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Introduction: White matter hyperintensities (WMHs) are frequently observed

on magnetic resonance (MR) images in older adults, commonly appearing as

areas of high signal intensity on fluid-attenuated inversion recovery (FLAIR) MR

scans. Elevated WMH volumes are associated with a greater risk of dementia

and stroke, even after accounting for vascular risk factors. Manual segmentation,

while considered the ground truth, is both labor-intensive and time-consuming,

limiting the generation of annotated WMH datasets. Un-annotated data are

relatively available; however, the requirement of annotated data poses a

challenge for developing supervised machine learning models.

Methods: To address this challenge, we implemented a multi-stage semi-

supervised learning (M3SL) approach that first uses un-annotated data

segmented by traditional processing methods (“bronze” and “silver” quality data)

and then uses a smaller number of “gold”-standard annotations for model

refinement. The M3SL approach enabled fine-tuning of the model weights with

the gold-standard annotations. This approach was integrated into the training

of a U-Net model for WMH segmentation. We used data from three scanner

vendors (over more than five scanners) and from both cognitively normal (CN)

adult and patients cohorts [with mild cognitive impairment and Alzheimer’s

disease (AD)].

Results: An analysis of WMH segmentation performance across both scanner

and clinical stage (CN, MCI, AD) factors was conducted. We compared our

results to both conventional and transfer-learning deep learning methods and

observed better generalization withM3SL across di�erent datasets. We evaluated

several metrics (F-measure, IoU, and Hausdor� distance) and found significant

improvements with our method compared to conventional (p < 0.001) and

transfer-learning (p < 0.001).

Discussion: These findings suggest that automated, non-machine learning, tools

have a role in a multi-stage learning framework and can reduce the impact of

limited annotated data and, thus, enhance model performance.

KEYWORDS

semi-supervised learning, convolutional neural networks (CNN), U-Net, multi-stage

learning, white matter hyperintensity (WMH), Alzheimer’s disease (AD)
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1 Introduction

White matter hyperintensities (WMHs) are radiological

markers commonly observed in brain imaging. They are associated

with several neurological conditions including small vessel disease,

cerebral ischemia, and neurodegeneration (Duering et al., 2023;

Wardlaw et al., 2015). These lesions are commonly observed on

routine T2-weighted fluid-attenuated inversion recovery (FLAIR)

magnetic resonance (MR) images and are predominantly observed

in the periventricular regions, deep white matter, and subcortical

areas of the brain. WMH are also evident on T1-weighted (T1w)

and T2-weighted (T2w) MR scans as regions of low and high

signal, respectively (Wardlaw et al., 2013). The detection and

accurate assessment of WMH burden (lesion volume) is important

for both clinical management and research studies, providing

insights into disease prevalence and, with follow-up imaging,

disease progression. A combination of factors, such as the number

ofWMHs, volume, location and presence of active disease (i.e., new

lesions), quantitatively assess WMH progression.

Normally, WMH develops in older adults (>65years) though

the lesions are often, initially asymptomatic (Wardlaw et al.,

2013). Risk factors such as hypertension, diabetes, smoking, and

high cholesterol are associated with development of WMH. These

factors, combined with age-related decreases in cerebral blood

flow and vessel wall integrity, increase the likelihood of WMH

occurrence. Importantly, increased WMH burden is associated

with a higher risk of future cognitive decline, stroke, and dementia

(Chen et al., 2021; Puzo et al., 2019).

Generating a ground-truth image of WMH is expensive and

time-consuming, as it requires experts to manually delineate

lesions. Inter-rater reliability can be poor as multiple experts

often disagree in their delineation of WMHs, underscoring that

identifying and segmenting WMH is a complex and challenging

task (Zhu et al., 2022). To overcome this challenge, automated

techniques have been proposed that consistently detect and

segment those suspected WMH regions seen on FLAIR images.

Less commonly T1-w or T2-w images are processed. Machine

learning (ML)- and deep learning-based techniques have been

identified as promising approaches for segmentation of these

lesions. However, the need for large volumes of annotated

data in supervised learning approaches negatively impacts the

development and generalizability of such tools. Indeed, approaches

that can utilize the large volumes of un-annotated FLAIR,

T1-w or T2-w available would help to mitigate the need of

manual delineation.

Multi-stage semi-supervised learning (MS3L) is an active ML

area that uses weakly- (i.e., through automated methods) or un-

labeled (i.e., un-annotated) data to build the ML model (Han et al.,

2024). We propose using MS3L to improve the training process

for WMH segmentation. The term “multi-stage” in MS3L refers

to the concept of starting training with lower-quality annotations

(termed “bronze” and “silver” standard data) and then progressively

refining the model with better-quality annotations (termed

“gold” standard data). The term “semi-supervised” describes

combining un-annotated data that are segmented automatically,

with manually annotated, ground truth, data segmented manually

by experts. Our MS3L method initially leverages the large volume

of available but un-annotated FLAIR and T1-w scans while

still benefiting from the precision of expert annotations later

in training.

The goal of this study was (1) to investigate the effectiveness

of M3SL in WMH segmentation by training a VGG16-based

U-Net variant, and (2) to compare our results against more

widely accepted training methods, such as conventional training

approaches (our baseline model) and transfer learning (TL)-based

approaches. The remainder of this paper is organized as follows:

Section 2 provides an overview of related work in the field ofWMH

segmentation and semi-supervised learning. Section 3 elaborates

on the methodology, detailing the (1) proposed multi-stage semi-

supervised learning approach, and (2) experimental approach.

Section 4 presents our experimental results and performance

evaluation, followed by discussions in Section 5. Finally, Section 6

concludes the key findings of the study and provides insight into

future research directions.

