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Anomalous chromosomes are the cause of genetic diseases such as cancer,

Alzheimer’s, Parkinson’s, epilepsy, and autism. Karyotype analysis is the standard

procedure for diagnosing genetic disorders. Identifying anomalies is often

costly, time-consuming, heavily reliant on expert interpretation, and requires

considerable manual e�ort. E�orts are being made to automate karyogram

analysis. However, the unavailability of large datasets, particularly those including

samples with chromosomal abnormalities, presents a significant challenge. The

development of automated models requires extensive labeled and incredibly

abnormal data to accurately identify and analyze abnormalities, which are

di�cult to obtain in su�cient quantities. Although the deep learning-based

architecture has yielded state-of-the-art performance in medical image

anomaly detection, it cannot be generalized well because of the lack of

anomalous datasets. This study introduces a novel hybrid approach that

combines unsupervised and supervised learning techniques to overcome the

challenges of limited labeled data and scalability in chromosomal analysis.

An Autoencoder-based system is initially trained with unlabeled data to

identify chromosome patterns. It is fine-tuned on labeled data, followed by

a classification step using a Convolutional Neural Network (CNN). A unique

dataset of 234,259 chromosome images, including the training, validation,

and test sets, was used. Marking a significant achievement in the scale of

chromosomal analysis. The proposed hybrid system accurately detects structural

anomalies in individual chromosome images, achieving 99.3% accuracy in

classifying normal and abnormal chromosomes. We also used a structural

similarity index measure and template matching to identify the part of the

abnormal chromosome that di�ered from the normal one. This automated

model has the potential to significantly contribute to the early detection and

diagnosis of chromosome-related disorders that a�ect both genetic health and

neurological behavior.

KEYWORDS

chromosome anomalies, cognitive sciences, machine learning, neurological health,
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1 Introduction

A chromosome is a thread-like structure that harbors genetic information encoded in

genes. Located within the nuclei of cells in most living organisms, it comprises proteins

and a solitary Deoxyribonucleic Acid (DNA) molecule. The structure of the chromosomes

is shown in Figure 1. It transports genomic information from one cell to another
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FIGURE 1

Normal karyogram of a typical human cell.

(Institute, 2023). A typical human cell contains 46 chromosomes,

comprising 22 pairs of single chromosomes (autosomes), which

are numbered (1–22), and two sex chromosomes (XX or XY)

(Institute, 2023). Chromosomes become visible during metaphase

when stained with Giemsa and viewed under a light microscope.

Understanding human chromosomes is crucial for diagnosing

and predicting outcomes and tracking treatment progress under

various conditions (Gersen, 2013). Cytogenetic experiments were

performed to determine chromosomal abnormalities. Cytogenetics

encompasses the examination of tissues, blood, bone marrow,

and cultured cells i a laboratory setting. This field uses banding

or manipulation techniques to identify chromosomal alterations

(Natarajan, 2002).

Genetic diseases result directly from chromosomal

abnormalities, and detecting chromosomal anomalies can

anticipate and alert medical practitioners to potential diseases

stemming from these abnormalities (Natarajan, 2002). Effective

identification of chromosomal abnormalities is of significant

clinical importance. Detecting genetic abnormalities in patients

at the earliest stage is essential for timely and effective treatment.

Chromosomal abnormalities are associated with genetic disorders.

Changes in chromosome number or structure affect neurological

health, such as Alzheimer’s, Parkinson’s, epilepsy, autism, and

many other conditions. This can be detected using karyotyping. It

is widely used for prenatal and fetal chromosome screening.

The early detection of fetal chromosomal abnormalities

can provide insights for detecting possible neurological and

developmental abnormalities (Rosenfeld and Patel, 2017). Machine

learning has been widely used in the detection of neurological

disorders as it is used for the classification and segmentation of

neurological images.

Chromosomal disorders can be categorized into two primary

types: numerical and structural abnormalities. A numerical

abnormality signifies that an individual either lacks one of

the chromosomes from a pair, or possesses more than two

chromosomes instead of the usual pair. Numerical disorders

arise from changes in the number of chromosomes, resulting in

deviations from the expected count of 46. Examples of numerical

disorders include trisomy, monosomy, and triploidy. Figure 2

shows the types of numerical abnormalities.

A trisomy occurs when a person has three of a particular

chromosome instead of the usual two. Down Syndrome is caused

by trisomy21. A monosomy occurs when they have just one

chromosome instead of the usual two chromosomes. Triploidy

is rare; however, in this type of abnormality, an extra third

chromosome for each class is present in the cells.

Structural abnormalities indicate that the structure of the

chromosome has been modified in various ways. Structural

chromosomal disorders emerge from breakages within a

chromosome or the incorrect rejoining of chromosomal segments.

In such disorders, the number of copies of any given gene may

exceed or fall short of two typical copies. Deletion, duplication,

inversion, substitution, and translocation anomalies of the

chromosomes are shown in Figure 3.

Upon deletion, a chromosome segment is absent or deleted.

This causes many abnormalities, for example deletion in

chromosome 15 can cause angelman syndrome. In duplication,

a portion of the chromosome is duplicated leading to excess

genetic material like Dup15q Syndrome is caused by duplication

of chromosome 15. In inversion, a chromosome segment may

undergo problems such as breakage, can be turned upside down,

and can have subsequent reattachment, causing inversion of

the genetic material. Substitution occurs when a portion of a

chromosome is replaced with a portion of another chromosome.

Translocation appears when a part from one chromosome is

moved to another. Translocation can be further divided into two

types of reciprocal translocation, which occurs when segments

from two distinct chromosomes have been interchanged, and
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FIGURE 2

Numerical abnormalities in chromosomes.

FIGURE 3

Chromosome structure and structural abnormalities.

Robesonian translocation occurs when an entire chromosome

moves and fixes itself to another chromosome’s centromere. In

Figure 4, we show an example image of del20q chromosomes from

our dataset.

