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Event-based cameras are suitable for human action recognition (HAR) by

providing movement perception with highly dynamic range, high temporal

resolution, high power e�ciency and low latency. Spike Neural Networks (SNNs)

are naturally suited to deal with the asynchronous and sparse data from the

event cameras due to their spike-based event-driven paradigm, with less power

consumption compared to artificial neural networks. In this paper, we propose

two end-to-end SNNs, namely Spike-HAR and Spike-HAR++, to introduce

spiking transformer into event-basedHAR. Spike-HAR includes two novel blocks:

a spike attention branch, which enables model to focus on regions with high

spike rates, reducing the impact of noise to improve the accuracy, and a

parallel spike transformer blockwith simplified spiking self-attentionmechanism,

increasing computational e�ciency. To better extract crucial information from

high-level features, we modify the architecture of the spike attention branch

and extend it in Spike-HAR to a higher dimension, proposing Spike-HAR++ to

further enhance classification performance. Comprehensive experiments were

conducted on four HAR datasets: SL-Animals-DVS, N-LSA64, DVS128 Gesture

and DailyAction-DVS, to demonstrate the superior performance of our proposed

model. Additionally, the proposed Spike-HAR and Spike-HAR++ require only 0.03

and 0.06 mJ, respectively, to process a sequence of event frames, with model

sizes of only 0.7 and 1.8 M. This e�ciency positions it as a promising new SNN

baseline for the HAR community. Code is available at Spike-HAR++.

KEYWORDS

spiking neural network, human action recognition, transformer, attention branch,

event-based vision

1 Introduction

Human action recognition (HAR) involves identifying and understanding human

movements and has numerous applications in the real world (Sun et al., 2022).

For instance, HAR can be employed in visual surveillance systems to detect

hazardous activities and monitor human behavior, thereby ensuring safe operations

(Lin et al., 2008). Additionally, HAR can facilitate sign language recognition (SLR).

According to the latest data from the World Federation of the Deaf, there are

70 million deaf individuals worldwide using over 200 sign languages (Murray,

2018). However, learning sign language can be challenging and time-consuming,

creating communication barriers for the deaf community (Hu L. et al., 2023).
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To address this issue, HAR for sign language recognition has been

extensively researched. Most of the works focused on using RGB or

gray-scale videos as input for HAR (Wang et al., 2017; Kındıroglu

et al., 2022; Vázquez-Enríquez et al., 2021; Mercanoglu Sincan and

Keles, 2022; Shen et al., 2024; Wang F. et al., 2023), due to their

popularity and easy access. However, the recognition results of

RGB-based HAR methods are inevitably influenced by the motion

blur inherent to RGB cameras and static background noise (Wang

et al., 2019; Wang Y. et al., 2022).

As an emerging neuromorphic sensor, the event camera detects

changes in brightness for each pixel independently, generating

an event stream asynchronously and sparsely. The difference

between RGB video frames [from LSA64 (Ronchetti et al., 2023)]

and DVS event frames (from N-LSA64) is shown in Figure 1.

The event camera features high temporal resolution, low latency,

low power consumption, and a wide dynamic range (Su et al.,

2022), which can effectively address issues related to motion

blur and static background noise. That is, event cameras hold

significant advantages in the field of HAR. The current state-of-

the-art (SOTA) approaches for event-based HAR involve firstly

designing event aggregation strategies converting the asynchronous

output of the event camera into synfirst chronous visual frames,

followed by processing using Artificial Neural Networks (ANNs)

(Ghosh et al., 2019; Amir et al., 2017; Baldwin et al., 2022; Cannici

et al., 2020; Innocenti et al., 2021; Sabater et al., 2022), which

require considerable computational power, posing challenges for

deployment on edge devices.

As third-generation neural networks, Spike Neural Networks

(SNNs) are designed with biological plausibility, mimicking the

dynamics of brain neurons to encode and transmit information in

the form of spikes (Maass, 1997). Compared to ANNs, the event-

driven nature of SNNs significantly reduces energy consumption

when running on neuromorphic chips (Zhang et al., 2023, 2021).

However, current SNN-based HAR tasks still face challenges of lack

of datasets and low recognition accuracy (Shi et al., 2023).

In this paper, we propose two models, Spike-HAR and

Spike-HAR++, to simultaneously reduce power consumption and

enhance recognition accuracy in event-based HAR. Spike-HAR

integrates a patch embedding (PE) block, parallel transformer

blocks, a spike attention branch, and a classification head. To

further improve performance, we modify the architecture and

position of spike attention branch in Spike-HAR according to

the Hu et al. (2024) and extend it to a higher dimension,

proposing Spike-HAR++, which enables better extraction of crucial

information from high-level features. As illustrated in Figure 2,

experiments on the SL-Animals-DVS dataset (Vasudevan et al.,

2022) demonstrate that both models significantly outperform

other event-based HAR systems while maintaining lower levels of

power consumption.