2 Semi-supervised learning for WMH
segmentation

Semi-supervised learning (SSL) techniques have been employed

to enhance the detection of WMH. One group of studies focuses

on combining supervised and unsupervised learning tasks to

improve segmentation accuracy. Huang et al. (2023), for example,

proposed a semi-supervised level-set loss (LSLoss) approach

that leverages FLAIR images and segmentation of brain tissues.

They demonstrated significant results in high-resolution images,

achieving an average Dice coefficient of 0.83. Similarly, Chen

et al. (2019) developed the multi-task attention-based semi-

supervised learning (MASSL) method that combines supervised

segmentation with unsupervised reconstruction using an attention

mechanism. This approach outperformed conventional supervised

convolution neural networks and pre-trained models, particularly

in applications like brain tumor and WMH segmentation. Yu et al.

(2021) further explored MS3L to enhance the fault identification

capability of classifiers by combining limited labeled samples with

a larger numbers of unlabeled samples. Their study employed

data augmentation and metric learning techniques, demonstrating

substantial improvements in challenging situations with few labeled

samples available.

Another group of studies emphasizes advanced neural

network architectures and robust preprocessing techniques to

enhance WMH segmentation. Rieu et al. (2021) employed a

convolution neural network (CNN)-based model with evolving

normalization (EvoNorm) activation layers andMR imaging-based

data augmentation techniques. They achieved high accuracy in

segmenting various brain regions, including WMH, in FLAIR

images. Lee et al. (2023) introduced the AQUA method, a U-Net-

based deep learning model with bottleneck attention modules that

significantly improved the detection of small lesions and achieved

performance comparable to top methods in the MICCAI 2017

WMH Segmentation Challenge (Kuijf et al., 2019).

More recent studies have utilized new deep learning

algorithms to advance WMH analysis in MR data, focusing

on detection, segmentation, and classification. Zhang et al. (2022)

proposed a deep learning algorithm specialized on detecting

and segmenting WMH lesions. Their method demonstrated
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significant improvements in segmentation accuracy across a

cohort of 507 patients. Mu et al. (2024) focused on classifying

the severity of WMH lesions using deep learning techniques,

effectively correlating imaging findings with clinical conditions.

Liu et al. (2024) developed a deep learning tool for precise

WMH segmentation without requiring manual annotations.

Their approach achieved high spatial and volumetric agreement

with manual segmentation results from the MICCAI Challenge

dataset (Kuijf et al., 2019). Despite these advances, the need for

validation on diverse datasets and real clinical scenarios to confirm

generalizability remains a common limitation among these studies.

Despite these and other advancements, the need for larger and

more diverse datasets to validate generalizability and robustness of

proposed methods remains a common limitation. Our work differs

from previous studies by specifically exploring the use ofMS3Lwith

a unique adaptation of U-Net architecture forWMH segmentation.

We aim to refine segmentation quality through iterative training

processes that leverage both labeled and unlabeled data to address

the challenge of limited available annotated data.

3 Materials and methods

3.1 Dataset organization and participant
information

We employed a combination of three local, annotated datasets

(N = 260); three publicly available, annotated datasets (N =

60); and one publicly available, un-annotated dateset (N = 364).

The annotated datasets were gathered from five scanner models

originating from three different vendors across five centers. FLAIR

images were extracted for each individual in the annotated datasets.

The un-annotated data were obtained from a multi-center study

across many different scanner types from two vendors (Jack et al.,

2008). T1-w and FLAIR images were extracted for each individual

in the un-annotated dataset. Detailed information regarding the

acquisition of each annotated dataset can be found in Duarte K.

T. et al. (2023). Details of the un-annotated data can be found in

Jack et al. (2008). Tables 1, 2 provide an overview of the participant

distribution categorized by sex, age, and clinical stage for each

dataset. Table 1 also describes distribution across scanners. Details

of how the datasets were organized into training, validation and test

sets are provided in Section 3.2.

3.1.1 Local datasets
The Calgary Normative Study (CNS) is an ongoing longitudinal

MR investigation concentrating on quantitative imaging

techniques in aging (McCreary et al., 2020). The CNS comprises

MR images from cognitively normal (CN), community dwelling

individuals and were obtained using Scanner A [3 T Discovery

MR750, General Electric (GE) Healthcare, Waukesha, WI]. Our

sample includes ninety-four individuals selected from this study,

divided into younger (CNSA, N = 74, age ≤ 35 years) and older

(CNSB, N = 20, age ≥ 40 years) cohorts.

The Functional Assessment of Vascular Reactivity I (FAVR-I)

study (Peca et al., 2013) provided data from N = 71 participants.

This single-center observational study explored the connection

between cerebral blood flow and cognitive status across clinical

stages [CN, mild cognitive impairment (MCI), and Alzheimer’s

disease (AD)]. FAVR-I data were acquired on Scanner A.

FAVR-II, an extension of FAVR-I, is an ongoing, two center

study that provided data from N = 95 participants (Subotic

et al., 2021). FAVR-II involves data acquisition from two scanners:

Scanner A (N = 65, 68.4%) and Scanner B (N = 30, 31.6%; 3 T

Prisma; Siemens Healthineers, Erlangen, Germany), situated at a

second site.

FLAIR images from all three local datasets underwent

segmentation using a semi-supervised approach to generate initial

WMH masks. For CNS and FAVR-II, we employed Cerebra-

LesionExtractor (Gobbi et al., 2012) and FAVR-I used Quantamo

(Kosior et al., 2011). These initial WMH masks underwent

manual review and editing, as necessary, to produce final ground

truth (or “gold” standard) annotated data where each voxel was

categorized as either “True” (containing WMH) or “False” (not

containing WMH).