Deletion, duplication, mutation, and trisomy are causes

of cancer and neurological disorders such as epilepsy,

Down syndrome, and autism spectrum disorder (ASD)

syndrome. Neurological disorders are typically studied using

electroencephalogram (EEG), ultrasonography, and magnetic

resonance imaging (MRI). However, these techniques are usually

applied after the onset of symptoms. These methods effectively

monitor brain function once they are developed and visible.

Genetic predispositions during the early developmental stages can

be identified through chromosome analysis, which can help in

the early diagnosis of such diseases. For this, fetal samples were

collected and analyzed by karyotyping. This could help to identify

any anomaly in chromosomes at the early stage of development,

such as neurological disorders, before symptoms manifest. This

way, karyotyping offers a more proactive approach to treatment

and management.

1.1 Related work

Genetic diseases are mainly identified by karyotyping, but

there are some diseases that different imaging techniques can

identify. Methods commonly used for the detection of neurological

disorders such as epilepsy often rely on EEG signals and various

imaging techniques such as MRI. Machine learning has been

used to automate the classification process of these techniques.

Similar to multidomain feature fusion and selection approach

proposed by Kong et al. (2024), it uses advanced signal processing

and machine-learning techniques to optimize feature extraction

and classification.
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FIGURE 4

Chromosome 20.

Machine learning (ML) has transformed healthcare by offering

practical applications that have enhanced diagnosis, treatment,

monitoring, and decision-making across various clinical domains.

From the early detection of diseases to personalized treatment

planning, automated reporting, and predictive analytics, ML

models support healthcare practitioners in delivering more

accurate, efficient, and scalable clinical solutions. This section

outlines the key practical applications of ML in clinical workflows

across different areas of healthcare, showcasing its versatility and

impact beyond specialized fields like cytogenetics. For example, AI

models are used in medical imaging to review X-rays, MRIs, and

Computed Tomography scans to identify fractures, tumors, and

organ failures as efficiently and accurately as possible.

Ibrahim et al. (2024) explored how deep learning using a pre-

trained AlexNet model can help classify chest X-ray (CXR) images

into four categories: COVID-19 pneumonia, non-COVID-19 viral

pneumonia, bacterial pneumonia, and routine. Ahmad et al. (2024)

introduced a computer-aided diagnosis (CAD) system for detecting

breast cancer by combining deep learning and computer vision

techniques. Islam et al. (2024) introduce BrainNet, a deep learning

method for accurately classifying brain tumors using MRI images.

Montobbio et al. (2024) emphasized the potential and

challenges of computational modeling and machine learning

approaches for diagnosing and treating neurological disorders.

Their insights, particularly in disease diagnosis, classification,

and personalized therapeutic strategies, highlight the promising

applications of these techniques. All of them used EEG and

MRI images. Duarte et al. (2024) used flair images and machine

learning for segmentation tasks. Alzheimer’s disease (AD) was

also diagnosed by Slimi et al. (2024) using machine learning on

MRI images, and Li and Zhong (2024) explored the integration

of deep learning in neuroscience, highlighting key trends and

identifying major research hotspots in the field. Therefore, machine

learning has been widely used for diagnosing such diseases but

with different images adopted from different imaging techniques,

as discussed earlier.

Anomaly detection by karyographic analysis is a common

technique used to identify any numerical or structural

abnormalities in human chromosomes. The conventional method

for classifying chromosomes in most cytogenetic laboratories

involves manual work by skilled experts. This procedure is

time-consuming and requires significant effort from experienced

operators, making it expensive. Experts commonly examine

microscopic chromosome images in the conventional analysis of

chromosomal anomalies, relying on their experience and expertise

in detecting abnormalities that may lead to genetic disorders,

congenital disabilities, or even cancer (Britto and Ravindran, 2007).

The analysis of chromosome morphology involves a sequence of

procedures, including selecting metaphase chromosome images.

This encompasses the segmentation of individual chromosomes

(Poletti et al., 2012), the classification of chromosomes (Madian

et al., 2018), and the detection of chromosomal anomalies (Park

et al., 2019). Significant efforts are being made to investigate

how machine learning can improve pathological diagnosis. Deep

learning technologies have experienced widespread adoption in

recent years. The efficacy of these methods lies in their robust

capacity for automatic feature extraction and learning from images,

making them well-suited for the development of automated image

analysis systems.

In medicine, artificial intelligence (AI) is being implemented,

although some challenges exist. For example, the availability of

labeled data is often limited, and labeling itself is challenging

because of a lack of domain knowledge. Medical images containing

anomalies are increasingly being analyzed using artificial

intelligence. Aberrations, alternatively termed abnormalities,

anomalies, or outliers, are often challenges in anomaly detection.

The increasing popularity of deep learning-based anomaly

detection algorithms is also facilitated by advancements in

computational power and availability of big data.

Detecting aberrations poses a persistent challenge, particularly

in the case of clonal chromosomal abnormalities in hematological

malignancies. These abnormalities are characterized by their

high complexity, diversity, and occasional rarity (Fang et al.,

2023). To date, deep learning methods have been applied for

detecting chromosomal abnormalities; however, challenges

have arisen regarding data availability. Deep learning models

rely heavily on data, and when it comes to the analysis

of chromosomal aberrations, two primary issues emerge:

privacy concerns and a limited amount of available data.

Yan et al. (2019) employed ResNent to detect translocations

between chromosomes 9 and 22 using only 200 individual

karyotypes. Li et al. (2020) used generative adversarial network

to detect anomalies in chromosome images using 320 images

per class.

In this study, we attempted to automate the steps involved in

detecting abnormal chromosomes in karyograms. Our approach

involves feeding individual chromosomes into the model and

identifying abnormal chromosomes. The primary contributions of

this study are as follows:

1. We designed a hybrid deep learning model to identify

abnormal chromosomes for genetic disorder identification.

2. We utilized unsupervised and supervised machine learning

techniques to obtain the best results for classification.

3. We used a structural similarity index measure to distinguish

the different parts of the anomalous chromosome from the

normal one.
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FIGURE 5

Proposed model.