This paper is an extended version of our prior work (Lin et al.,

2024) accepted by BMVC 2024. The main differences with the

conference version are as follows: (1) besides the Spike-HAR based

on the Parallel Spiking Transformer (referred to as Spike-SLR in the

BMVC version), we newly propose Spike-HAR++, which is better

suited for recognizing long-duration actions; (2) the application

scope of the models are extended from sign language recognition to

human action recognition, with comprehensive testing conducted

on two additional datasets: DVS128 Gesture (Amir et al., 2017) and

DailyAction-DVS (Liu et al., 2021), achieving SOTA performance;

(3) a detailed overview about traditional ANN-based and SNN-

based HAR methods, as well as the development of spiking

transformers are discussed in the related work. To sum up, themain

contributions of this paper are listed:

(1) We propose the Spike-HAR family, i.e., Spike-HAR and

Spike-HAR++, which mainly consists of a powerful parallel spike

transformer block. To the best of our knowledge, it is the

first spiking transformer specifically designed for event-based

HAR. To enhance the model’s spatio-temporal attention to fine-

grained action features while maintaining energy efficiency and a

lightweight design, we employ a parallel spiking transformer. In

this architecture, multi-layer perceptrons (MLPs) and simplified

attention sub-modules (CB-S3A) operate in parallel to improve

overall efficiency.

(2) We first introduce attention mask mechanisms into SNNs

and incorporate a spike attention branch in our model to extract

key regions from the input event streams. Additionally, we

improve the attention operation for Spike-HAR++, utilizing high-

dimensional features extracted through a patch embedding (PE)

block to accommodate the recognition of long-duration actions.

Experiments demonstrate that, although the parameter count

and power consumption of Spike-HAR++ increase slightly, the

accuracy of HAR improves significantly.

(3) Experimental results on the public datasets SL-Animals-

DVS (Vasudevan et al., 2022), N-LSA64 (Ronchetti et al., 2023)

[converted using the v2e (Hu et al., 2021) method], DVS128

Gesture (Amir et al., 2017), and DailyAction-DVS (Liu et al., 2021)

show that the proposed Spike-HAR family effectively balances

model size and recognition accuracy. Specifically, the proposed

Spike-HAR and Spike-HAR++ require only 0.03 and 0.06 mJ,

respectively, to process a sequence of event frames, with model size

of just 0.7 and 1.8 M.

In the rest of the paper, Section 2 presents the related work

on event-based HAR and spiking transformers. Section 3 begins

with an overview of the overall architecture of Spike-HAR and

Spike-HAR++, followed by a detailed description of each model

component. Section 4 introduces four HAR benchmark datasets

and evaluation metrics, along with rigorous ablation studies,

visualizations, and performance evaluations of the proposed

models. Finally, Section 5 concludes the paper.

2 Related work

2.1 Event-based human action recognition

Human action recognition aims to assign labels to various

human behaviors and has wide applications in fields such as visual

surveillance systems (Prati et al., 2019; Lin et al., 2008; Nasir et al.,

2022), sign language recognition (Lin et al., 2024), autonomous

navigation systems (Wang Q. et al., 2022), and video retrieval

(Sahoo et al., 2020). Traditional HARmethods commonly use RGB

or grayscale video as input due to their accessibility. However, HAR

based on RGB modalities is not robust to illumination changes and

is susceptible to motion artifacts (Sun et al., 2022). Additionally,
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FIGURE 1

(a) Comparison of RGB video frames and DVS data frames for sign language Opaque (one-handed sign). (b) Comparison of RGB video frames and

DVS data frames for sign language breakfast (two-handed sign).

FIGURE 2

Accuracy vs. inference energy of di�erent neural methods implemented in Intel Stratix 10 TX (Corporation, 2023) (for ANNs) or ROLLS (Qiao et al.,

2015) (for SNNs). The size of the markers denotes the number of parameters.

the large data size of RGB videos results in high computational

costs when modeling spatiotemporal context for HAR. To address

above problem, alternative data forms for HAR have emerged,

such as skeleton (Wang and Yan, 2023), depth (Sahoo et al.,

2020), infrared sequences (Ding et al., 2022), point clouds (Yu

et al., 2022), and event streams. This study focuses on event-based

HAR, as event cameras offer high dynamic range, low latency, low

power consumption, and eliminate motion blur, making themwell-

suited for HAR. Furthermore, the captured frames typically lack

background information, which aids in action understanding.

Themethods for event-basedHAR can be primarily categorized

into ANN-based and SNN-based (Gao et al., 2023). For ANN-

based methods, representative studies mainly utilize 3D CNNs

or transformers to learn features in both spatial and temporal

domains, thereby aggregating information from adjacent frames.

For example, Wang et al. (2024) presented a novel event stream-

based action recognition model called EVMamba, which integrates

a spatial plane multi-directional scanning mechanism with an

innovative voxel temporal scanning mechanism to effectively

extract spatio-temporal information from event streams. Acin

et al. (2023) introduced VK-SITS, a new event data representation

using the ResNet18 network, which outperformed other methods

such as TORE (Baldwin et al., 2022) and SITS (Manderscheid

et al., 2019). Additionally, Sabater et al. (2022) developed EVT,

an efficient transformer model that leverages the sparsity of event

data, achieving SOTA results on the SL-Animals-DVS dataset.