3.1.2 Public datasets
We used data from four publicly accessible datasets. Three

datasets were part of the 2017 WMH Challenge1 (Kuijf et al.,

2019) and the fourth was a subset of the Alzheimer’s Disease

Neuroimaging Initiative (ADNI).2 Annotated training data from

three distinct sites were obtained from the 2017 WMH Challenge:

(1) Amsterdam (AMS, N = 20)—data acquired using Scanner C

(3 T GE Signa HDxt), (2) Utrecht (N = 20)—data acquired using

Scanner D (3 T Philips Achieva; Philips Healthcare, Eindhoven,

the Netherlands), and (3) Singapore (SIN, N = 20)—data

acquired using Scanner E (3 T Siemens Trio Tim). Ground truth

segmentation masks were provided by the challenge organizers for

the AMS, SIN, and Utrecht datasets (Kuijf et al., 2019).

Un-annotated data were also obtained from theADNI database.

“ADNI was launched in 2003 as a public-private partnership, led by

Principal Investigator Michael Weiner. The primary goal of ADNI

has been to test whether serial magnetic resonance (MR) imaging,

positron emission tomography (PET), other biological markers,

and clinical and neuropsychological assessment can be combined

to measure the progression of mild cognitive impairment (MCI)

and early Alzheimer’s disease (AD).” Selected data fromADNI were

used (N = 364). These data were extracted using the keyword “MP

RAGE” to selected individuals who were imaged with this specific

T1-w volumetric imaging technique that was available on scanners

from two vendors (Philips and Siemens). ADNIA consisted of

data acquired using the imaging protocol used over 2010–2016.

FLAIR images were acquired in the axial plane using a 2D image

acquisition. ADNIB included data acquired after 2016 with FLAIR

images obtained in the sagittal plane using a 3D acquisition

with a phased-array coil. ADNIA and ADNIB contributed with

N = 219 and N = 145 images, respectively, ranging from

CN to AD (Table 2). The total number of individuals available in

the full ADNI dataset exceeded the number used in this work.

We intentionally selected data acquired on scanners from only

1 https://wmh.isi.uu.nl

2 https://adni.loni.usc.edu/
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TABLE 1 Demographics for local and publicly available annotated datasets.

Dataset N Scanner
(see text)

Male (%) Age (years) Clinical stage
(CN-MCI-AD)

nWMH

Local dataset

CNSA 74 A 50.0% 31.6± 4.4 (74-0-0) 0.03± 0.03

CNSB 20 A 55.0% 43.7± 17.3 (20-0-0) 0.06± 0.04

FAVR-I 71 A 52.1% 69.7± 8.3 (24-29-18) 0.57± 0.46

FAVR-II 95 A & B 57.1% 70.7± 6.9 (50-26-19) 0.60± 0.47

Total 260 53.5% 57.2± 7.3 (148-55-37)

Public dataset

AMS 20 C N/A∗ N/A∗ N/A∗ 0.74± 0.69

SIN 20 D N/A∗ N/A∗ N/A∗ 1.37± 1.25

Utrecht 20 E N/A∗ N/A∗ N/A∗ 1.44± 1.43

Total 60

Reported are count, percentage, or mean± standard deviation.
∗Distribution by clinical stage, sex and age was not reported for the AMS, SIN and Utrecht datasets, though no significant differences by site for age (p = 0.45) or sex (p = 0.87) were reported

(Kuijf et al., 2019).

AD, Alzheimer’s disease; CN, cognitively normal; CNS, Calgary Normative Study; FAVR, Functional Assessment of Vascular Reactivity; MCI, mild cognitive impairment; N/A, not available.

Normalized WMH (nWMH) is total WMH/total intercranial volume.

TABLE 2 Demographics for publicly available un-annotated dataset.

Clinical stage ADNIA ADNIB

N Male (%) Age (years) N Male (%) Age (years)

CN 69 31.8 76.8± 5.5 81 45.6 74.3± 7.7

MCI 129 55.0 71.5± 5.5 62 56.4 76.3± 7.0

AD 21 100.0 77.4± 4.4 2 50.0 71.0± 2.6

Total 219 58.9 73.6± 5.6 145 57.6 75.6± 9.0

Reported are count, percentage, or mean± standard deviation.

AD, Alzheimer’s disease; ADNIA , ADNI data acquired prior to 2017; ADNIB , ADNI data acquired on or after 2017; CN, cognitively normal; CNS, Calgary Normative Study; FAVR, functional

assessment of vascular reactivity; MCI, mild cognitive impairment (aggregate of early mild cognitive impairment; eMCI, late mild cognitive impairment; lMCI, mild cognitive impairment; MCI,

and subjective memory concern; SMC; groups reported in ADNI dataset).

two vendors (Phillips, Siemens) to ensure a degree of acquisition

protocol and scanner type balance across this study [as Scanners A

and C (both General Electric) contributed 230/320 (71.9%) of the

annotated data].

3.1.3 Data preparation
To standardize our FLAIR scans, we used the reorient2std

function from FSL, which applies a rigid-body transformation to

align the images with the MNI152 template. We employed the N4

bias-field correction technique (Tustison et al., 2010) tomitigate the

impact of intensity variations caused by scanner inhomogeneity.

Our acquired 2D FLAIR volumes measured (256 × 256) voxels

and had a varying numbers of slices (from 34 to 56 when using

2D FLAIR acquisition, and 256 with 3D FLAIR acquisition).

To standardize volume dimensions, we introduced zero-valued

(i.e., blank) images to generate consistent dimensions of 256 ×

256 × 256. Each image volume was then subdivided into sixty-

four equal-sized patches, each measuring 64 × 64 × 64. To tackle

class imbalance, we followed the approach outlined by Guerrero

et al. (2018). In training, validation, and testing, we exclusively

utilized patches containing at least one labeled True white matter

hyperintensity (WHM) voxel. Most data volumes then underwent

normalization by mapping image intensity values to the range

(0.0, 1.0). Specifically, we identified the 0th and 98th percentiles

of intensity and scaled the entire range accordingly. Notably, the

AMS and SIN data exhibited distinct image contrast, suggesting the

use of fat suppression during FLAIR image acquisition. For these

datasets, we employed min-max normalization using the 0th and

100th percentiles.

