neuron and the firing time lt  of the 
corresponding IF neuron:

 max~l ly t t−  (5)

In the forward propagation process we constructed, l
jy  represents 

the activation value of the j -th neuron in layer l , and l
jz  is the 

weighted input of that neuron. As IF neurons approximate ReLU 

FIGURE 6

Processing of multi-frame video frames by IF neurons.
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neurons, in the ReLU function, /l l
j jy z∂ ∂  acts as the derivative at that 

point as shown in Equation 6:

 

1 0
0

l lj j
l
j

y if y
otherwisez

∂ >= 
∂   

(6)

However, in IF neurons, since l
jt  is not a function of l

jw , we cannot 
compute /l l

j jt w∂ ∂ . For each neuron j  in layer l , if its threshold time 
l
jt  is less than maxt , the derivative of its membrane potential l

jV  with 
respect to input weight l

jiw  can be calculated through the spike activity 
of the preceding layer neuron i. If max

l
jt t< , then assume / 1l l

j jt V∂ ∂ = − ,  
where maxt  is the maximum spike firing time.

 ( )2 2
max/l l

ij ole T T tµ= −
 

(7)

If IF neurons fire within the maximum time window, the time 
error gradient related to the neuron firing time can be calculated. 
During the learning process, we initially utilize the Stochastic Gradient 
Descent (SGD) algorithm in conjunction with the backpropagation 
algorithm to minimize the mean squared time error function. For 
each training sample, the mean squared time error function ije is 
defined as follows in Equation 7:

where l
lT  represents the target spike firing time, and l

oT  is the spike 
firing time output for each layer, µ  used for error updating. As the 
equation illustrates, we introduce the STDP factor ( )i tε  to guide the 
backpropagation update process of the time error function. This 
means that if the firing time of the label information in the 
magnocellular pathway is earlier than the output spike firing time, 
synaptic connections will be weakened through a negative feedback 
STDP factor ( ( ) 1i tε = − ); conversely, if the firing time is later, 
connections will be strengthened through a positive feedback STDP 
factor ( ( ) 1i tε = ).
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Thus, combining the mean squared time error function ije , the 
total loss function L is defined as:
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where O is the number of output layer neurons, where µ  is time 
error update parameter. For the output layer ( )l o= , the error term is 
calculated as:
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(10)

where w
jδ  directly reflects the prediction error of each output 

neuron. Finally, the error term obtained can be used to adjust the 
network weights:

 ( )1l l w l
ji ji j i iw w S tβδ ε−= +  (11)

where β  is the learning rate, which controls the step size of weight 
updates, and 1l

iS −  is the output of the previous layer of neurons. This 
ensures that the network can learn to reduce output errors, thereby 
improving the accuracy of outputs corresponding to the magnocellular 
pathway according to the calculations in Equations 8–11. Ultimately, 
the output layer of ganglion cells will produce a time spike sequence 
that corresponds to that of the magnocellular pathway in the 
primary visual.

3.3 Drone object detection based on 
retinal-inspired spiking neural networks

The YOLOv5 structure comprises several crucial components that 
ensure its efficiency and accuracy in object detection tasks. Firstly, 
YOLOv5 employs the Cross-Stage Partial Network (CSPNet) (Wang 
et al., 2020) as part of its backbone network, enhancing the model 
learning capability and generalization ability. CSPNet reduces 
computational cost while preserving spatial feature information by 
dividing the feature map into two parts: one that passes directly 
through dense blocks and another that merges with the backbone 
network. Additionally, YOLOv5 incorporates the Path Aggregation 
Network (PANet) (Liu et al., 2018) and the Spatial Pyramid Pooling 
(SPP) (He et al., 2015) module. PANet enhances feature fusion by 
combining high-level and low-level features, thereby improving object 
detection performance. The SPP module acts as a spatial pyramid 
pooling module, integrating information at different scales through 
pooling operations of various sizes, effectively expanding the receptive 
field and capturing more contextual information, which enhances the 
accuracy of drone detection.