They further improved EVT by employing a finer patch-based

event data representation with richer spatio-temporal information,

resulting in the introduction of the EVT+ model (Sabater et al.,

2023). Gao et al. (2023) proposed the EV-ACT framework, which

consists of an event voxel filtering module, a learnable multi-

representation fusion module, an event-based slow-fast network,

and an event-based spatio-temporal attention mechanism. This

framework was tested on a new event-based HAR benchmark

called THUE−ACT-50 and its accompanying dataset, THUE−ACT-

50-CHL. Although ANN-based methods have achieved SOTA

performance, they often involve high power consumption and a

large number of model parameters due to the large data volume and

significant information redundancy introduced by the temporal

dimension, making them less suitable for edge applications in

HAR. To address the problem, SNN-based methods have been

proposed, leveraging their inherent temporal dynamics and energy

efficiency. Specifically, Vasudevan et al. (2022) introduced the

SL-Animals-DVS dataset and evaluated three types of SNNs,

including SLAYER (Shrestha and Orchard, 2018), STBP (Wu

et al., 2018), and DECOLLE (Kaiser et al., 2020), where the
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test accuracy for all models remained below 75%. Liu et al.

(2021) were the first to apply motion information in SNNs

for event-based action recognition, surpassing existing SNN

methods on three datasets, including DailyAction-DVS. Although

SNNs can achieve energy-efficient recognition, they often yield

suboptimal results.

2.2 Spiking transformers

ANN-based transformers have achieved success in fields

such as vision and natural language processing (NLP) (Achiam

et al., 2023; Han et al., 2022). However, the exploration

of self-attention (SA) mechanisms based on SNNs remains

limited, primarily because the multiplication operations inherent

in vanilla self-attention (VSA) mechanism (Vaswani et al.,

2017) are incompatible with SNNs. Recently, research has

increasingly focused on developing the spiking transformer,

aiming at eliminating multiplication operations in SA to reduce

computational complexity. Zhou et al. (2022) were the first

to introduce spiking transformer model, termed Spikformer,

which utilizes spike-based Query, Key, and Value to model

sparse visual features, thereby avoiding softmax computations.

Subsequently, Yao et al. (2024b) introduced the Spike-driven

Transformer, which enhances the spiking self-attention (SSA)

mechanism in the Spikeformer. They proposed a Spike Driven

Self-Attention (SDSA) that utilizes only masking and addition

to implement the SA mechanism, reducing the computational

complexity from O(ND2) to O(ND). Wang Z. et al. (2023)

introduced a novel Masked Spike Transformer (MST) framework,

incorporating a Random Spike Masking (RSM) method, to

further prune redundant spikes and reduce energy consumption

without sacrificing performance. These exploration of spiking

transformers enhance the learning capabilities of SNNs, enabling

their application in various fields such as audio-visual classification,

human pose tracking, and remote photoplethysmography (Guo

et al., 2023; Zou et al., 2023; Liu et al., 2024). However,

there is a lack of spiking transformers specifically designed

for event-based HAR. We are the first to propose Spike-HAR

(Lin et al., 2024), which is primarily composed of an energy-

efficient parallel spiking transformer and has been tested on two

DVS sign language datasets. Subsequently, SVFormer (Yu et al.,

2024) was introduced as a direct training spiking transformer

for efficient video action recognition, but it mainly focuses on

RGB-based HAR. Wang X. et al. (2023) proposed a model

called SSTFormer, which bridges SNNs and memory support

transformers. However, SSTFormer is a hybrid SNN-ANN network

requires both RGB frames and event streams to perform HAR.

Therefore, dedicated spiking transformer models for event-based

HAR still require further investigation and validation on larger-

scale datasets.

3 Methodology

The proposed Spike-HAR and Spike-HAR++ apply the

spiking transformer to HAR tasks. We utilize the SNNs

algorithm provided in the SpikingJelly platform (Fang et al.,

2023), employing the Leak Integrate and Fire (LIF) (Stein

and Hodgkin, 1967) neural model for constructing the

spiking neuron layers. LIF can be simply expressed by the

following equation:

H[t] = V[t − 1]+
1

τ
(X[t]− (V[t − 1]− Vreset)) (1)

S[t] = 2(H[t]− Vth) (2)

V[t] = H[t](1− S[t])+ VresetS[t] (3)

where t denotes the timestep, τ represents the membrane time

constant, X[t] donates the synaptic input current at time step t,

and H[t] is the neuron’s membrane potential post charging and

pre-spike, derived by integrating the input current. The spike

occurrence at time t, denoted by S[t], is determined by the

Heaviside step function 2, which outputs a spike (value of 1)

when H[t] surpasses the firing threshold Vth, indicating an action

potential. V[t] represents the membrane potential after spiking,

which equals to H[t] if no spike occurs and otherwise reset

to Vreset .

