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A framework for optimal control
of oscillations and synchrony
applied to non-linear models of
neural population dynamics
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1Institute of Software Engineering and Theoretical Computer Science, Technische Universitaet Berlin,

Berlin, Germany, 2Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany

We adapt non-linear optimal control theory (OCT) to control oscillations and

network synchrony and apply it to models of neural population dynamics. OCT

is a mathematical framework to compute an e�cient stimulation for dynamical

systems. In its standard formulation, it requires a well-defined reference

trajectory as target state. This requirement, however, may be overly restrictive

for oscillatory targets, where the exact trajectory shape might not be relevant.

To overcome this limitation, we introduce three alternative cost functionals to

target oscillations and synchrony without specification of a reference trajectory.

We successfully apply these cost functionals to single-node and networkmodels

of neural populations, in which each node is described by either the Wilson-

Cowan model or a biophysically realistic high-dimensional mean-field model of

exponential integrate-and-fire neurons. We compute e�cient control strategies

for four di�erent control tasks. First, we drive oscillations from a stable stationary

state at a particular frequency. Second, we switch between stationary and

oscillatory stable states and find a translational invariance of the state-switching

control signals. Third, we switch between in-phase and out-of-phase oscillations

in a two-node network, where all cost functionals lead to identical OC signals in

the minimum-energy limit. Finally, we (de-) synchronize an (a-) synchronously

oscillating six-node network. In this setup, for the desynchronization task, we

find very di�erent control strategies for the three cost functionals. The suggested

methods represent a toolbox that enables to include oscillatory phenomena into

the framework of non-linear OCT without specification of an exact reference

trajectory. However, task-specific adjustments of the optimization parameters

have to be performed to obtain informative results.

KEYWORDS

nonlinear optimal control, control of oscillations, control of synchrony, control of neural

dynamics, neural population models

1 Introduction

OCT is a mathematical framework that offers methods to compute efficient stimulation

for linear or non-linear dynamical systems (Kirk, 2004) with numerous applications

in science, engineering, and operations research. With OCT, a stimulating signal can

be designed such that the dynamical system under consideration behaves in a desired

manner. Conventionally, a reference trajectory is defined that the state variable of the

dynamical system should mimic. A cost functional trades the closeness between the

actual and a reference state (typically, the squared difference between the reference and

target states integrated over time) against the input strength of the control (typically, the
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squared control input integrated over time). The optimal control

(OC) minimizes the cost functional.

Control of neural system has been studied intensively both

theoretically and experimentally (Kao and Hennequin, 2019; Suppa

et al., 2016; Liu et al., 2018). Closed-loop control and machine

learning approaches have been applied, for example, to modulate

brain activity (Grosenick et al., 2015; Tafazoli et al., 2020; Park

et al., 2019) and optimize stimulation protocols for the treatment

of neurological disorders (Yu et al., 2020; Chandrabhatla et al.,

2023). Open-loop optimal control has been computed for non-

linear models of neural population dynamics (Salfenmoser and

Obermayer, 2022, 2023) and networks thereof Chouzouris et al.

(2021). Beyond that, network control theory has widely been

applied to linear models of brain networks to understand how

network structure determines the role of brain circuits to control

network function (McGowan et al., 2022), or how altered structural

connectivity is linked to mental disorders (Zöller et al., 2021).

In neural systems, oscillatory phenomena commonly emerge

and spread over various spatial and temporal scales. To control

neural oscillations, OCT has mostly been applied to phase-reduced

models of oscillatory systems (e.g., Dasanayake and Li, 2011;

Zlotnik and Li, 2012; Pyragas et al., 2020; Wilson and Moehlis,

2014). Phase reduction techniques enable to drastically simplify

complex dynamical system evolving along a stable limit cycle

by parametrizing their dynamics via their phase only (Pietras

and Daffertshofer, 2019). As the oscillation phase becomes the

(only) state variable, synchronization directly translates to phase

alignment, and optimal synchronization and desynchronization

can be studied straightforwardly by conventional OCT methods.