4. We performed template matching to identify the transloacted

part of the abnormal chromosome.

5. We aimed to identify the most common structural

abnormalities in neurological disorders by comparing

the abnormal and normal chromosomes.

The remainder of this study is organized as follows:

Section II elaborates the proposed model for aberration

detection for individual chromosomes. Section III describes the

experiments and evaluation of model performance. In Section

IV, we discuss the proposed method and its results. Finally,

Section V concludes the study.

2 Materials and methods

2.1 Proposed approach

Our approach is Hybrid, combining both supervised and

unsupervised methods. In this way, we are taking advantage of

the small amount of labeled data available for anomaly detection.

Supervised learning is a branch of machine learning, in which a

model is trained using a labeled dataset.Unsupervised learning is a

category of machine learning, in which an algorithm provides input

data without specific instructions for processing it. This helps the

model capture the underlying structure and variations in data.

The proposed system comprises of three major stages, as shown

in Figure 5. The first stage involves training the autoencoder with

unlabeled data. This is validated with both normal and abnormal

data. The input to this stage is the individual chromosome

extracted from the karyograms without labels. Chromosomes in

the karyograms were arranged in classes. Therefore, we used

karyogram singlets to determine whether the results were normal

or abnormal. In the second stage, the encoder was utilized as a

feature extractor. The extracted compressed features were fed into

the CNN classifier as the input. Next, the CNN classifier is trained

on the extracted features and labeled data. Finally, the encoder

and classifier are trained using labeled data to fully leverage the

encoder’s ability to generalize from unlabeled data, enhancing its

performance in classifying chromosomes.

2.2 Dataset

Images of chromosomes were used as a dataset that was

manually annotated and verified by expert cytogeneticists. The

dataset was divided into karyograms from which the individual

chromosomes were extracted. In this study, we used images of

singleton chromosomes for classification. Each chromosome was

thoroughly inspected and annotated, and the final dataset of

the individual chromosomes was verified by experts. The dataset

comprises 234,259 individual chromosomes, of which 216,433

were normal chromosome images and 17,828 were abnormal

chromosome images. This dataset included 7,412 chromosome
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TABLE 1 Summary of the dataset used for “training,” “validation,” and

“testing,” with “normal” and “abnormal” chromosome breakdown.

Dataset type Number of
chromosome

images

Normal Abnormal

Training images

(encoder)

140,000 140,000 —

Training images

(encoder + classifier)

65,000 50,000 15,000

Validation images

(encoder)

12,112 10,912 1,200

Validation images

(encoder + classifier)

12,100 10,900 1,200

Test images 5,047 4,621 428

images with translocation abnormalities and 10,416 chromosome

images with deletion abnormalities. This ensures a comprehensive

representation of the two anomalous categories. A total of 140,000

unlabeled normal chromosome images from all 24 classes were

used to train the encoder, and 12,112 images including normal and

abnormal chromosome images were used for validation purposes.

The encoder and classifier were trained using 65,000 labeled

chromosome images, of which 50,000 were normal chromosome

images and 15,000 were abnormal chromosome images. To validate

the encoder and classifier, we used 12,100 labeled chromosome

images,including 1200 abnormal chromosome images and 10,900

normal chromosome images. A total of 5,047 chromosome were

tested, including 426 abnormal chromosome images. Table 1

summarizes the distribution of the dataset.

Deletion, addition, and translocation are the primary

chromosomal anomalies. If the quality of an image is not good,

then it is not easy to detect anomalies accurately, and banding

patterns are the core to identify structural abnormalities; if the

banding pattern is unclear, it is difficult to identify anomalies in

the chromosome. Another problem that hurdles chromosomal

anomalies is whether the chromosome is straight or curved. To

avoid this, we selected straight and good-quality chromosome

images for our approach.

2.3 Proposed method

We employed both supervised and unsupervised learning

methods to develop a model for detecting chromosomal anomalies.

The key steps of our approach are as follows:

2.3.1 Unsupervised training using autoencoder
It involves autoencoder training with normal data to capture

normal chromosome features.

An autoencoder (AE) represents an unsupervised machine

learning approach utilizes a multilayered feed-forward neural

network (Albahar and Binsawad, 2020). Information is input into

the input layer and then passed through a series of hidden layers,

making AE a straightforward feed-forward network. Each layer

contains a variable number of nodes or neurons responsible for

processing the input and generating the output. These nodes are

distributed across different layers, each connected to all nodes in

the preceding layers. The input and output layers both possess

an identical number of nodes, denoted as “n,” because of the

symmetric structure of the autoencoder, which aims to reconstruct

the input on the output side. The predictions generated at each

node, facilitated by the activation functions, are transmitted to

consecutive layers. An autoencoder comprises two primary stages:

Encoder and Decoder (Tan et al., 2019). We utilized this part

because the autoencoder is trained solely on standard chromosome

images without labels. This phase aims to help the encoder learn the

typical patterns and structures found in the standard chromosome

images. As the encoder model only sees normal data, it specializes

in understanding and encoding these standard patterns into a

compressed, lower-dimensional latent space representation. The

decoder part attempts to reconstruct the input image from the

latent-space representation, allowing the AE model to learn a good

feature for the extraction process. For generalization, we validated

it using abnormal and normal unlabeled chromosome data.

2.3.2 Feature extraction from trained encoder
Once the AE is trained, the encoder extracts features from

normal and abnormal chromosome images. The encoder provided

feature representations for each image fed into the classifier. The

features extracted from the encoder contain latent representations

of the input chromosome images. These features are compressed

and abstract forms of the original images, capturing the essential

characteristics of the chromosomes while discarding less critical

details. These features contain information, such as chromosome

patterns, shapes, and structures.

2.3.3 Training the (encoder + CNN classifier) with
extracted features (supervised learning)

The features extracted by the AE encoder are then passed

to the CNN classifier, which learns to classify images based on

the encoder’s output. This step uses the labeled data to train the

classifier. The CNN classifier learns to distinguish between normal

and abnormal chromosomes based on the features extracted from

the encoder and is trained with the standard and abnormal labeled

images while keeping the encoder weights fixed (frozen).