3.1 Overall architecture

To lighten the models, we adopt less weight parameters

and simpler model structures. The parameters of Spike-HAR

and Spike-HAR++ is provided in Table 6, which are less than

most models. In terms of model structure, Spike-HAR and

Spike-HAR++ use a more simplified data preprocessing layer

compared to the Spiking Transformer. And in both models we

only use two MLP layers. Figure 3a illustrates the structure of

Spike-HAR and Spike-HAR++, both of which consist of four

main components: the patch embedding (PE) block, the parallel

spike-driven transformer block, the spike attention branch, and

the classification head. The PE block extracts spatio-temporal

representations from the input DVS frames, while the CB-S3A

module in the transformer and the spike firing rate map in the

spike attention branch direct the model’s focus toward key features.

The final prediction head maps these features to possible sign

language expressions.

Given a 2D DVS frames sequence I0 ∈ R
T0×2×H0×W0 ,

where T0, 2, H0, W0 represent the time step, initial number

of channels, height and weight respectively. Firstly we randomly

select continuous event frames with a time step of T (T 6 T0)

and crop each event frame spatially to obtain the preprocessed

frames (PR), denoted as I ∈ R
T×2×H×W . The SNN-Based

PE block, consisting of four 2D convolutional (Conv2D) layers,

three batch normalization (BN) layers, three SNN layers and

two max pooling (MP) layers, downsamples the input frames

and partitioning them into spatio-temporal spike tokens SPE ∈

R
T×D×H

4 ×
W
4 , where D represents the number of channels. Before

entering the data into the parallel Spike-driven Transformer block,

we use membrane potential residual connection to avoid network

degradation, adding SPE and the output IPE of the initial three

convolutional layers and resulting the input S0 of the same
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FIGURE 3

Framework of Spike-HAR and Spike-HAR++. We follow the network structure in Yao et al. (2024b). It consists of an SNN-based patch embedding (PE)

block, several parallel spike-driven transformer blocks, a spike attention branch, and a SNN-based predictor head. (a) Architecture of Spike-HAR and

Spike-HAR++. (b) Attention branch for Spike-HAR. (c) Attention branch for Spike-HAR++.

shape as SPE. Therefore, the SNN-based PE block can be written

as follows:

I = PR(I0) I0 ∈ R
T0×2×H0×W0 , I ∈ R

T×2×H×W (4)

SPE = PE(I) SPE ∈ R
T×D×H

4 ×
W
4 (5)

S0 = IPE + SPE S0 ∈ R
T×D× H

4 ×
W
4 (6)

Then, the spike sequence S0 is passed to the parallel spike-

driven transformer blocks, which consists of a conv-based

simplified spiking self-attention (CB-S3A) block and a MLP block.

As the main component in Spike-HAR and Spike-HAR++, CB-

S3A, which just performs the convolution operation in spike-

form Query (Q) and Key (K), offers an efficient method to

model the local-global information of frames without softmax.

In addition, the spike fire map generated by the spike attention

branch performs mask operation on the data produced by the

second convolution in the MLP block, which makes model more

focus on local features. The outputs of the MLP and the CB-

S3A blocks are summed together, and the sum is then added to

the input S0 again using membrane potential residual connection

(RES). After L transformer blocks, the final output membrane

potentials SL is obtained. To obtain the pulse expression just

consisting of 0 and 1, SL then is passed to a spike neural layer

(SN ), resulting in SE. Finally, the SE will be sent to a SNN-based

classification head (SCH) to output the classification result Y . To

summary, the output of CB-S3A, MLP and SCH can be written

as follows:

Sl = CB-S3A(Sl−1)+MLP(Sl−1)+ Sl−1 (7)

Sl ∈ R
T×D×H

4 ×
W
4 , l = 0...L

SE = SN (SL) SE ∈ R
T×D×H

4 ×
W
4 (8)

Y = SCH(SE) (9)

3.2 Attention masks

DVS data can be influenced by noise from various sources,

such as environmental background noise. As neural networks

deepening, some noise may be amplified, causing the model to

focus on irrelevant features. Inspired by Liu X. et al. (2020), we
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insert attention blocks into our model to minimize the negative

impact of background noise while allowing the model to focus

on the target area and local features. In order to take note of the

difference among different body parts, attention mask is applied to

assign higher weights to pixels with stronger spike signals, while it

is also the bridge between attention appearance and the backbone

network. The difference between Spike-HAR and Spike-HAR++

lies in their implementation of attention branch. In Spike-HAR, the

attention map is generated by directly averaging at the frame level,

while Spike-HAR++ performs information extraction at a high-

dimensional feature scale. The implementationmethods of both are

described in detail below.

3.2.1 Spike-HAR
As shown in Figure 3b, unlike the data processing operations

performed in the PE block, we first perform a sum-average-

repeat (SAR) operation on the data in the attention appearance.