The low computational complexity of phase-reduced models

enables OC studies of large-scale networks (e.g., Bomela et al.,

2023). However, phase-reduced models can by construction only

describe trajectories along the stable limit cycles of coupled

oscillators. Control strategies are limited to phase shifts along these

limit cycles and cannot capture larger deviations from it. The

phase-reduced approximation breaks down at a bifurcation, and

the model dynamics may not be described accurately close to a

bifurcation. Beyond phase model studies, delayed feedback control

(Popovych et al., 2006; Hövel et al., 2010) and model-free machine

learning methods (Krylov et al., 2020; Vu et al., 2024) have been

applied to discuss optimal synchronization or desynchronization in

multi-dimensional models of neural activity.

There are different classes of methods to compute OC for

non-linear systems (Rao, 2010). Model-based approaches use

the mathematical description of a dynamical system: While

indirect methods reformulate the optimization problem such

that optimality conditions are obtained, from which the optimal

control can be computed, direct methods discretize the continuous

control problem such that it becomes an optimization problem in

finite space. Model-free approaches learn control strategies from

a sufficient amount of data of how the system behaves under

stimulation, without using any information on the analytical model

description (Koryakovskiy et al., 2017).

In this study, we compute OC using the indirect adjoint

method, which enables to formulate an expression for the gradient

of the cost functional with respect to the control. It can be

applied to any linear or non-linear dynamical system and is, in

principle, analytic. However, the arising equations cannot be solved

analytically in most non-linear systems and require numerical

solutions. Up to the uncertainties of the numerical computation,

the method remains exact. Control shapes are entirely determined

by the system dynamics at any point in the state space and

for any dynamical regime. The method is applicable to arbitrary

networks; however, in practice, computational complexity will limit

network sizes.

Standard mathematical methods borrowed from OCT are

limited in their applicability to oscillatory phenomena in

(unreduced) complex dynamical systems: The specification of a

reference trajectory is overly restrictive since the exact shape of

the oscillatory trajectory, including properties such as amplitude

and phase, may often be irrelevant. We therefore adapt the OCT

framework and suggest to replace the cost functional that measures

closeness between actual and reference state by one of three

alternative cost functionals:

• The Fourier cost evaluates the Fourier component

corresponding to a target oscillation frequency.

• The cross-correlation cost evaluates the pairwise cross-

correlation of the dynamical state of all nodes in a network

(Chouzouris et al., 2021).

• The variance cost evaluates the variance of the activity

throughout a network.

The Fourier cost enables new applications of OCT to induce

oscillations when the system is in a fixed point without specifying

a reference trajectory. All three cost functionals are evaluated

and compared for switching between stationary states and for the

control of network (de-) synchronization. The variance cost is

inspired by studies on the control of frequency synchronization in

phase oscillator models (e.g., Taher et al. (2019)), and a similar cost

functional has recently been studied using a data-driven approach

(see Vu et al., 2024). The cross-correlation cost has been studied

before in the context of network synchronization (cf. Chouzouris

et al., 2021) and is included for comparison.

We demonstrate how to include these cost functionals into

the adjoint method, such that all benefits from this method are

inherited. This enables to study efficient control strategies in

complex systems for a repertoire of control tasks that cannot be

captured by phase-reduced oscillatormodels. Potential applications

go beyond (de-) synchronization of oscillating networks and may

combine oscillatory and non-oscillatory states, e.g., in multistable

systems, or across bifurcation boundaries.

In this study, we use two non-linear models of neural

populations dynamics as example systems. We study the Wilson-

Cowan (WC) model (Wilson and Cowan, 1972, 1973), a

simple, phenomenological neural mass model, and the mean-

field EIF model, a biophysically motivated mean-field model

of excitatory and inhibitory exponential integrate-and-fire (EIF)

neurons (Augustin et al., 2017; Cakan and Obermayer, 2020). The

mean-field EIF model exhibits more dynamical variety and hence

enables to study control tasks that are not accessible with the

WC model only. In these models, the OC cannot be computed

analytically. Instead, the cost gradient is computed numerically,

and the OC is approached by gradient descent.
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This article is structured as follows: Section 2.1 provides an

introduction to OCT, and Section 2.2 presents our adjustments

to target the problem of controlling oscillations and synchrony.