The YOLOv5 structure incorporates multiple convolutional layers, 
pooling layers, and activation function layers, which collectively 
enable the model to extract crucial features from images and map 
these features to specific detection results through the final output 
layer. The Feature Pyramid Network (FPN) (Lin et al., 2017) connects 
up sampled mappings with corresponding feature mappings in the 
down sampling branch.

By integrating the dynamic visual features extracted by MG-SNN 
as a motion-guidance module with the spatial information present in 
drone video frames into the YOLOv5 model, the primary motion 
saliency estimation features output by MG-SNN are linked with the 
convolutional responses of preprocessed video frames. This 
connection ensures that regions with higher motion intensity response 
values are more likely to be activated during subsequent processing. 
Consequently, YOLOv5 is effectively guided to focus on key dynamic 
areas during detection, which leads to a reduction in false positives 
and an improvement in recognition accuracy. This innovative 
approach realizes the integration of SNNs as a visual motion 
information guidance module with the spatial appearance information 
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represented by deep neural networks for object detection and  
recognition.

4 Results

In this section, we conduct experiments on the VMD datasets to 
validate the performance of our model and evaluate its performance 
across various scenarios. Additionally, we introduced new comparative 
methods for experimentation and examined the superiority of our 
model compared to traditional methods based on the 
magnocellular pathway.

The experiments were conducted on an Ubuntu operating system. 
The experimental setup was executed on a PC equipped with an AMD 
EPYC 7502 32-core processor and an A100-PCI-E-40GB GPU. We set 
the number of training epochs to 20 and employed a learning rate 
strategy, while the input size for the network was fixed at 120 × 100. 
The other parameter settings are shown in Table 1.

4.1 Quantitative results of motion feature 
extraction

 


1
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N

i i
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To quantify and evaluate the performance of MG-SNN in 
simulating the output of the magnocellular pathway, we employed a 
statistical error measurement method: Mean Absolute Error (MAE). 
As shown in Equation 12, for each neuron i in the video frame, where 
iT  is the firing time of the spike sequence output by the i-th neuron in 

the magnocellular pathway, and iT  is the firing time of the spike 

sequence output by the i-th neuron in the MG-SNN, with n being the 
total number of input neurons.

When the MAE value is smaller, it indicates better model 
performance. By synthesizing this metric, we can comprehensively 
assess the model performance on the magnocellular pathway dataset, 
ensuring the model not only achieves outputs consistent with the 
visual pathway but also possesses robustness against outliers.

As shown in Figure 7, the performance of MG-SNN is evaluated 
by analyzing the training and testing MAE loss over 20 epochs on the 
VMD dataset. Initially, both training and testing losses exhibit a sharp 
decline, indicating that the model learns and fits the data quickly 
during the early epochs, the losses converge rapidly, stabilizing after 
approximately 10 epochs, which illustrates that MG-SNN avoids 
overfitting, demonstrates a certain level of generalization, and 
maintains stable learning of spatiotemporal information present in 
dynamic data.

Visual representations observed in the early visual areas of the 
primate brain show similarities to those in CNN frameworks trained 
on real images (Arulkumaran et al., 2017). This indicates that CNN 
frameworks also possess a degree of brain inspiration, capable of 
mimicking the hierarchical structure of simple and complex cells, 
thereby simulating the function of the retina in object perception to 
provide stable object representations. To enrich the comparative 
experiments based on this theoretical foundation, we  designed a 
convolutional neural network model with 3 × 3 two-dimensional 
convolution kernels (referred to as RetinaCNN) to simulate the output 
of the magnocellular pathway. The structure is 1C16-3C32-3C1. 
RetinaCNN directly processes grayscale intensity information in the 
video stream, sequentially through convolution and activation 
functions in each layer, ultimately generating an output consistent 
with the magnocellular pathway. Additionally, based on the 
RetinaCNN model, a spike-time encoding-based CNN-SNN motion 
saliency estimation model, named RetinaSNN, was developed by 
replacing the original activation functions with IF neurons. The 
structure of RetinaSNN is 1C16-IFNode-32C3-IFNode-1C3.