Specifically, we sum the event frames in the time dimension to

combine multiple frames I ∈ R
T×2×H×W into a single frame

ISIN ∈ R
1×2×H×W . Then, we divide the frame data by time step

to obtain the average frame IAVG ∈ R
1×2×Ĥ×Ŵ and replicate

the IAVG in the time dimension for T times as the input to the

spike attention branch. The data IE ∈ R
T×2×Ĥ×Ŵ undergoes two

rounds of convolution and downsampling, followed by another

SAR operation to obtain a spike fire rate map, which is thenmasked

with the data in the MLP to facilitate communication between the

branch and the backbone network as shown in Figure 3a.

3.2.2 Spike-HAR++
Directly summing event frames along the temporal dimension

can efficiently aggregate critical spatial information at a low cost.

However, it may fail during significantly prolonged actions. To

address this issue, we utilize the spatio-temporal spike tokens

SPE ∈ R
T×D×H

4 ×
W
4 extracted from the PE block and perform

a SAR operation along the temporal dimension. These tokens

are subsequently fed into a new spike attention branch, where

they undergo two LIF-Conv-BN operations (shown in Figure 3c),

followed by averaging along the temporal dimension to produce

the attention mask. By leveraging the key features extracted

by the PE block, the generated multi-channel mask is more

representative. Experiments (Section 4) demonstrate that, although

this adjustment increases power consumption by 0.03 mJ and

model complexity as the convolution block must handle a larger

number of feature channels, it significantly enhances HAR accuracy

across various datasets.

3.3 Parallel spike-driven transformer

In the previous spiking Transformer architecture (Zhou et al.,

2022; Yao et al., 2024b,a), the output Uout of the backbone network

is transformed from the input Uin consisting of N tokens with

dimension D using two consecutive sub-blocks (one SA and one

MLP) with residual connections:

Uout = αFFÛ + βFFMLP(SN (Û)) (10)

Û = αSAUin + βSASA(SN (Uin)) (11)

where scalar gain weights αFF, βFF, αSA, βSA fixed to 1 by default. In

our work, to simplify the transformer block, we remove the residual

connections in theMLP sub-blocks, obtaining the following output:

Sout = αcombSin + βFFMLP(SN (Sin))+ βSASA(SN (Sin)) (12)

with skip gain αcomb = 1, and residual gains βFF = βSA = 1

as default. In the submodule CB-S3A, we first input the spike

signals S0 into the spike neuron layer to obtain S
′
. Then, we use 2D

convolution operations to extract spatial information separately,

resulting in Q and K. The acquisition of V does not involve

convolution operations. After that, we use the spike neuron layer

again to transform Q, K, and V into spike tensors QS, KS, and

VS. And the subsequent masking calculation can be represented

as follows:

MASK (QS,KS,VS) = g (QS,KS) ⊗ VS

= SN (SUMC (QS ⊗ KS)) ⊗ VS (13)

where ⊗ denotes the Hadamard product, g (·) is used to compute

the attention map, and SUMC is used to calculate the sum of

each column. The outputs of g (·) and SUMC are row vectors of

dimension D. Additionally, the Hadamard product between pulse

tensors is equivalent to mask computation.

4 Experimental evaluation

4.1 Dataset

We evaluate our models on three public datasets, all generated

by recording actions in real scenes. SL-Animals-DVS (Vasudevan

et al., 2022) and DVS128 Gesture (Amir et al., 2017) were captured

by a 128× 128 pixel DVS128 camera, while DailyAction-DVS (Liu

et al., 2021) was captured by a DAVIS346 camera with a spatial

resolution of 346 × 260. Furthermore, we also tested our models

using the N-LSA64 dataset which is transformed from LSA64

(Ronchetti et al., 2023) dataset using v2e (Hu et al., 2021) method.

4.1.1 SL-Animals-DVS
In the SL-Animals-DVS dataset 59 individuals were recorded

separately, and each individual performed 19 signs in sequence.

Due to the fact that the recording is conducted in 4 sessions

at different locations under different lighting conditions, it can

be further divided into SL-Animals-DVS-4sets, which includes

four shooting environments, and SL-Animals-DVS-3sets, which

includes three shooting environments.

4.1.2 DVS128 gesture
The DVS128 Gesture dataset comprises 1,342 recordings

of 29 subjects performing 11 different actions (including one

rejected class with random gestures) under three different

lighting conditions.
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4.1.3 DailyAction-DVS
The DailyAction-DVS dataset comprises 1,440 recordings

of 15 subjects acting 12 different actions, including bend,

climb, fall down, get up, jump, lie down, carry box, run, sit down,

stand up, walk and pick up.The actions were captured under two

lighting conditions including natural light and LED light.

4.1.4 N-LSA64
The N-LSA64 contains 3,200 DVS videos in which 10 non-

expert subjects performed five repetitions of 64 different types of

sign language. The symbols were selected from the most commonly

used symbols in the LSA lexicon, including verbs and nouns.

Depending on the number of hands performing the sign language,

we further divide the data into N-LSA64-Right, which includes

only right-hand movements, and N-LSA64-Both, which includes

movements involving both hands.