Other than converting the T1-w image volumes to standard

coordinates, no image preparation was required for the T1-

w images used by FreeSurfer, UBO Detector, and Lesion

Segmentation Toolbox to calculate bronze standard masks (as

described in Section 3.2).

3.2 Multi-stage semi-supervised learning
(M3SL)

We adopted a M3SL strategy that trained our model with

a combination of annotated and un-annotated image data. Our
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methodology used images acquired in 684 individuals on at least

five scanners located at more than five sites, with the un-annotated

dataset (Table 2) providing 364/684 (53.2%) of the data. The six

manually annotated datasets (Table 1) provided the remaining data.

Our strategy consisted of three major training steps:

1. Generation of bronze standard data: We employed standard

publicly available image processing toolboxes that can identify

lesions in WM on brain MR images. These toolboxes include:

(a) UBO Detector (Jiang et al., 2018) which identifies small,

bright regions in MR images, (b) Lesion Segmentation Toolbox

(LST) (Schmidt et al., 2012) which employs intensity-based

segmentation and machine learning to delineate lesions, and

(c) Freesurfer (Fischl et al., 2002) which utilize advanced

algorithms to segment brain structures for detailed anatomical

analysis across all datasets, and can also detect white matter

hypointensities in T1-weighted images by applying intensity

thresholding within the white matter mask defined by

segmentation. These images were registered to the FLAIR for

anatomical reference. The current implementation of these

techniques employ traditional image segmentationmethods and

are not significantly influenced by ML algorithms. The masks

generated by these tools were termed “bronze” standard because

they were not validated by a human expert.

2. Combining with silver standard data: We refined our bronze

standard segmentation masks by finding the consensus masks

using the simultaneous truth and performance level estimation

(STAPLE) algorithm (Warfield et al., 2004). STAPLE combined

the three bronze masks obtained for each individual and

generated a refined WMH mask. These “silver” standard masks

represent the consensus of the input masks and provide a better

estimate of the true WMH lesions.

3. Refining using gold standard data: In our final stage, we

focused exclusively on using annotated data, hence greatly

reducing the overall number of images available for training.

This stage, referred to as “gold” standard training, fine-tuned our

model to capture the most pertinent features specific to WMH

segmentation. By training solely on annotated data, we aimed to

optimize network performance and refine the ability to discern

subtle nuances in the images.

Through this multi-stage approach, we systematically refined

our segmentation model, progressively transitioning from coarser

definitions (bronze standard masks) to identifying more specific,

nuanced features (gold standard masks). Figure 1 shows a

representative case of our training data. By leveraging both un-

annotated and annotated datasets in tandem with a purposefully

designed training strategy, we aimed to develop a robust and

accurate model for WMH segmentation, capable of capturing

both overarching image characteristics, as well as intricate details

associated with the WMHs within the images.

3.3 U-Net model

We used a U-Net model implementation that included the

VGG16 feature extractor (Simonyan and Zisserman, 2014) in the

encoder part, with a mirrored decoding structure and level-wise

skip connections between the encoding and decoding layers (see

Figure 2). This architecture was chosen based on previous studies

that highlighted the effectiveness of VGG16 for accurate WMH

segmentation (Duarte K. T. et al., 2023; Duarte et al., 2022). To

ensure consistent activation behavior, we employed a sigmoid-

shaped activation function and dichotomized the output at a

threshold of 0.5. Based on previous findings (Duarte K. T. et al.,

2023), we combined the prediction of the axial, sagittal, and coronal

results by pooling them (2.5D projection).

In addition to our proposed M3SL model, we varied the

training and validation regime to implement two other U-

Net variants—baseline U-Net (Ronneberger et al., 2015) and

Transfer Learning (TL) U-Net (Kora et al., 2022)—and evaluated

them against M3SL U-Net. The key characteristics and expected

strengths of each model are as follows:

1. Multi-Scale Semi-Supervised Learning (M3SL) U-Net. This

model refines segmentation accuracy through iterative training

phases, starting with weakly annotated data and progressively

enhancing model performance using a combination of

automatically segmented, consensus, and expert-annotated

masks (see Section 3.2). The purported strength of M3SL lies

in its ability to generalize across diverse imaging protocols,

scanners, and clinical stages, making it particularly effective in

handling unseen data scenarios.

2. Baseline U-Net (Ronneberger et al., 2015). This model features a

conventional encoder-decoder structure with skip connections

that allow the model to capture fine details in segmentation

(Duarte K. T. et al., 2023). The conventional U-Net served as

the baseline model for our evaluations. We trained this model

only with the gold standard.

3. Transfer Learning (TL) U-Net (Kora et al., 2022). This

approach leverages a pre-trained model trained on large,

unrelated ImageNet-derived dataset (Deng et al., 2009) to

improve performance on WMH segmentation tasks. While

TL can enhance model performance in data-limited scenarios,

its effectiveness may be limited by the differences in data

distribution and domain-specific features between the source

and target tasks (Zhao et al., 2024). We re-trained this model

with the gold standard only.

3.4 U-Net model training

Our model training utilized a three-stage process involving the

sequential use of bronze, silver, and gold standard masks. Figure 3

illustrates the training process, along with the architectural view of

the layers corresponding to each segmentation standard. Different

data splitting strategies were employed for the bronze, silver and

gold standard training. For the bronze standard, the dataset was

divided into training and validation sets with an 80% : 20% split,

omitting a test set as testing was not required at this stage. After

freezing the first five layers (Figure 3), the model was retrained

using silver standard, consensus-based data, again applying an

80% : 20% training:validation division, with the split being stratified

to ensure equal representation of MR protocols across the sets. For

gold standard training, the first 10 layers were frozen (Figure 3) and

a 70% : 10% : 20% training:validating:test split was used. Finally, to
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FIGURE 1

Comparison of bronze, silver, and gold standard segmentations. WMHs are highlighted in yellow in each segmentation.