We conducted tests on the VMD dataset, where each network 
input consists of three video frames. This comparative experiment 
includes the output results of the magnocellular pathway 
computational model, the CNN model (RetinaCNN), and the 
CNN-SNN hybrid model (RetinaSNN). Furthermore, ordinary frame 
difference (OFD) and multi-frame difference (MFD) methods were 
added to enrich the comparative experiments. To achieve a processing 
mechanism consistent with MG-SNN, the multi-frame difference 
method accumulates data from three frames in the channel dimension 
for learning.

4.2 Qualitative results of motion feature 
extraction

Since the output of MG-SNN is a temporal spike sequence, for a 
more stable and accurate analysis of experimental results at the 
beginning of the test set, it is necessary to transcode the output before 
performing visual analysis. The visualization results are shown in 
Figure 8.

The results indicate that most “edge glow” and “video subtitles” 
phenomena caused by the camera are effectively filtered out regardless 
of the target size, but MG-SNN does not eliminate all noise 

TABLE 1 This is a table of the parameter settings for MG-SNN.

Parameters Description Value

maxt Maximum time step of the input spike 

sequence

256

Vth Baseline threshold for dynamic 

threshold

0 mV

Vreset Resting potential 0 mV

è Dynamic threshold learning rate 0.5

ì Time error update parameter 0.02

I Number of input neurons in the 

photoreceptor layer

12,000

O Number of output neurons in the 

ganglion cell layer

12,000

â Learning rate 10−6

Gray level Maximum gray value of temporal 

coding video frame

255

maxwo Initialize maximum synaptic weights 1

minwo
Initialize minimum synaptic weights -1
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interference, as some irrelevant neurons fire prematurely. This does 
not affect the identification of the main dynamic targets. In complex 
background test scenarios, compared to metrics such as OFD and 
MFD, MG-SNN can better focus on filtering and identifying dynamic 
information, effectively filtering out most of the interference caused 
by camera shake and moving cloud backgrounds. Its performance falls 
short in urban backgrounds, possibly due to inadequate filtering of the 
complex background and the generation of leading spikes by buildings 
after spike temporal encoding, making it difficult to identify objects 
clearly. Nonetheless, the neurons corresponding to tiny targets in 
complex mixed backgrounds can still produce leading spikes, ensuring 
effective recognition of moving targets.

Table  2 presents the experimental results, showcasing the 
performance and effectiveness of different methods on the VMD 
dataset in handling visual perception tasks. In terms of Mean Absolute 
Error (MAE) performance, MG-SNN demonstrates an ability to 
achieve an MAE of 6.4733 within a relatively short training period (20 
epochs), showcasing its rapid adaptation to initial training data and 
its quick attainment of optimal performance in the short term. 
Notably, MG-SNN outperforms traditional 2D convolutional neural 
networks (RetinaCNN) and hybrid CNN-SNN architectures 
(RetinaSNN) in terms of accuracy. This superior performance 
indicates it effectively captures and processes spatiotemporal 
information. RetinaCNN struggles to process complex dynamic 
scenes in comparison due to their inadequate capture of deep 
spatiotemporal features. Furthermore, the lower MAE observed in the 
CNN-SNN hybrid architecture compared to traditional CNNs 
indicates that spike-time encoding-based methods can better extract 
spatiotemporal information to some extent.

4.3 Quantitative results of object detection

In this section, we  leverage the motion features generated by 
MG-SNN for drone object detection. We use the Average Precision 

(AP) value as a quantitative measure, reflecting the model detection 
accuracy at varying thresholds. As shown in Equations 13, 14, Precision 
represents the proportion of correctly detected results, while Recall 
represents the proportion of all objects that are correctly detected.

 
TPPrecision

TP FP
=

+  
(13)

 
TPRecall

TP FN
=

+  
(14)

TP denotes the number of correctly detected objects, FP denotes 
the number of non-object targets detected as objects, and FN denotes 
the number of missed object targets.