We utilize a frame-based representation to preprocess an event

stream (Fang et al., 2021b; Yao et al., 2021), transforming it into

a sequence of event frames. Suppose the interval between two

frames (i.e., temporal resolution) is dt and there are T frames (i.e.,

timesteps), the total length of the input event stream is ttotal = dt×

T milliseconds. After processing these frames with the proposed

model, we can obtain a prediction.

4.2 Implementation details

We set the number of parallel spike-driven transformer block

L = 2 in Spike-HAR and Spike-HAR++. In the DVS128 Gesture

datasets, the sample length, time step, and learning rate is set as

6,000 ms, 20 and 1×e−3 respectively. In the SL-Animals-DVS and

N-LSA64 datasets, the sample length, time step, and learning rate is

set as 500 ms, 10 and 1×e−4 respectively. In the DailyAction-DVS

dataset, the sample length, time step, and learning rate is set as 1,200

ms, 10 and 1×e−3 respectively. For the training and evaluation of

frame-based methods, if the number of frames contained in each

event frames is larger than the timesteps T, we linearly sample T of

them. Otherwise, we pad them to the length of T with the zero-

padding operation. Spike-HAR and Spike-HAR++ are optimized

with AdamW (Loshchilov and Hutter, 2017) optimizer, in a single

NVIDIAGeForce RTX 3090.We set the batch size to 32 and trained

for 240 epochs using the one cycle learning rate policy (Smith

and Topin, 2018). As for the data augmentation, we use spatial

and temporal random crop and repeat each sample within the

training batch twice with different augmentations. In addition, for

the N-LSA64 dataset, we divided the data into training, validation,

and test sets in the ratio of 6:2:2, and evaluated the classification

accuracy on the test set.

4.3 Comparison to the state-of-the-art
models

We compare the proposed Spike-HAR and Spike-HAR++

with several relevant action recognition methods, including SNN

and ANN. And the results on four datasets are shown in

Tables 1–4, respectively. We can find that our proposed models

outperform existing action recognition methods, indicating that

our proposed models have a stronger ability to extract action

information from event data. Specifically, on the SL-Animals-DVS

dataset, we compare our models with existing ANN models, SNN

models and a hybrid neural network that includes both ANN

and SNN components. Additionally, we replace the backbone

network in EVT (Sabater et al., 2022) with the Spike-Driven

Transformer block (Yao et al., 2024b) to obtain Spike-Evt and

conduct model training for comparative analysis. Experimental

results on SL-Animals-DVS are given in Table 1, from which we

can see that the accuracy of Spike-HAR++ is 3.81 and 5.37%

higher than that of EVT (Sabater et al., 2022) on the dataset

SL-Animals-DVS-4sets and SL-Animals-DVS-3sets, respectively.

And compared to the SNN method EventRPG + SEW Resnet18

(Sun et al., 2024), the Spike-HAR++ improves the accuracy

by 0.35% on the dataset SL-Animals-DVS-4sets. On the SL-

Animals-DVS-3sets, the EventRPG+SEW Resnet18 achieves a

higher classification accuracy of 93.30% by using complex data

augmentation strategies. In contrast, Spike-HAR++ reaches a

similar accuracy of 92.82% with simple data augmentation (Section

4.2) and a more lightweight backbone (Section 4.5, Spike-HAR++

vs. SEW ResNet18). On the N-LSA64-Both and N-LSA64-Right

datasets, for comparison with existing methods, we adopt the

same sampling and training strategies to train the SOTA ANN

model EVT (Sabater et al., 2022), the baseline SNN model

STBP (Wu et al., 2018), and Spike-EVT, which is constructed

by replacing the EVT backbone with a spiking transformer (Yao

et al., 2024b). The test results, presented in Table 2, demonstrate

that Spike-HAR++ increases accuracy by 1.72% compared to EVT

on the N-LSA64-Both dataset and by 5.71% compared to the

Spike-driven EVT on the N-LSA64-Right dataset. Furthermore,

compared to the other models, Spike-HAR and Spike-HAR++

utilize the shortest sample length of 500 ms. For the DVS128

Gesture, as can be seen in Table 3, Spike-HAR and Spike-HAR++

get the classification accuracy of 98.26 and 97.92%, respectively,

outperforming other ANN and SNN methods. Finally, as shown

in Table 4, we compared our results on DailyAction-DVS with

state-of-the-art SNN models. Spike-HAR++ achieved the best

classification performance, reaching 98.47%, using the sample

length of just 1,200 ms.

4.4 Ablation study

In this section, we analyze the impact of hyperparameters

and the key components of Spike-HAR and Spike-HAR++.

Experiments are conducted on the SL-Animals-DVS-4sets dataset.

With a fixed total sample length of 500 ms, different time steps

are set to investigate the impact of the number of input event

frames and transformer blocks on the model results. As can be

seen in Figure 4, with the number of time steps and the number

of MLP Blocks increasing, the test accuracy of the model does not

change significantly, but with the number of time steps increasing

to be more than 20 or the number of MLP blocks decreasing to

be 1, the test accuracy will have a significant decrease. Specifically,

the highest accuracy of 89.47% for Spike-HAR and 91.93% for
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TABLE 1 Classification accuracy in the SL-Animals-DVS dataset.