2.3.4 Fine-tuning of encoder and classifier
In this case, the encoder’s weights are unfrozen, and the

encoder and classifier are fine-tuned using the labeled data. The

last two layers of the encoder are fine-tuned. Training only the

last two layers is computationally efficient and preserves the

robust pretrained knowledge of the encoder’s initial layers. This

step is also impactful, because these layers represent higher-level

abstract features of the input data. These features are closer to

the final compressed representation and contain critical semantic

information, making them crucial for adapting the model to new

tasks or datasets. Fine-tuning these layers allows the model to

adjust the high-level features to the new dataset without drastically

altering the generalized low-level feature extraction learned earlier.

Focusing on these layers halps us to reduce the risk of overfitting,
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FIGURE 6

Flow of the proposed approach.

as they retain generalized features, which is beneficial as our dataset

is small.

This step helps the encoder adjust its features

to suit the classification task better. Simultaneously,

the classifier learns to effectively map these extracted

features to the desired classes (normal and abnormal

chromosomes). By jointly optimizing both the encoder

and classifier, the model can better capture discriminative

features, improving overall classification accuracy. Finally,

the model was validated using normal and abnormal

chromosome images. The steps of our approach are shown

in Figure 6.

The encoder plays a crucial role in our hybrid model, serving

as the foundation for feature extraction and anomaly detection,

enabling our approach to detect chromosomal abnormalities

effectively. Its role can be broken down into several key functions:

1: Unsupervised feature extraction: The encoder is initially

trained on unlabeled data, which then learns a compressed

representation of chromosome images through an unsupervised

approach. It then extracts meaningful latent features to capture

essential chromosomal characteristics, such as patterns, shape,

and structure.These features highlight important chromosome

variations and anomalies, which are often difficult to detect using

conventional methods.
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2: Data compression and dimensionality: The encoder

effectively performed dimensionality reduction by converting

input chromosome images into a low-dimensional space.

When non-essential information was discarded, only significant

characteristics were preserved. This abstraction enriches the

classifier by directing the implementation of the most essential

features of the chromosomes, and enhances the general efficiency

of the model.

3: Enhancing supervised learning of the CNN classifier: This

extracted features are then given to the CNN classifier, which

is trained on labeled data to differentiate normal chromosome

patterns and abnormal patterns. The encoder output serves as a

rich input representation, enabling the classifier to perform better

by learning more discriminative patterns from these high-level

informative features.

4: Fine-tuning for task optimization: In last stage, the encoder

and CNN classifier are jointly fine-tuned with labeled data, enabling

the encoder to refine its feature extraction process to suit the

specific requirements of the classification task.

Therefore, this joint fine-tuning guarantees feature learning

and classification in the best manner, thereby minimizing the

generation of incorrect chromosomal anomaly detection models. It

is worth noting that the encoder is a key component of the proposed

hybrid model. It encompasses unsupervised anomaly detection to

a supervised form of classification, allowing the system to deliver

more accurate, scalable, and generalizable solutions to automate

karyogram analysis.

2.3.5 Anomaly detection
Once the hybrid model classifies chromosomes as abnormal,

structural anomalies can be detected. For this purpose, we

used SSIM and pattern matching to identify chromosomal

abnormalities. The SSIM is a computer vision technique that

identifies the differences between two images. It helps to identify

the differences between chromosomes in cases of structural

abnormalities, such as deletions, additions, and translocations. In

the case of deletion or addition, the difference is clear; however,

for translocation, we used the template matching technique.

We first find the different parts from the normal with the help

of SSIM. We also had to identify the translocated portion. For

this purpose, we used pattern matching to find the translocated

part. Pattern matching is a Computer Vision (CV) technique in

which regions are located within an image that corresponds to

the template. In this way, we successfully identified an anomalous

part in chromosomes. Our main focus was to identify the

structural abnormalities involving deletion and translocation in

the chromosome structures.

a) Structural similarity index measure

SSIM was used to assess the quality of images by examining the

structural details of two images (James et al., 2023).

SSIM =
(2µxµy)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ 2
x + σ 2

y + c2)
(1)

Where in Equation 1:

µx , µy: Mean intensities of two images.

σ
2
x + σ

2
y : Variances of intensities.

σxy: Covariance of intensities.

c1,c2: Constants for avoiding instability when the denominator is

close to zero.

Figure 7 shows the implication of SSIM. b) Template matching:

Template matching is a machine-vision technique used to

locate regions within an image corresponding to the template. A

template is a predefined image or part of the image used to match

the part in the main image. This process is performed by moving

the template over the image. The similarity between the main

image and the template image was calculated. Open CV template

matching was then performed. The template image slides over the

main image and the patch of the main image is compared with the

template image.

3 Experiments and results

This section outlines the experimental setup, performance

metrics, and the results of the proposed model.

3.1 Experimental setup

In this study, a CNN autoencoder and a CNN classifier were

combined as models for classification tasks. Both models were

trained using Python software. The Spyder platform (v. 5.4.3) was

used for the training, validation, and testing of the model. The

Spyder platform was implemented using PyTorch framework (v.

11.8 with torch version 2.3.0), and the experiments were conducted

on UBUNTU 18.04, deployed with an NVIDIA RTX 1080 Ti.

3.2 Parameter setting and preprocessing

3.2.1 Preprocessing of data
The images were preprocessed before being provided to the

model as an input. Some of the images were large and some were

small. The large images were compressed, and the small images

were padded to obtain 32 × 32 dimensional images. This step

was performed to maintain the uniformity of the images. We

also normalized the images by scaling the pixel values to between

0 and 1.

3.2.2 Parameters setting
• Encoder

The encoder in our model consisted of three convolution

layers with the following filter configurations: 16, 32, and 64.

Each layer employs the Leaky ReLU activation function to

enhance the learning of non-linear relationships and prevent

vanishing gradient issues. The architecture progressively

extracts hierarchical features from chromosome images,

thereby capturing low- and high-level chromosomal patterns.