In Section 2.3, we introduce the two models of neural population

dynamics that serve as example systems in this study. Section 2.4

presents the implementation of our OC methods, and we provide

details on the numerical simulations and on the convergence

properties of the gradient descent procedure. In Section 3, we

present our results. We first study the efficacy of the Fourier cost to

enforce oscillations from stationary states in a single-node system

(see Sections 3.1 and 3.2.1). Then, we apply the Fourier cost, the

cross-correlation cost, and the variance cost to switch between

oscillatory states (see Section 3.2.2). Finally, we synchronize or

desynchronize oscillating networks with the three proposed cost

functionals (see Section 3.3). In Section 4, we summarize our

findings, discuss the limitations of our method, and give an outlook

on potential future areas of application.

2 Methods

2.1 Optimal control of non-linear
dynamical systems

We study controlled non-linear dynamical systems that may be

defined by ordinary differential equations (ODEs) or differential-

algebraic equations (DAEs) and may include delays. We denote

such systems by

Eh(Ex(t), Ėx(t), Ex(t − d1), Ex(t − d2), ..., Ex(t − dNd
), Eu(t)) = 0, (1)

with the state vector Ex, its time derivative Ėx, and Nd potentially

different delays di. In this study, we consider network systems

with N network nodes and a finite simulation time. The state

vector Ex contains the stacked state vectors Exn, n ∈ {1, 2, ...N}, of

all nodes. Similarly, Eh contains the stacked system dynamics of all

network nodes. We denote the dimensionality of the state vector

of a single node as Nx, such that {Ex, Eh} ∈ R
N·Nx . Eu(t) is the

control input, which may effect one or more components of Exn
for each node in a network. The OC formalism provides methods

to compute a control Eu(t) that is most efficient for a particular

purpose. A cost functional F measures the efficiency of a control.

It is conventionally defined as

F = wP
1

2(T − t0)

∫ T

t0

(Ex(t)− x̃(t))2dt

︸ ︷︷ ︸

=FP

+
1

2

∫ T

0
Eu2(t) dt

︸ ︷︷ ︸

=FE

=

∫ T

0
f (Ex, Eu)dt. (2)

The first term FP measures the closeness of the trajectory of the

state vector Ex(t) to a given target trajectory of state vectors x̃(t) ∈

R
N·Nx and is referred to as the precision cost. The second term FE

measures the strength of the control signal and is referred to as the

energy cost. T denotes the considered time interval. Inaccuracy is

penalized for t0 ≤ t ≤ T, while control strength is penalized for

the complete time interval. When controlling a switch between two

stable states, we set t0 > 0 to account for a finite transition time.

The OC Eu∗ minimizes the cost,

Eu∗ = argmin
Eu

F. (3)

The weight wP can be tuned to trade precision against the

required control strength.

In the following Section 2.2, we will consider new cost

functionals FX(Ex) which go beyond the precision cost FP(Ex) defined

in Equation 2, i.e., FP(Ex) → FX(Ex). To be able to apply the adjoint

method, we require that the derivative of the cost functional with

respect to the control can be written in the form

dFX(Ex)

dEu
=

∫ T

0
Eg(Ex)

dEx

dEu
dt, (4)

where Eg(Ex) is some function of the state variable Ex (see

Supplementary material).

The adjoint method (Kirk, 2004) enables to compute the

derivative d
dEuF of the cost functional with respect to the control.