FIGURE 2

Underlying VGG16-based architecture of the tested U-Net models.

reconstruct the predicted images and thoroughly test the results, the

test sets from the five folds of cross-validation were concatenated,

ensuring consistency by returning to the same images used at

the outset.

We conducted model training with the following parameters:

(1) maximum number of epochs: 600, and (2) initial learning rate:

l0 = 5× 10−4. We employed a loss function that considers the sum

of dice loss and the binary focal loss. Dice loss is a widely used loss

function in the medical field. It accounts for the unequal number of

True and False WMHmask elements. The Dice loss was calculated

as follows:

Dice =
(1+ β2) · TP

(1+ β2) · FP + β2 · FN + FP
(1)

where β represents the balance coefficient. TP, FP, and FN

denote true positive, false positive, and false negative voxel

counts, respectively.

The binary focal loss (FL) further addresses class imbalance by

adjusting the cross-entropy criterion. The FL was measured by:

FL =− GTα(1− PT)γ log(PT)− (1− GT)αPTγ log(1− PT)

(2)

where GT refers to the ground truth and PT corresponds to the

predicted truth. We adjusted the hyperparameters and found good

results for α = 0.25 and γ = 2.0.

We performed our study on a computational cluster

comprising four nodes, each equipped with two Tesla V100-PCIE-

16GB GPUs and a total memory capacity of 754 gigabytes. Each

orientation (axial, sagittial, coronal) was trained independently

and in parallel. This approach significantly reduced overall

training time. Our models were developed using Python 3.6

within a Jupyter Notebook environment and later converted

into Python scripts for execution on the cluster. The complete

source code and Keras-based models are freely accessible on

GitHub: https://github.com/KaueTND/Margarida_WMH_Seg_

Toolbox.

3.5 Performance metrics and statistical
analysis

When evaluating our models, we encountered a

challenge due to the unequal number of True and False

WMH voxels (true negative fraction TNF ≈ 0.98, see

Supplementary Table S1). Traditional accuracy measures

were unsuitable because of the large TNF. Instead, we

turned to four metrics that do not use true negative counts

(TN) and are thus less impacted by the imbalance in

the data:

• Precision (P) (also called positive predictive value) is the ratio

of true positive counts to the sum of true positive (TP) and

false positive (FP) counts:

P =
TP

TP + FP
(3)
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FIGURE 3

Step-wise training strategy using the three segmentation standards. *Denotes dataset only used to generate the bronze and silver standards.

• Recall (R) (also known as sensitivity) is the ratio of TP counts

to the sum of true positive and false negative (FN) counts:

R =
TP

TP + FN
(4)

• F-measure (F) is widely used performance metric in image

segmentation that is the harmonic mean of P and R:

F = 2×
P × R

P + R
=

2× TP

2× TP + FN + FP
(5)

• Intersection-over-union (IoU) compares the predicted

outcome to the ground truth:

IoU =
TP

FP + TP + FN
(6)

During training, we saved the model with the highest IoU

metric as our best model.

We also evaluate our models using the Hausdorff distance

(dH95), which quantifies the distance between predicted and ground

truthWMHboundaries. Given two sets of points, A and B, the dH95

is defined as:

dH(x, y) = max{dAB, dBA}

= max{max
a∈A

{{min
b∈B

{d(a, b)}},max
b∈B

{min
a∈A

{d(a, b)}}} (7)

where d(a, b) represents the Euclidean distance between elements

a ∈ A and b ∈ B. The 95th percentile value of theHausdorff distance

distribution served as our performance metric. In summary, higher

F-measure and IoU, along with lower dH95 values, indicated better

model performance.

We used five-fold cross-validation at the gold standard

stage to assess the variability of our results and summarized

the performance metrics using mean and standard deviation.

We also used one-way analysis of variance (ANOVA) tests

to evaluate if the mean of the three performance metrics

(F-measure, IoU, dH95) were significantly different based

on (1) U-Net variant, (2) disease state (for each variant),

and (3) MR scanner (for each variant). A total of seven

ANOVA tests were performed for each performance measure.

Where appropriate, post-hoc Holm-Bonferroni corrected

two-sample t-tests with pooled variance were applied

(α = 0.05).

4 Results

Figure 4 presents representative WMH segmentation results

and compares the performance of the three evaluated U-Net

models (Baseline, TL, and M3SL) across clinical stage (CN,

MCI, and AD). Qualitatively each variant performed well in

comparison to the ground truth reference (i.e., gold standardmask)

segmentation. Most WMH-containing voxels were consistently

classified as TP across all three models. Across all test data, the

resulting normalized WMH (nWMH) values were similar to the

gold standard segmentation values (see Supplementary Table S1,

Supplementary material). FN were reported more frequently than

FP (Supplementary Table S2), although both counts were less

than TP. This finding suggests a tendency for all three models

to underestimate the ground truth lesions. Closer inspection of

Figure 4 confirms the superiority of the M3SL variant which

has more TP and fewer FN and FP voxels than the baseline

or TL model variants. Despite exhibiting similar trends, the

reduction in FN and FP counts coupled with the increase in TP
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FIGURE 4

Example segmentation results for each U-Net model at each clinical stage (CN, cognitively normal, 82 year female; MCI, mild cognitive impairment,

84 year female; AD, Alzheimer’s disease, 73 year male). Results were obtained using a 2.5D implementation using the VGG16 feature extractor

(Duarte K. T. et al., 2023). Total ground truth and M3SL normalized WMH (nWMH) volume for these single images were CN: 0.045% vs. 0.044%, MCI:

0.175% vs. 0.171%, and AD: 0.450% vs. 0.451%, respectively. Supplementary Table S1 summarizes the ground truth-predicted nWMH averaged over all

subjects by clinical stage.

counts was most evident in the M3SL model across the test data

(Supplementary Figure S2).