We selected a batch size of 20 for training and 10 for

validation. The optimizer was Adam, who had a learning

rate of 0.001 and was trained for 50 epochs. We trained the
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FIGURE 7

Structural similarity index measure result.

model for 100 epochs earlier; therefore, the model could learn

sufficient information in 50 epochs, so we stopped it at 50

epochs. The training and validation loss plots are shown in

Figure 8A.

The loss function was MSE(Mean Square Error), as

expressed in Equation 2.

Mean squared error:

MSE =
1

n

n∑

i=1

(yi − ŷi)
2 (2)

Where

n: number of data points.

yi : the actual value for the i
th data point.

yˆi: predicted value of the ith data point.

This provides the mean of the squared discrepancies between

the actual and predicted values, offering a metric for

the overall accuracy of the prediction. For Normal data

samples, the reconstruction error is typically low, whereas for

anomalous data, the values tend to be higher and exceed a

specific threshold.

• Decoder

The decoder consists of three deconvolutional networks

(deConvNets) with filter values (64,32,16) with ReLu.

• CNN classifier

We selected a batch size of 20 for training and 10 for

validation. Adam was used as the optimizer, with a learning

rate of 0.0001, and was trained for 20 epochs. The loss

function was CrossEntropyLoss. Figure 8B shows the training

and validation losses.

• Encoder + classifier

We selected a batch size of 20 for training and 10 for

validation. The optimizer was Adam with the learning rate

0.0001 and was trained for 20 epochs. The loss function was

weighted CrossEntropyLoss to effectively address the class

imbalance, and the training and validation plots are shown in

Figure 8C.

3.3 Model training

We implemented several strategies throughout the training

pipeline to ensure themodel’s robustness and tomitigate overfitting

and bias. The performance was continuously monitored on a

separate validation set, and early stopping was applied based on

validation loss trends to prevent overfitting, as well as regularization

techniques such as the dropout layer. Data scaling was performed

as an added data preprocessing technique, as it helped scale

the input feature pixel values and achieve a stable convergence

rate. To improve generalization, features were learned by passing

both labeled and unlabeled data to the autoencoder before

proceeding to the supervised classification component. Although

the transformations used during data preprocessing did not include

aggressive augmentation strategies such as flipping or cropping,

we resized the chromosome images to a standard size of 32 ×

32. Normalization was also applied to standardize the dataset’s

intensity range, ensuring sample consistency andminimizing noise.

Because the dataset was imbalanced, where abnormal

chromosome samples were significantly fewer than the standard,

steps were taken to prevent biased learning. Although the

autoencoder was initially trained solely on standard samples to

extract robust latent representations, the subsequent classifier was

trained on normal and abnormal samples. For the evaluation, the

test set comprised normal and abnormal chromosomes for a fair

comparison of the model. Specifically, evaluation measures such as

precision, recall, and F1-score for each class label were presented

to measure the model’s ability to identify deviations. Combined

with this detailed evaluation and validation-based approach to

monitoring during the training process, overfitting and accurate

outcomes were significantly reduced.
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FIGURE 8

Training and validation losses (A) for encoder, (B) for classifier, and (C) for finetuned model.

3.4 Performance metrices

Four performance metrics were used for the evaluation.

Accuracy was determined by dividing the number of correctly

predicted cases by the total number of cases. A high accuracy value

indicated that the model is made accurate predictions. Specifically,

accuracy is calculated as the sum of true positives (TP) and true

negatives (TN) divided by the total sum of true positives (TP), true

negatives (TN), false positives (FP), and false negatives (FN), as

shown in Equation 3.

Accuracy =
TP + TN

TP + FP + FN
(3)
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FIGURE 9

Confusion matrix for normal and abnormal classes plotted against

the true and predicted classes.

Precision: Equation 4 measures the number of correct results

out of all predicted positive results. It is calculated by dividing the

number of true positives (TP) by the sum of true positives (TP)

and false positives (FP).

Precision =
TP

TP + FP
(4)

Recall: This is also known as sensitivity or the true positive rate,

which is the ratio of correctly predicted positive results to the

total positive cases. It is calculated by dividing the number of true

positives by the sum of the true positives and false negatives, as

given in Equation 5.

Recall =
TP

TP + FN
(5)

F1 Score: The F1 score is the harmonicmean of precision and recall,

providing a single metric that balances both. The Equation 6 helps

calculate F1 score.

F1 Score =
2× Precision× Recall

Precision+ Recall
(6)

3.5 Results

The confusion matrix in Figure 9 shows the results. From the

428 input images of chromosomes, 408 were correctly classified as

abnormal, and 20 were classified as normal. Of the 4,619 images

of chromosomes, 4,607 were classified as normal and 12 were

classified as normal, but were identified incorrectly as abnormal.

The evaluation metrics accuracy,precision, recall, and F1 score

are summarized in Table 2 for our model.

TABLE 2 Model performance metrics.

Metrics Normal class % Abnormal class %

Accuracy 99.37 99.37

Precision 99.57 95.32

Recall 99.74 97.14

F1 score 99.65 96.22

FIGURE 10

Receiver operating characteristic curve of the model.

A Receiver Operating Characteristic (ROC) curve was also

generated to evaluate the performance of our model in predicting

the probabilities of outcomes, distinguishing between normal and

anomalous chromosome images, as shown in Figure 10. This curve

was plotted against the true positive rate (TPR) and false positive

rate (FPR). The area under the curve (AUC) was used to assess the

level of discrimination between classes. Figure 10, with the value

of AUC = 0.97, shows that our model is effectively distinguished

between normal and abnormal chromosomes.

In the dataset, only the translocations between chromosomes

9 and 22 were identified. Therefore, a pattern-matching technique

was applied to detect abnormalities. As shown in Figure 11A,

two abnormalities were observed in the karyograms: one on

chromosome 9b and the other on chromosome 22b. Both 9b and

22b were identified as translocated chromosomes. In the first step,

the two chromosomes were found to be abnormal. Subsequently,

the type of abnormality was identified by comparing chromosomes

9 and 22 with their corresponding normal reference chromosomes.