In this comparative experiment, MG-SNN utilizes the VMD 
dataset, consistent with previous experiments, while other models use 
the Anti-UAV-2021 Challenge dataset and the Anti-UAV-2023 
Challenge dataset. All models are provided with identical inputs, 
which include complex backgrounds such as clouds and buildings, 
reflecting real-world scenarios in drone surveillance. Due to the 
limited computational capacity of MG-SNN, the input size is restricted 
to 100×120. Therefore, the input features were adjusted to 100×120 
before feature fusion to obtain the corresponding quantitative results. 
The Intersection-over-Union (IoU) threshold greater than 0.25 
method was employed. Since the input size is small and the images are 
of low resolution with fewer pixels per target, a higher IoU threshold 
might cause valid detections to be overlooked. Using an IoU of 0.25, 
the model achieves a better balance on the 120×100 input images, 
striking an optimal balance between precision and recall.

4.3.1 Cooperate with different object detection 
models

We demonstrate the compatibility of MG-SNN with various 
object detection models by integrating the motion features extracted 
by MG-SNN with YOLOv6-l (Li et  al., 2022), YOLOv5-s, and 

FIGURE 7

MAE loss curves of MG-SNN on the VMD dataset.
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FIGURE 8

Output results after testing on the VMD dataset. (The first row is the original image; the second row is the VMD dataset labels; the third row is the 
output of the magnocellular pathway computational model; the fourth row is the output of the ordinary frame difference method (OFD); the fifth row 
is the output of the multi-frame difference method (MFD); the sixth row is the output of RetinaCNN; the seventh row is the output of RetinaSNN; the 
eighth row is the output of MG-SNN. The first column shows the results of a small target moving quickly to the right against a cloud background; the 
second column shows the results of a small target moving quickly to the left against a cloud background; the third column shows the results of a small 
target moving quickly up and down against a cloud background; the fourth column shows the results of a small target tested against an exposure 
background; the fifth column shows the results of a small target against a composite background (clouds and city); the sixth column shows the results 
of a tiny object moving quickly against a cloud background; the seventh column shows the results of a tiny object moving quickly against a city 
background.).

TABLE 2 Comparison of experimental results.

Method Structure Network 
structure

Learning Minimum MAE 
during the first 

20 Epochs

MAE Epoch

MG-SNN SNN 12000FC-IFNode-

12000FC-IFNode

DT-MSTS (Dynamic 

thresholds +STDP)

6.4733 6.4733 20

RetinaCNN CNN 1C16-3C32-3C1 Backpropagation 35.7711 13.7086 200

RetinaSNN Spiking CNN 1C16-IFNode-32C3-

IFNode-1C3

ANN-SNN Conversion 8.8214 5.1386 200
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YOLOv5-x. We also compare the performance of these combined 
models with the original YOLOv6 and YOLOv5 structures to highlight 
the superiority of adding motion information. YOLOv6-l decouples 
the detection head and redesigns it with an efficient decoupled head, 
enhancing the model’s detection accuracy and convergence speed.

The evaluation results are shown in Table 3. The combination of 
MG-SNN and YOLO models consistently outperforms standalone 
YOLO models in terms of detection AP, precision, and recall. Notably, 
the combination of MG-SNN and YOLOv5-x achieves a precision of 
98.3%. Our method improves precision, indicating that it can detect 
more true objects in complex backgrounds. Further analysis of recall and 
AP shows that MG-SNN + YOLOv5-x achieves a recall of 81.1% and an 
AP of 86.1%, both of which are the highest values in Table  3. This 
demonstrates that the combination not only effectively reduces false 
positives but also accurately identifies all true targets. The YOLO 
methods are limited to handling single-frame information, neglecting 
the processing of motion information in multi-frame inputs. Adding 
MG-SNN enhances the capability to capture deep spatiotemporal 
features, resulting in a significant 2.0 to 5.0 AP improvement in the 
performance of popular object detection algorithms. This improvement 
indicates that input from MG-SNN effectively compensates for the lack 
of motion information when dealing with complex dynamic scenes.