A summary of the F-measure, IoU, and dH95 performance

metrics for WMH segmentation across the U-Net variants

for the 2.5D orientation is presented in Figures 5A, 6A,

7A, respectively. The mean F-measures for the three U-

Net variants were significantly different [F2,957 = (36.83),

p < 0.001, and Supplementary Table S3]. Post-hoc t-tests

demonstrated that the mean F-measure for the M3SL model

was significantly higher than both the baseline (pcorr < 0.001)

and TL (pcorr < 0.001) models. Similarly, the mean IoU

measures for the U-Net variants were significantly different

[F2,957 = (31.38), p < 0.001, Supplementary Table S4].

Post-hoc t-tests revealed that the mean IoU measure for

the M3SL model was significantly higher than both the

baseline (pcorr < 0.001) and TL (pcorr < 0.001) models.
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A

B

C

FIGURE 5

Box plot of F-measure score (A) across U-Net model variant and by (B) clinical stage (CN, cognitively normal; MCI, mild cognitive impairment; AD,

Alzheimer’s disease), and (C) scanner (A–E, see description in text). Outliers have been suppressed to aid visualization.

No statistically significant differences in mean dH95 were

observed between the models [F2,957 = (1.548), p = 0.213,

Supplementary Table S5].

To further explore generalizability, we conducted

additional analyses by (1) disease state and (2)

MR scanner. Overall, the M3SL model achieved the

highest F-measure and IoU, and the smallest dH95

values (Supplementary Tables S3–S8 for disease state and

scanner, respectively).

4.1 Model performance by disease state

A summary of the F-measure, IoU, and dH95 performance

metrics for WMH segmentation by disease state for each U-Net

variant is presented in Figures 5B, 6B, 7B, respectively. Mean F-

measure was not significantly different across disease states for both

M3SL [F2,131 = (1.878), p = 0.157, Supplementary Table S3] and

TL models [F2,131 = (3.050), p = 0.0507]. The mean F-measure for

the baseline model, however, was significantly different by disease
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A

B

C

FIGURE 6

Box plot of IoU score (A) across U-Net model variant and by (B) clinical stage (CN, cognitively normal; MCI, mild cognitive impairment; AD,

Alzheimer’s disease), and (C) scanner (A–E, see description in text). Outliers have been suppressed to aid visualization.

state [F2,131 = (5.229), p < 0.001]. Post-hoc t-tests revealed that the

mean CN F-measure for the baseline model was significantly lower

than both AD (pcorr = 0.015) and MCI (pcorr = 0.027) values.

Similar findings were observed for IoU by clinical stages. Mean

IoU was not significantly different across disease states for both

M3SL [F2,131 = (2.655), p = 0.074, Supplementary Table S4]

and TL models [F2,131 = (2.322), p = 0.102]. With the baseline

model, themean IoU was significantly different across disease states

[F2,131 = (3.256), p = 0.0417]. Post-hoc t-tests for the baseline

model revealed that the mean IoU for both AD (p = 0.034)

and MCI (p = 0.038) clinical stages were significantly higher

than CN. However, these differences did not survive multiple

comparison corrections.

Mean dH95 was not significantly different by disease

states for all model variants: M3SL [F2,131 = (0.805),

p = 0.449, Supplementary Table S5], TL, [F2,131 =

(0.149), p = 0.862], and baseline [F2,131 = (0.573),

p = 0.565].
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B

A

C

FIGURE 7

Box plot of Hausdor� 95% percentile distance (dH95) (A) across U-Net model variant and by (B) clinical stage (CN, cognitively normal; MCI, mild

cognitive impairment; AD, Alzheimer’s disease), and (C) scanner (A–E, see description in text). Outliers have been suppressed to aid visualization.

4.2 Model performance by scanner

A summary of the F-measure, IoU, and dH95 performance

metrics for WMH segmentation across scanner for each U-Net

variant is presented in Figures 5C, 6C, 7C, respectively. The mean

F-measure was not significantly different across scanner for M3SL

[F4,291 = (1.611), p = 0.171, Supplementary Table S6] models.

The mean F-measure, however, was significantly different across

scanner for both TL [F4,291 = (18.53), p < 0.001] and baseline

[F4,291 = (21.77), p < 0.001] model variants. Post-hoc t-tests for

the TL variant revealed that the mean F-measure for scanner D

was significantly smaller than scanner A (pcorr = 0.179), scanner

B (pcorr = 0.042), and scanner C (pcorr = 0.024). Scanner D

had a larger mean F-measure than scanner E (pcorr < 0.001).

The mean F-measure for scanner E were significantly smaller

than scanner A (pcorr < 0.001), scanner B (pcorr < 0.001), and

scanner C (pcorr < 0.001). Similarly, post-hoc t-tests for the

baseline variant revealed that the mean F-measure for scanner D

was significantly smaller than scanner A (pcorr = 0.066), scanner B

(pcorr = 0.015), and scanner C (pcorr = 0.013). Mean F-measure

for scanner D was larger than scanner E (pcorr < 0.001). Mean

F-measure for scanner E was significantly smaller than scanner

A (pcorr < 0.001), scanner B (pcorr < 0.001), and scanner C

(pcorr < 0.001).
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Mean IoU was not significantly different across

scanner for M3SL variant [F4,291 = (1.036), p = 0.389,

Supplementary Table S7]. Mean IoU was significantly different

across scanner for both TL [F4,291 = (18.23), p < 0.001] and

baseline [F4,291 = (1.036), p = 0.389] model variants. Post-hoc

t-tests for the TL models revealed that the mean IoU for scanner

E was significantly smaller than scanners A–D (pcorr < 0.001).