Differences between 9b and 22b were also observed. Different

parts of chromosome 9 were identified using SSIM, as shown

in Figure 11B. The same process was performed on chromosome

22, and different parts are shown in Figure 11C. In the final

step, the template-matching technique was applied to locate the

translocated parts. Figure 11D shows that part of chromosome

22 was located on chromosome 9, while Figure 11E shows the

translocated part of chromosome 9 on chromosome 22. This
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FIGURE 11

Structural similarity index measure and template matching results. (A) Karyogram with abnormal chromosomes. (B) Chromosome 9. (C)

Chromosome 22. (D) Template matching for chromosome 22. (E) Template matching for chromosome 9.

approach enabled the identification of deleted or translocated parts

of abnormal chromosomes.

4 Discussion

Cytogenetics is a branch of genetics that attempts to

explain the relationship between human chromosomes and

their genetic makeup and functions. Furthermore, it examines

into the health and evolutionary implications arising from the

architectural distortions of the chromosome. Cancer and other

related abnormalities related to genetic diseases or neurological

disorders are diagnosed after samples have been analyzed in

laboratories. These methods are employed to search for and

evaluate their effects, particularly on neurological disorders, in the

health and developmental aspects of humans. This basic method

of karyotyping is complex and requires a considerable amount

of knowledge in the domain and time. Automated karyotyping

enhances the speed and efficiency of chromosomal analysis,

allowing for quicker identification of abnormalities. It reduces

human involvement, addresses the challenges of manual analysis,

and reduces the scarcity of large datasets. The major limitation

observed is the absence of datasets because deep learning methods

are data-intensive, and data related to abnormalities are muchmore

complex and not easy to understand by every one.

Chromosomal analysis, when performed during fetal

development, offers the unique advantage of detecting genetic

abnormalities before the onset of clinical symptoms. This is

crucial for disorders such as Down syndrome, autism, intellectual

disabilities, edwards syndrome, cri-du-chat syndrome, mosaic

Turner syndrome, and other underdevelopment disorders that

have a strong genetic component. The earlier a disorder is detected,

the earlier medical interventions, lifestyle adjustments, and support

mechanisms can be implemented. Moreover, prenatal testing can

allow families to prepare mentally and emotionally, while also

making informed decisions about pregnancy, care, and future

management of the child’s health.

Disorders such as Down syndrome and other

underdevelopment disorders are primarily identified and

studied using techniques such as EEG, MRI, and other imaging

technologies. However, these methods are only applied when a

child or person shows signs of neurological disorder. For example,
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they can be identified when a child is already experiencing

developmental delays or cognitive impairment. These technologies

help monitor the brain’s electrical activity and neural function.

However, these studies do not offer predictive insights into the

genetic basis of these conditions, particularly during the early

stages of development. Visualizing chromosomes at an early stage

allows the early detection of chromosomal abnormalities during

fetal development. Anomalies such as deletions, duplications, or

translocations that cause neurological disorders can be identified

by analyzing fetal cell chromosomes.

With the advancement of deep learning models, including

unsupervised and supervised approaches, it is now possible to

automate and scale the analysis of chromosomal images of fetal

or later blood or bone marrow samples. This automated analytical

approach is more accurate and efficient. We introduce a hybrid

model approach that utilizes unsupervised learning and supervised

techniques. This hybrid model can efficiently process genetic data

to quickly identify anomalies and provide more precise diagnoses.

This facilitates the identification of structural abnormalities that are

often associated with neurological disorders.

Our objective was to achieve the automatic detection of

any structural chromosomal abnormality without the necessity

for training for each distinct abnormality with labels. Our

approach is beneficial because labeled examples are scarce,

especially for rare anomalies. Prior CV and ML studies have

addressed various challenges related to chromosomes (Boddupally

and Thuraka, 2023), including segmentation, and Saleh et al.

(2019) proposed Unet for chromosome segmentation. Fan et al.

(2024) proposed DaCSeg for segmentation of chromosomes. Kang

et al. (2024) proposed the model UC-Det model for counting

chromosomes. Classifications: Qin et al. (2019) designed Verifocal-

net for chromosome classification. Chang et al. (2024) proposed

a DL model that uses attention to classify chromosomes. Wu

et al. (2018) used GANs for the augmentation of chromosomes.

Uzolas et al. (2022) used GANs for chromosome generation. Al-

Kharraz et al. (2020) used YOLOV2 and VGG19 to identify the

numerical aberrations. Wang et al. (2010) detected translocation

in chromosomes using an adaptive matching technique. Kao et al.

(2023) proposed 3 step process for identifying individual and

clustered chromosomes. Cox et al. (2022) provided a supervised

technique to identify abnormal chromosomes using Residual CNN.

Bechar et al. (2023) used a supervised Siamese Network to classify

chromosomes. Among the various studies mentioned previously,

the prevalent approach involves the application of traditional

supervised learning methods on relatively small datasets.

4.1 Significance of proposed approach

The proposed model integrates supervised and unsupervised

learning techniques, leveraging the strengths of both approaches

to improve the performance and robustness of automated

chromosome classification.

4.1.1 Supervised learning
Supervised learning uses labeled data to train models with the

objective to learn a mapping between input features and their

corresponding output labels. There are some advantages like: with

a sufficient amount of labeled data this approach excels at learning

discriminative patterns and distinguishing between normal and

abnormal chromosomes with high accuracy. Supervised learning

excels in tasks such as classification with high accuracy, particularly

when labeled data are abundant. However, this is limited by the

challenge of acquiring large labeled datasets in clinical settings.

Supervised models also have some disadvantages, such as their

dependence on large amounts of labeled data. Obtaining a large

amount of labeled data requires significant time and expertise,

which is a limitation in the clinical environment. and a model

trained solely on limited labeled data reduces the generalization

ability for unseen abnormal cases.