Table  4 shows that integrating MG-SNN into existing object 
detection models introduces minimal computational overhead while 
maintaining real-time performance. For example, after adding MG-SNN, 
the GFLOPs of the model slightly increase from 203.8 to 204.5, while the 
FPS improves from 64.5 to 69.9. This demonstrates that the enhanced 

motion-guidance functionality provided by MG-SNN does not 
compromise the efficiency of the framework. Specifically, our method is 
capable of processing up to 69.9 frames per second, making it highly 
suitable for real-time small drone detection tasks, which effectively 
balances computational complexity and performance, meeting the 
demands of dynamic and time-sensitive environments.

4.3.2 Comparison to the advanced competing 
methods

We compared our method with popular object detection 
algorithms, including YOLOv7 (Wang et al., 2023), CFINet (Yuan 
et al., 2023), and DyHead (Dai et al., 2021). Compared to YOLOv5 
and YOLOv6, the YOLOv7 model introduces a new set of trainable 
Bag-of-Freebies strategies to enhance detection performance in small 
targets and complex scenes by better leveraging cross-layer feature 
fusion. CFINet is a network architecture that improves small object 
detection performance through coarse-to-fine region proposal 
networks (RPN) and imitation learning (Yuan et al., 2023). DyHead 
employs an attention mechanism to unify different detection heads 
into a dynamic head framework (Dai et al., 2021).

The evaluation results are shown in Table  5. Although 
YOLOv7x achieves a high precision of 95.9%, its recall and AP 
rates of 80.5 and 85.6%, respectively, still fall short of the 
performance of MG-SNN combined with YOLOv5-x (98.3%). By 
capturing motion information, MG-SNN can more accurately 
identify and locate targets in dynamic scenes, effectively 
enhancing the contrast between targets and backgrounds. This 
enables the detection algorithm to more precisely separate and 
identify small targets. The CFINet and DyHead models, which are 
designed for small object detection, achieve AP values of 96.4 and 
91.2%, respectively. However, the recall of CFINet is only 
62.0%, lower than the performance of MG-SNN combined 
with YOLOv5-x (81.1%). Compared with other models, 
MG-SNN + YOLOv5-x achieves a competitive balance between 
computational complexity and real-time performance, with 
GFLOPs increasing slightly to 204.5 while maintaining a high FPS 
of 69.9, which demonstrates the integration’s ability to enhance 
detection capabilities without significant additional computational 
cost, making it suitable for dynamic, real-time applications. 
MG-SNN has proven to outperform other methods in detecting 
small-target drones within complex backgrounds. This is because 
it can extract motion information and integrate spatiotemporal 
features from historical data. Combining motion saliency 
extraction networks with advanced object detection networks 

TABLE 3 Ablation study on the generalization of MG-SNN when applying 
to popular object detection methods.

Methods Precision (%) Recall (%) AP (%)

YOLOv6-l 90.6 78.0 82.4

MG-SNN+ 

YOLOv6-l
95.6 80.6 85.0

YOLOv5-s 93.5 79.2 81.9

MG-SNN+ 

YOLOv5-s
95.5 79.4 84.3

YOLOv5-x 95.4 77.4 82.8

MG-SNN+ 

YOLOv5-x
98.3 81.1 86.1

Bold values indicate the best performance for each metric within the respective method 
comparison.

TABLE 4 Computational complexity and performance study of MG-SNN 
when applied to common object detection methods.

Methods Prrams (M) GFLOPs FPS

YOLOv6-l 59.54 150.5 47.9

MG-SNN+ 

YOLOv6-l
59.54 152.0 45.2

YOLOv5-s 7.01 15.8 128.2

MG-SNN+ 

YOLOv5-s
7.01 16.0 126.0

YOLOv5-x 86.17 203.8 64.5

MG-SNN+ 

YOLOv5-x
86.18 204.5 69.9

TABLE 5 This is the result of a comparison experiment.