Model Method Time step Sample length SL-Animals-DVS

4 sets 3 sets

TORE + GoogLeNet (Baldwin et al., 2022) ANN \\ \ 0.8510 \

TORE + ResNet18 (Baldwin et al., 2022) ANN \ \ 0.7690 \

VoxelGrid + ResNet18 (Zhu et al., 2019) ANN \ \ 0.8902 \

SITS + ResNet18 (Manderscheid et al., 2019) ANN \ \ 0.7847 \

VK-SITS + ResNet18 (Acin et al., 2023) ANN \ \ 0.7926 \

EVT (Sabater et al., 2022) ANN \ 504 ms 0.8812 0.8745

SCTFA + 7-Layer Spiking CNN (Cai et al., 2024) Hybrid \ \ 0.9004 \

SLAYER (Shrestha and Orchard, 2018) SNN 300 1,500 ms 0.5430 0.6141

STBP (Wu et al., 2018) SNN 50 1,500 ms 0.6497 0.7147

DECOLLE (Kaiser et al., 2020) SNN 500 500 ms 0.6219 0.6219

SEW Resnet18 (Fang et al., 2021a) SNN 16 \ 0.8542 0.8909

EventDrop + SEW ResNet18 (Gu et al., 2021) SNN \ \ 0.8633 0.8899

NDA + SEW ResNet18 (Li et al., 2022) SNN \ \ 0.8777 0.8955

EventRPG + SEW ResNet18 (Sun et al., 2024) SNN \ \ 0.9159 0.9330

Spike-Driven EVT (Yao et al., 2024b) SNN 11 504 ms 0.7939 0.6667

Spike-HAR (Ours) SNN 10 500 ms 0.8947 0.9006

Spike-HAR++ (Ours) SNN 10 500 ms 0.9193 0.9282

Red and bold indicate the best and second best performance.

TABLE 2 Classification accuracy in the N-LSA64 dataset.

Model Method Time step Sample length N-LSA64

Both Right

EVT (Sabater et al., 2022) ANN \ 504 ms 0.8406 0.8214

STBP (Wu et al., 2018) SNN 50 1,500 ms 0.5969 0.5786

Spike-driven EVT (Yao et al., 2024b) SNN 11 504 ms 0.7266 0.8262

Spike-HAR (Ours) SNN 10 500 ms 0.8469 0.8690

Spike-HAR++ (Ours) SNN 10 500 ms 0.8578 0.8833

Red and bold indicate the best and second best performance.

Spike-HAR++ are achieved by setting the time step to 10 and the

number of blocks to 2. On the other hand, the accuracy decreases

to 81.72% for Spike-HAR and 87.72% for Spike-HAR++ when

the time step is set to 25, and setting the number of blocks to

1 results in an accuracy of 84.65% for Spike-HAR and 90.88%

for Spike-HAR++. In addition, The experimental results verify the

parallel structure and the attention appearance used in proposed

models. As shown in Table 5, using both parallel transformers

and attention brunch simultaneously yields the best accuracy in

Spike-HAR and Spike-HAR++.

4.5 Energy consumption analysis

We use the SL-Animals-DVS dataset to estimate the energy

required for proposedmodels to classify a DVS sign language video.

We first determine the number of operations [SOPs (Zhou et al.,

2022) for the SNN module] needed to complete this task:

FLOPsConv2D =
(

kn
)2

· hn · wn · cn−1 · cn (14)

SOPsConv2D = fr · Ts · FLOPsConv2D (15)

where kn is the kernel size,
(

tn, hn,wn

)

is the output feature map

size, cn−1 and cn are the input and output channel numbers,

respectively. fr and Ts denote the spike fire rate and timesteps,

respectively. The fr is defined as the proportion of non-zero

elements within the spike tensor. Practically, we set Ts to 10. Once

SOPs for the SNN module are determined, we can further obtain

the final energy consumption E by multiplying the SOPs with the

platform’s energy:

ESOPs = EAC × SOPs (16)
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TABLE 3 Classification accuracy in the DVS128 Gesture dataset.