4.1.2 Unsupervised learning
Unsupervised learning aims to identify structures inherent in

data without using labeled learning information. The merits of

unsupervised learning include that it works with large amounts

of data that are not labeled and is easier to access than labeled

data. It excels at discovering hidden patterns and relationships

that can work well for feature extraction and feature space

dimensionality reduction thereby enhancing the computational

performance and generalization across diverse data. However, this

method has some limitations. It has no direct relation to the

target outputs, which makes it unsuitable for tasks involving exact

quantitative predictions without further processing. However, the

extracted features are more complex to analyze, and comparing

their performance without a labeled dataset is challenging.

Unsupervised learning extracts meaningful features without

relying on the labeled data. In our approach, an autoencoder is

used for feature extraction, providing compressed representations

of chromosome images. Unsupervised learning also has some

advantages over supervised learning, such as the unsupervised

approach enables to utilize a large number of unlabeled

chromosome images that are more readily available and cost-

effective to acquire. Robust feature extraction: The encoder

captures essential structural and morphological information about

chromosomes, making it possible to detect subtle patterns that

are difficult to capture using supervised methods alone. Better

generalization: Because the encoder was trained and validated on

a large dataset, it can generalize better across different variations

and imaging conditions. Like supervised models, they also have

some Disadvantages: as: Indirect labels: While unsupervised

models are good at feature extraction, they do not directly

map to class labels and require subsequent integration with a

supervised classifier. Interpretability challenges: Understanding

the exact features extracted by the encoder can sometimes be less

interpretable than supervised models, making it harder to explain

specific clinical findings.

4.1.3 Hybrid approach
By combining supervised and unsupervised techniques, our

model leveraged the strengths of both approaches. Supervised

learning excels in tasks that require labeled data, particularly

in distinguishing between normal and abnormal chromosomes.

However, acquiring large labeled datasets, particularly for rare

anomalies, can be challenging. In contrast, unsupervised learning
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TABLE 3 Comparison of our hybrid approach with existing approaches

for karyogram analysis.

Aspect Existing
models

Our approach
(hybrid)

Model architecture CNN, Fully

Connected

Networks

AutoEncoder (Unsupervised)

+ CNN Classifier (Supervised)

Approach type Mostly supervised Hybrid (Supervised +

Unsupervised)

Dataset diversity Often limited to

normal or simple

anomalies

Comprehensive dataset with

deletion and translocation

structural abnormalities

Model generalizability Poor

generalizability on

rare anomalies

Better generalizability as

trained on unlabeled data

can handle large amounts of unlabeled data and is effective

for feature extraction and pattern discovery. However, it lacks

direct connections to target outputs, making it less suitable for

classification tasks.

To address these limitations, our hybrid approach integrates

the advantages of bothmethods. The unsupervised encoder extracts

meaningful features, whereas the supervised classifier refines these

features for the accurate classification of normal and abnormal

chromosomes. This combination allowed us to harness the power

of unsupervised learning for handling large unlabeled datasets and

the precision of supervised learning for effective classification.

Table 3 compares ourmethodwith othermethods, emphasizing

the differences in the learning patterns. Our hybrid approach

uses an autoencoder (AE) trained on unlabeled data for feature

extraction, followed by a supervised classifier for the final

classification task. Because normal data are often more abundant

and easier to obtain than abnormal data, an autoencoder uses

normal data to extract features. This eliminates the need for

labels thereby allowing the autoencoder to autonomously identify

valuable features from the dataset. The classifier then focuses on

the most relevant features provided by the autoencoder thereby

enhancing the classification performance. In addition, as the

autoencoder is trained on unlabeled data, its reliance on labeled

samples decreases, which is particularly beneficial when labeled

anomalous data are scarce or costly.

We trained, validated, and tested our model using a large data

set that is not publicly available. The dataset contains not only

normal chromosomes, but also abnormal chromosoems. After

intensive training and validation, we tested our model on test

data comprised of 5,047 images, including 428 abnormal images.

Our model achieved an AUC value of 0.98, demonstrating

its ability to distinguish between normal and abnormal

chromosomes effectively. Our model outperforms identifying

abnormal chromosomes from normal chromosomes using hybrid

unsupervised and supervised deep learning. Compared to existing

methods, as shown in Table 4, our hybrid approach achieved an

accuracy of 99.3%, surpassing the DeepResidual model by Yan et al.

(2019), which reached 97.5%, and the DNN model by Kang et al.

(2024), which achieved 99.2% accuracy.

Our approach comprises two distinct steps: first, detection of

anomalous chromosomes, and second, identification of specific

TABLE 4 Comparison with previous models.

References Model Approach Accuracy

Yan et al. (2019) DeepResidual Supervised 97.5%.

Kang et al. (2024) DNN Supervised 99.2 %

Our approach AutoEncoder + CNN

classifier

Hybrid 99.3 %

abnormalities within these chromosomes. The initial step was

executed by employing normal images. We validated our AEmodel

using a dataset containing both abnormal and normal samples. This

demonstrates how our model is better than the others in detecting

aberrant chromosomes; hence, we demonstrate our efficiency and

precision in the hybrid mode.

After determining whether the chromosome is normal or

abnormal, the following step seeks to determine a particular

abnormality. Several methods in computer vision can detect

abnormalities in chromosomes. Our approach involves aligning a

normal chromosome with a counterpart chromosome to determine

the area of the anomaly. Chromosomes are usually compared

with normal chromosomes or ideograms to check for subtractive

or translocation presence. To perform this task, we used the

SSIM and pattern-matching methods. We compared the normal

chromosomes instead of ideograms.

SSIM helps to identify the differences between the two images.

We compared normal and abnormal images and identified different

parts in cases of deletions and translocations. However, we first

identified the difference between the normal tissue and different

parts of the translocation. We also had to identify the translocated

part and used pattern matching to find the translocated part. In this

way, we successfully identified aberrations in the chromosomes.

Our primary focus was identifying structural abnormalities

involving deletion and translocation in chromosome structures.