Methods Precision 
(%)

Recall 
(%)

AP 
(%)

GFLOPs FPS

YOLOv7-x 95.9 80.5 85.6 188.0 65.4

CFINet 93.4 62.0 71.4 111.57 38.6

DyHead 85.8 72.0 73.4 43.52 15.4

YOLOv5-x 95.4 77.4 82.8 203.8 64.5

MG-SNN+ 

YOLOv5-x

98.3 81.1 86.1 204.5 69.9

Bold values indicate the best performance for each metric within the respective method 
comparison.
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FIGURE 9

Visual comparison of test methods in test set videos of detection results. Green rectangles stand for the ground truth of object targets. Red rectangles 
represent detection results obtained by the test methods. The marked numbers are the confidence scores for the corresponding results.

significantly enhances overall object detection performance. This 
approach effectively utilizes spatiotemporal features from 
historical data to improve the detection of small drones in 
complex backgrounds.

4.4 Qualitative results of object detection

The experimental results are shown in Figure 9. In the figure, 
green rectangles represent ground truth annotations, and red 
rectangles represent the detection result bounding boxes. The test 
data covers urban and cloud backgrounds, where drone targets 
are difficult to identify. In complex backgrounds, YOLOv5 can 
detect drone targets in most scenarios, but some bounding boxes 
do not fully overlap with the actual annotations, resulting in false 
detections. The CFINet and DyHead models fail to generate 
accurate detection results, missing the targets and producing 
erroneous detections. YOLOv7 fails to detect drone targets in 
several scenarios, indicating a tendency to miss small targets. By 
utilizing the motion saliency features extracted by the SNN and 
combining them with the response maps generated by YOLOv5, 
the target areas are significantly enhanced. Post-processing the 
spatiotemporal depth information of the video frames improves 

target recognition accuracy. This demonstrates that MG-SNN can 
be combined with other models for tasks such as object detection. 
By effectively integrating spatiotemporal information, the 
reliability and accuracy of detection are enhanced, providing 
stronger technical support for various practical applications.

5 Discussion

The MG-SNN has demonstrated outstanding performance in 
complex dynamic visual tasks, producing outputs that align with 
the processing of dynamic data in the primary visual cortex. It 
shows lower MAE in traditional performance evaluation metrics, 
validating its accuracy in extracting motion information. 
Compared to traditional convolutional neural networks and 
hybrid architectures, MG-SNN has demonstrated stable responses 
to dynamic targets with reduced iterations. The visual dynamic 
features extracted by MG-SNN have served as a motion guidance 
module, enhancing the object detection capabilities of small 
drones in complex backgrounds and enabling the deployment of 
drone feature extraction on neuromorphic hardware. 
Experimental results have indicated that the fused model 
outperforms the original model in terms of recognition accuracy 
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and reliability. It can be flexibly integrated into existing object 
detection frameworks, effectively addressing the adaptability 
issues of traditional visual perception algorithms when handling 
fast-moving targets and complex backgrounds.

The two-layer MG-SNN model involves video frames passing 
through the photoreceptor input layer before the extracted 
features are transmitted to the ganglion cell output layer. During 
this process, spikes are fired when a neuron membrane voltage 
reaches a certain threshold, influenced by the input signals and 
synaptic weights, using neuron populations for information 
encoding helps mitigate noise. Even if individual neurons transmit 
erroneous information, the network as a whole can correct this 
deviation, reflecting the collective intelligence of biological 
neural systems.

The YOLO method is limited to processing single-frame 
information and neglects the handling of motion information in 
multi-frame inputs. Traditional artificial neural networks process 
only spatial information, while SNNs propagate spike times from 
presynaptic to postsynaptic neurons, thereby conveying temporal 
information. Other potential information in presynaptic neurons, 
which could provide valuable insights for the network, is 
discarded. Experimental results demonstrate that MG-SNN +  
YOLO achieves significant performance improvements over the 
baseline YOLO model, with an accuracy increase of 2.0–5.0%, a 
recall improvement of 0.2–3.7%, and an AP enhancement of 
2.4–3.3%. Adding MG-SNN enhances the ability to capture deep 
spatiotemporal features, making the model more robust in 
distinguishing targets from complex backgrounds, leading to 
higher precision and recall, and stronger generalization 
capabilities. MG-SNN effectively compensates for the lack of 
motion information in handling complex dynamic scenes. 
Through advanced temporal processing, bio-inspired feature 
extraction, and spatiotemporal information computation, the 
combined architecture processes these scenes efficiently and 
enhances object detection accuracy. By integrating the MG-SNN 
motion guidance module with the YOLO framework, the system 
maintains real-time performance while improving detection 
capabilities, particularly for small targets in dynamic scenarios.