Similarly, post-hoc t-tests for the baseline models revealed that the

mean IoU for scanner E was significantly smaller than all other

scanners (pcorr < 0.001).

Mean dH95 was not significantly different across scanner for

M3SL model [F4,291 = (2.239), p = 0.064]. However, mean dH95

was significantly different across scanner for both TL [F4,291 =

(9.527), p < 0.001, Supplementary Table S8] and baseline [F4,291 =

(10.97), p < 0.001] models. Post-hoc t-tests for the TL model

variant revealed that the mean dH95 for scanner E was significantly

smaller than scanners A (pcorr = 0.027), scanner B (pcorr =

0.001), and scanner C (pcorr = 0.002). Similarly, post-hoc t-tests

for the baseline models revealed that the mean dH95 for scanner

E was significantly lower than scanner A (pcorr < 0.001), scanner

B (pcorr < 0.001), scanner C (pcorr < 0.001), and scanner D

(pcorr = 0.031).

4.3 Result summary

Figure 8 provides a graphical summary of many of the key

findings for the M3SL compared to the baseline model for F-

measure. As would be expected, individuals with larger WMH

burdens typically belong to more advanced clinical stages (MCI

or AD). Within the CN clinical stage, the expected increase in

WMH lesion volumes was observed with advancing age. Larger

WMH volumes were associated with higher F-measure values,

indicating that the M3SL model performed better in cases with a

greater disease burden. Figure 8 graphically illustrates that across

nearly all individuals (258/260, 99.993%), the M3SL had a higher

F-measure compared to the baseline variant. Similar findings

were seen plotting IoU [260/260 (100.0%) improved with M3SL,

Supplementary Figure S3] and dH95 [253/260 (99.973%) improved

with M3SL, Supplementary Figure S4].

5 Discussion

Automating WMH segmentation presents significant

challenges due to the variability in lesion volume, irregular

shape, and diverse spatial distributions, which may reflect

differences in underlying etiology (Duering et al., 2023; Wardlaw

et al., 2013). Manual segmentation, though laborious and time-

consuming, remains the gold standard but is prone to inter-subject

variability. Furthermore, only a limited number of datasets

offer annotated/segmented FLAIR, restricting researchers from

exploring this topic further (Vanderbecq et al., 2020). Fewer

datasets provide WMH-annotated T1-w images. As a result,

alternatives that reduce reliance on manual annotation and focus

on automated WMH segmentation solutions, even if less accurate,

have gained traction (Vanderbecq et al., 2020). While various

automated tools are available for WMH segmentation, they often

have variable performance when examined across factors such as

clinical stage or scanner (Vanderbecq et al., 2020; Wardlaw et al.,

2015). Moreover, some tools require T1-w images to define white

matter and cerebrospinal fluid boundaries, which may not always

be readily available to researchers. Although acquiring FLAIR

images alongside T1-w images is a common clinical practice,

analyzing them together can potentially increase data management

and computational effort due to missing data, registration and

other image corrections.

Recently, deep learning techniques for WMH identification

and segmentation have emerged as promising alternatives. Deep

learning leverages the ability to learn complex patterns from large

datasets (Duarte K. T. et al., 2023; Mu et al., 2024). Although

transfer learning (TL) offers a practical solution for learning tasks

with limited data (Duarte et al., 2019, 2020; Duarte K. T. N.

et al., 2023), such as in medical imaging, transferring weights from

entirely different domains may not necessarily sufficiently improve

model accuracy or generalizability. The inherent differences in data

distribution and domain-specific features can limit the effectiveness

of pre-trained models (Zhao et al., 2024).

To address these challenges, we proposed M3SL, a robust

approach designed to improve segmentation accuracy by iteratively

refining the model using a combination of annotated data of

varying qualities, including bronze standard data: automatically

segmented by non-DL tools (Fischl et al., 2002; Jiang et al., 2018;

Schmidt et al., 2012), silver standard data: consensus segmentation

via algorithm, such as STAPLE (Warfield et al., 2004), and gold

standard data: expert-annotatedmasks (Kuijf et al., 2019;McCreary

et al., 2020; Peca et al., 2013; Subotic et al., 2021). In general

the quality of the data would be expected to be in inverse

proportion to its availability. Our implementation of M3SL adapts

to the unique characteristics of medical imaging data, leading to

more accurate and reliable segmentation outcomes in this study.

As shown in Supplementary Table S2, a clear increase in True

Positive Fraction (TPF) highlights the advantages of using the

M3SL model. Additionally, the TPF of the public dataset showed

a marked improvement compared to other U-Net variations,

underscoring the importance of using a range of training data to

improve generalizability. Other studies have noted efficiency gains

by adapting U-Net layers using transfer learning (Kim et al., 2022;

Kora et al., 2022; Salehi et al., 2023), but our findings consistently

demonstrated that M3SL outperformed conventional methods,

including baseline and TL U-Net WMH segmentation models.