We presented an approach for identifying structural

aberrations in individual chromosomes extracted from

karyograms. The methodology relies on analyzing banding

patterns to detect and characterize these abnormalities. Substantial

effort has been made to explore the integration of machine learning

into pathology diagnoses. We presented a hybrid approach

comprising both unsupervised and supervised learning that proved

advantageous, particularly when dealing with a limited number of

anomalous images. Gathering anomalous datasets in the medical

field is inherently challenging. Our model was uniquely trained,

validated, and tested on a large dataset, one of the first of its

kind for this task, thereby significantly enhancing the robustness

of anomaly detection and demonstrating its effectiveness in

identifying chromosomal abnormalities.

In real-world scenarios, time constraints often lead to the

standard practice of analyzing only a few meta-phase cells per

specimen despite the availability of hundreds of cells. Despite

this restricted analysis, challenges persist regarding the cost and

turnaround time for diagnosis. This task is perfectly tailored for

deep learning because of the complexity of expert analysis, which

implies the use of visualization and the expected common mean of

a sample set with its genus of origin. In addition, when applied to

the initial assessment of chromosomal abnormalities for conditions
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such as epilepsy andDown syndrome, we expect that ourmodel will

provide prognostic advice for more effective patient management.

The prediction of these disorders through the identification of

genetic markers contributes to early intervention, which will help

reduce the impact of the disorders on development as a result

of early diagnosis and management. Recognizing neurological

disorders at a preliminary stage significantly boosted genetic

anomaly detection and preventive diagnostics in our model.

Here, we present a new methodology for a hybrid model to

resolve the issue of automated chromosome anomaly detection,

which is an important paradigm of cytogenetic analysis. Our study

innovates by combining supervised and unsupervised learning

frameworks, which enhances the detection accuracy and offers

significant improvements over other methods. Our approach

maximizes the value of the available data by utilizing unlabeled

chromosome images during the feature extraction phase while

still using labeled data for supervised classification. This strategy

overcomes the limitations of imbalanced datasets, where obtaining

many labeled abnormal chromosome images is difficult in clinical

and research settings.

The method we propose for karyogram analysis is expected

to greatly enhance the diagnostic process, allowing for the faster

identification of potential genetic issues. Implementation of our

model in clinical decision support systems can help cytogeneticists

and practitioners obtain automatic and confident classification

results, thus increasing diagnostic accuracy and reducing time.

4.2 Challenges in real-world adoption and
limitations

In clinical contexts, it is essential to protect patient data.

Simultaneously, datasets are usually associated with restrictions

regarding the availability of information, which can be a problem

for training and validation. In addition, the images of chromosomes

in the model may not be consistent with those of other laboratories

and imaging equipment, which might cause a difference. To

handle such variations, robust domain adaptation techniques

are necessary. Moreover, integrating our model seamlessly into

existing laboratory software and clinical workflows requires

technical compatibility and collaboration with various healthcare

information technology (IT) systems. However, the proposed

system has certain limitations. It is mainly used to work with

straight chromosomes, but it is useful with curved chromosomes

that are first straightened. However, refining the straightening

process may enhance the outcomes. Although the model has

shown promising results on the custom dataset used, it lacks

validation on external datasets that contain similar complex

structural chromosomal abnormalities, which could be an area

for improvement. Despite its high classification accuracy, the

model has significant computational demands, particularly during

training. The concept of the model is defined by multiple

convolutional layers that contribute to numerous parameters and

significant GPU memory and processing power. This may restrict

its application in the real world, especially in areas where resources

are scarce, such as small clinical environments. However, a trade-off

between computational inputs and model efficacy exists in the

process. The inference times for such applications depend on the

specific hardware, and in large-scale clinical trials, selecting the best

hardware resources and their integration solutions is crucial. In

our opinion, we can eliminate all of these problems with the help

of further development of interdisciplinary cooperation, additional

model refinements, and numerous clinical trials that will allow us

to implement the proposed method in various clinics successfully.

5 Conclusion

Our study strongly emphasizes that reliable detection of

anomalous data is important in medical applications, primarily

in genetic diagnosis by karyotyping. Identification of anomalies

in medical data is considered a task in computing science and is

important for patient care and treatment. Therefore, developing

robust methodologies such as the automated approach presented

here is vital for ensuring the accuracy of diagnostic procedures. Our

hybrid model, which combines an unsupervised encoder trained

with unlabeled normal data and a supervised CNN classifier trained

on labeled normal and abnormal chromosome data, is a powerful

approach to karyogram analysis. Thus, by training the encoder with

data that are not labeled as normal or abnormal and validating the

model with normal and abnormal data, we ensure that we obtain

the best of both worlds from a model where all the relevant features

are captured. The encoder also learns the basic features that help

enhance the task of chromosome classification; separating normal

and abnormal chromosomes is performed accurately.

Our model was trained and validated using a large dataset,

and eliminated false or misleading anomalies. Furthermore,

we identified the anomalous chromosomes in detail using CV

methods, SSIM, and template matching. Thus, the combined use

of appropriate methodologies strengthened our approach and

increased the accuracy of the results. After evaluating the test

data, we found that precision, recall, F1 score, and accuracy

were all impressive, with a total accuracy of 99.37% for both

normal and abnormal classes, and F1 scores for both normal and

abnormal classes were 99.65% and 96.22%, respectively. These

results demonstrate that the model effectively classifies normal and

abnormal chromosomes. In addition, the model achieved an AUC

of 0.98, demonstrating its effectiveness in classifying normal and

abnormal chromosomes.

Our study addresses the demand for automation in genetic

disorder assessment and underscores the transformative

potential of interdisciplinary approaches in healthcare and

neurological computations. Future study will involve working

with research laboratories and hospitals to obtain data on

various imaging sources, lighting conditions, and types of

chromosomal abnormalities. Moreover, while the system

is currently designed to detect only structural anomalies,

future study plans will incorporate numerical anomaly

detection. We also plan to integrate explainable AI (XAI) to

visually discuss the prediction results so that cytogeneticists

and doctors can use this information efficiently for further

case analysis.
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