Future work will prioritize optimizing the current 
implementation of MG-SNN to enable seamless real-time 
integration for dynamic environments. Deploying MG-SNN on 
neuromorphic hardware optimized for event-driven and energy-
efficient processing, such as Loihi or SpiNNaker, designed for 
event-driven and energy-efficient processing, will reduce 
computational overhead and latency, addressing current 
challenges in resource-constrained systems. Simplifying the 
MG-SNN architecture through model pruning and approximation 
will further enhance scalability, making the MG-SNN + YOLO 
framework more suitable for real-time detection tasks while 
maintaining accuracy and robustness in complex dynamic scenes, 
including improved resolution handling. In addition to improving 
real-time scalability, future research will explore the application 
of MG-SNN in swarms of small drones, transitioning from 
single-drone operations to collaborative multi-drone systems. 
This will involve integrating multi-source information, including 
pose estimation and data from lidar, RGB-D cameras, and inertial 
sensors, to enhance motion feature extraction and target 
detection in dynamic environments. Transitioning the framework 

towards online algorithms, incorporating event-based processing 
and real-time learning techniques will reduce memory 
consumption, computational overhead, and latency by optimizing 
the spiking neuron calculations within the current model. These 
improvements will also enhance system responsiveness and 
adaptability. With its advanced temporal processing, bio-inspired 
feature extraction, and combined spatio-temporal information 
computation, the MG-SNN framework has the potential to 
provide robust, scalable, and energy-efficient solutions for 
complex real-world scenarios, especially in resource-constrained 
systems and multi-drone platforms.

6 Conclusion

Achieving motion feature extraction and object detection for 
objects in terms of complex dynamic backgrounds and 
neuromorphic hardware deployment remains a challenging task. 
This study has delved into the potential of integrating the processing 
mechanisms of the biological retina with spiking neural networks 
(SNNs) for the first time. A two-layer pure SNN model, the Magno-
Spiking Neural Network (MG-SNN), has been proposed to simulate 
the visual information transmission process and achieve motion 
feature outputs consistent with biological visual pathways as a 
motion feature extraction module for object detection tasks. A 
Visual-Magnocellular Dynamics Dataset (VMD) has been developed 
and a multi-frame spike temporal encoding strategy has been 
adopted to effectively extract and process dynamic visual 
information. By combining dynamic thresholds and the STDP rule, 
a Dynamic Threshold Multi-frame Spike Time Sequence (DT-MSTS) 
backpropagation method has been proposed to facilitate the 
extraction of motion features within the SNN architecture. 
Additionally, MG-SNN has been integrated with the YOLO model 
to design a retinal-inspired spiking neural network architecture for 
drone motion extraction and object detection. This study has 
demonstrated the synergistic advantages of retinal mechanisms and 
SNNs in visual information processing, highlighting the potential 
for advancing drone visual detection technology, explores the 
possibility of deploying neuromorphic chips in the form of software, 
and points towards future directions for managing complex 
spatiotemporal data in real-world object detection tasks. Future 
research will focus on expanding the applicability of MG-SNN to 
broader contexts, including collaborative multi-drone systems and 
dynamic, resource-constrained environments. Advancements such 
as the deployment of neuromorphic hardware, the development of 
efficient real-time algorithms, and the integration of multi-source 
information will further enhance the system scalability, robustness, 
and energy efficiency, and are expected to extend the MG-SNN to 
semantic segmentation or video tracking. These efforts aim to bridge 
the gap between experimental research and practical deployment, 
enabling applications in areas such as multi-drone coordination, 
large-scale surveillance, and disaster response.
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