One of the key advantages of M3SL is its ability to leverage

diverse data sources acquired using different protocols and

scanners. The initial layers of a CNN are crucial for extracting

general features (Yu et al., 2021). During the bronze standard

training phase, our model use data from ADNI. This data

accounted for more than 50% of the training data and did not come

with gold annotated WMH masks. Exposing the model initially to

varied acquisition protocols and multiple scanners likely adjusted

the weights and biases of the network, so that this knowledge

to be retained by the network. Consequently, the model learned

to generalize across a diverse range of images. While the bronze

standard data includes lower quality WMH segmentation masks,

the subsequent M3SL silver and gold standard stages allow the

model to progressively correct these errors (Yu et al., 2021). This

adaptability enables the model to learn robust representations
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FIGURE 8

Evaluation of F-measure score for the U-Net model across 260 individuals over age grouped by clinical stage: (A) CN, cognitively normal (148

individuals), (B) MCI, mild cognitive impairment (55 individuals), and (C) AD, Alzheimer’s disease (37 individuals). Size of the filled circle in the plots

reflects rank of the normalized WMH volume (i.e., expressed as a percentage of the intracranial volume). Green vertical lines represent an increase in

F-measure values in the same individual, from baseline (bottom of the vertical line) to M3SL variant (top of the vertical line). Conversely, red vertical

lines indicate a decrease in F-measure for the M3SL compared to baseline variant. Only 2/260 (0.007%) of these lines were red. This plot

demonstrates better performance for M3SL compared to the baseline model. Data are from the local datasets described in Table 1.

of WMHs that are resilient to noise, image artifact and other

nonidealities present in the data. The silver standard phase used

the STAPLE algorithm (Warfield et al., 2004) to combine the three

bronze masks to provide a more accurate, consensus-based mask.

This technique has been successfully employed in previous studies

(Kats et al., 2019; Warfield et al., 2004) to enhance segmentation

quality. Gold standard data was used in the final phase.

The iterative nature of M3SL allows for continuous

improvement, refining predictions based on feedback from

earlier stages. The M3SL model demonstrated significant

improvements in F-measure and IoU compared to the baseline and

TL methods (p < 0.001, Figures 5A, 6A, Supplementary Tables S3,

S4), providing evidence of superior segmentation performance

across the six datasets. When analyzing results by clinical stages

(CN, MCI, AD), the M3SL (p > 0.05) model showed significant

differences in all three performance metrics studied (Figures 5B,

6B, 7B, Supplementary Tables S3–S5). This finding indicates no

preference for segmenting FLAIR images at specific clinical stages.

In contrast, baseline U-Net models showed higher F-Measure and

IoU in later clinical stages, where the WMH lesions are larger. The

M3SL model also showed no significant differences across scanners

(p > 0.05, Figures 5C, 6C, 7C, Supplementary Tables S6–S8).

This finding highlights the advantage of incorporating a large

public dataset (ADNI) during the bronze and silver training steps.

However, both TL and baseline U-Net models exhibited decreased

F-measure values with scanner E, as evidenced in Figures 5C, 6C,

7C, with at least a 20% difference in mean F-measure value.

Generalization in deep learning models is crucial for ensuring

reliable predictions when processing unseen data. Researchers and

developers must consider the robustness of WMH predictions

across various factors, including clinical stage (e.g., CN vs. MCI vs.

AD), WMH size and location, and the acquisition protocol and

scanner used to acquire the FLAIR images (Meng et al., 2022).

Investigating the WMH burden, particularly in the periventricular

region, is important because of the suggested association with

WMHburden and increased risk of cognitive decline. The literature

on this topic remains somewhat inconclusive on whether these

lesions contribute to or result from the onset of dementia. Access

to larger datasets will help address these questions provided that

appropriate tools exist to accurately segmented images to produce

WMHmasks.

Some of the main limitations addressed by this study are the

poor availability of both annotated public and more advanced

disease-containing datasets. While there are abundant FLAIR scans

in public repositories (e.g., ADNI), the integration of manually

annotated ground truth (or “gold” standard) data remains a

bottleneck. Additionally, the lack of extensive datasets that account

for other pathologies leading to WMHs further constrains the

generalizability of the findings. Furthermore, it is important to

note that datasets such as ADNI exclude participants with severe

cerebrovascular disease (CVD), and while WMH is present, it is

not a major contributor to dementia in those cohorts. The CNS

cohorts, similarly, are too young to show significant WMH burden.

Moreover, not explicitly considering factors such as age and sex

can introduce potential biases, which may or may not impact the

robustness of the results.

6 Summary and conclusions

Although the clear quality of baseline and TL U-Net

models, M3SL has shown significant potential in improving

segmentation performance by fine-tuning the weights in the

initial convolutional layers using broadly weakly-annotated data.

This adjustment enhances the model’s ability to generalize

when encountering diverse image types, including different pulse

sequences, acquisition protocols, and preprocessing variations. Our

experiments demonstrated that M3SL outperformed baseline U-

Net methods (F-measure, pcorr < 0.001) and TL-based approaches

(F-measure, pcorr < 0.001). Similar improvements were observed

in the IoU metric. When comparing our model with conventional

training methods, M3SL exhibited superior generalization to
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unseen scenarios, such as data from different acquisition protocols

and scanners. Additionally, M3SL demonstrated reduced FP and

FN fractions compared to the baseline and TL methods while

achieving a significant increase in the TP fraction across all clinical

stages and datasets.

The performance of the F-measure, IoU, and dH95 metrics

in M3SL was not influenced by clinical stage. However, the

baseline U-Net architecture showed a bias toward more severe

clinical stages. By grouping and highlighting presumed lesion

locations according to clinical stage, our results indicated that

M3SL did not differentiate based on clinical stage or lesion

volume, as evidenced by the consistent improvement in F-measure

with disease progression. Differences in acquisition protocol and

scanner had no significant impact on the performance of M3SL.

This finding addresses a common challenge in deep learning-based

WMH segmentation, where models often require access to diverse

datasets during the training phase to achieve robust performance.

However, while WMH segmentation provides valuable

information, it is not sufficient on its own for comprehensive

clinical insights. Understanding the location and temporal

progression of WMHs is crucial for a more complete assessment.

Our future goal is to utilize longitudinal analysis to explore the

potential of WMHs as predictive tools for conditions such as

Alzheimer’s disease, vascular dementia, and related disorders. To

achieve this, future studies should aim to expand dataset diversity

by including a variety of temporal information from patients.
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