Model Method Time step Sample length DVS128 Gesture

12 layers CNN (Amir et al., 2017) ANN 120 120 ms 0.9260

Identify + Resnet34 (He et al., 2016) ANN \ \ 0.9549

NDA + Resnet34 (Li et al., 2022) ANN \ \ 0.9722

EventMix + Resnet34 (Shen et al., 2023) ANN \ \ 0.9180

ShapeAug + Resnet34 (Bendig et al., 2024) ANN \ \ 0.9170

EventDrop + Resnet34 (Gu et al., 2021) ANN \ \ 0.9618

PLIF-SNN (Fang et al., 2021b) SNN 20 6,000 ms 0.9760

Res-SNN-18 (Yao et al., 2021) SNN 16 6,000 ms 0.9790

ASA-SNN (Yao et al., 2023) SNN 20 6,000 ms 0.9770

Identify + SEW Resnet18 (Fang et al., 2021a) SNN \ \ 0.9433

Eventmix + SEW Resnet18 (Shen et al., 2023) SNN \ \ 0.9675

EventRPG + SEW Resnet18 (Sun et al., 2024) SNN \ \ 0.9653

Identify + CSNN (Xu et al., 2018) SNN \ \ 0.9375

NDA + CSNN (Li et al., 2022) SNN \ \ 0.9583

EventAugmentation + CSNN (Gu et al., 2024) SNN \ \ 0.9625

EventDrop + CSNN (Gu et al., 2021) SNN \ \ 0.9444

Spike-HAR (Ours) SNN 20 6,000 ms 0.9826

Spike-HAR++ (Ours) SNN 20 6,000 ms 0.9792

Red and bold indicate the best and second best performance.

TABLE 4 Classification accuracy in the DailyAction-DVS dataset.

Model Method Time step Sample length DailyAction-DVS

Gabor-Tempotron SNN (Xiao et al., 2019) SNN \ \ 0.6830

HMAX-SNN (Liu Q. et al., 2020) SNN \ \ 0.7690

Motion-SNN (Liu et al., 2021) SNN \ \ 0.9030

PLIF-SNN (Fang et al., 2021b) SNN 36 4,320 ms 0.9250

ASA-SNN (Yao et al., 2023) SNN 36 4,320 ms 0.9460

EHTI & MDTS-Tempotron SNN (Ding et al., 2024) SNN \ \ 0.9608

Spike-HAR (Ours) SNN 10 1,200 ms 0.9826

Spike-HAR++ (Ours) SNN 10 1,200 ms 0.9847

Red and bold indicate the best and second best performance.

We use the same energy efficiency calculation scheme

proposed by Hu Y. et al. (2023). The energy consumption is

12.5 pJ for each floating-point operation (FLOP) and is 77

fJ for each synaptic operation (SOP). As shown in Table 6,

the Spike-HAR processes DVS frame data with a spatial size

of 96 × 96 and a time step of 10 with only 0.03 mJ of

power consumption. This represents a 99.27% energy reduction

compared to EVT and is substantially lower than that of other

baseline models. Furthermore, although Spike-HAR++ has a

higher power consumption compared to Spike-HAR (0.06 vs.

0.03 mJ), it is still lower than that of other models and

achieves higher performance than Spike-HAR across the SL-

Animals-DVS, N-LSA64, DVS128 Gesture, and DailyAction-

DVS datasets.

5 Conclusion

In this paper, we proprse an energy-efficient and lightweight

Spike-HAR family for event-based human action recognition, to

adaptively emphasize on local spatial features as well as temporal

features. Spike-HAR and Spike-HAR++ surpass existing methods

in accuracy on the SL-Animals-DVS, N-LSA64, DVS128 Gesture,

and DailyAction-DVS datasets. Furthermore, Spike-HAR and

Spike-HAR++ require only 0.03 and 0.06 mJ to recognize a single

action event stream, reducing the power consumption of 99.27

and 98.55% compared to the Evt, respectively. It demonstrates the

applicability of spiking transformers for human action recognition

and their potential application in human-machine interaction and

edge HAR devices. In the future, it is promising to develop
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FIGURE 4

(a) Accuracy of Spike-HAR (green line) and Spike-HAR++ (blue line) at varying timesteps T (with 2 MLP blocks); (b) Accuracy of Spike-HAR (green line)

and Spike-HAR++ (blue line) with di�erent numbers of MLP blocks (with T = 10).

TABLE 5 Accuracy of Spike-HAR and Spike-HAR++ for di�erent architecture on SL-animals-DVS-4sets.

Models Attention brunch Serial transformer block Parallel transformer block Accuracy

Spike-HAR X 0.8640

X X 0.8465

X 0.8421

X X 0.8947

Spike-HAR++ X 0.8640

X X 0.9088

X 0.8421

X X 0.9193

TABLE 6 Computational complexity comparisons of SLR methods.

Model Method #Params. FLOPs/SOPs Power/mJ

TORE + ResNet18 (Baldwin et al., 2022) ANN 11.69 M 3.66 G 45.75

TORE + GoogLeNet (Baldwin et al., 2022) ANN 8.46 M 2.88 G 36.00

EVT (Sabater et al., 2022) ANN 0.50 M 0.33 G 4.13

Spike-driven EVT (Yao et al., 2024b) SNN 66.34 M 6.77 G 0.52

SEW Resnet18 (Fang et al., 2021a) SNN 2.92 M 1.41 G 0.11

Spike-HAR (Ours) SNN 0.70 M 0.44 G 0.03

Spike-HAR++ (Ours) SNN 1.80 M 0.74 G 0.06

a more complex large-scale event-based HAR benchmark to

further evaluate the performance of the Spike-HAR family in

practical applications.
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