The adjoint state Eλ ∈ R
N·Nx is defined by the differential equation

Ėλ(t)T
∂Eh(t)

∂ Ėx
= Eg(Ex)+ EλT(t)

∂Eh(t)

∂Ex

+

Nd∑

i=1

χ[0,T−di]
EλT(t + di)

∂Eh(t + di)

∂Ex
− EλT

d

dt

∂Eh

∂ Ėx
(5)

with the final condition Eλ(T) = 0. χ[ta ,tb] denotes the

indicator function of the time interval [ta, tb]. Above expression

contains vectors {Eλ, Ėλ, Eg(Ex)} ∈ R
N·Nx , and matrices { ∂Eh

∂ Ėx
, ∂Eh

∂Ex } ∈

R
(N·Nx)×(N·Nx), with

(
∂Eh
∂ Ėx

)

ij
= ∂hi

∂ ẋj
(indices i and j denote the ith

and jth vector components). Note that for the dynamical systems

studied in this work, ∂Eh
∂ Ėx

is a constant such that the last term in

Equation 5 vanishes. The adjoint state Eλ is computed by backward

integration. It enables to compute the cost derivative

d

dEu
F =

∫ T

0

∂f

∂Eu
+ EλT

∂Eh

∂Eu
dt. (6)

The integrand
∂f
∂Eu + EλT ∂Eh

∂Eu is the cost gradient as a function of

time, which is required for the gradient descent. A derivation of the

adjoint method is provided in the Supplementary Section 1.

When studying oscillatory phenomena and the control thereof,

a well-defined target trajectory x̃n(t) for each network node implies

that the exact shape of the oscillation, including amplitude and

phase, is set. This might be overly restrictive in certain scenarios.

In the next section, we will, therefore, introduce alternative cost

functionals to replace the precision cost FP in Equation 2.

2.2 Optimal control of oscillations and
synchrony

For the cost functionals that measure oscillation and

synchronization, we consider only one relevant state variable

for each network node. The formalism we present is, however,
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not generally limited to this simplification and can be extended

straightforwardly. We drop the vector arrow and denote the

observable component of the state variable by xn(t) for network

node n.

To enforce phase and frequency synchronization in a network

at frequency f̃ , we replace FP in Equation 2 by the synchronization

Fourier cost,

F
sync
F = −

1

N2(T − t0)2

∣
∣
∣
∣

∫ T

t0

6x(t) · e
−iωt dt

∣
∣
∣
∣

2

(7)

with 6x(t) =
∑N

n=1 xn(t) and ω = 2π f̃ . F
sync
F is the squared

Fourier component corresponding to the frequency f̃ of the sum

of observables over all N network nodes. The computation of the

adjoint state using Equation 5 requires

(

g
sync
F (Ex)

)

k
= −

2

N2(T − t0)2

∫ T

t0

6x(τ ) · cos(ω(t − τ )) dτ . (8)

The derivation of Equation 8 is provided in the

Supplementary Section 2.1.

To enforce frequency synchronization in a network at

frequency f̃ irrespective of the relative phases of its nodes, we

replace FP in Equation 2 by the oscillation Fourier cost

FoscF = −
1

N(T − t0)2

N
∑

n=1

∣
∣
∣
∣

∫ T

t0

xn(t) · e
−iωt dt

∣
∣
∣
∣

2

. (9)

FoscF is the sum over all N network nodes of the node-wise

squared Fourier component corresponding to the frequency f̃ . The

computation of the adjoint state using Equation 5 requires

(

goscF (Ex)
)

k
= −

2

N(T − t0)2

∫ T

t0

xk(τ ) · cos(ω(t − τ ))dτ . (10)

The derivation of Equation 10 is provided in the

Supplementary Section 2.2. For N = 1, synchronization and

oscillation Fourier costs are identical and enforce oscillations

at frequency f̃ . We will denote the cost by FF in this case. The

oscillation Fourier cost FoscF improves, if the power corresponding

to the target frequency f̃ increases in any network node,

irrespective of the relative phases. The synchronization Fourier

cost F
sync
F improves, either if oscillatory network activity at

frequency f̃ synchronizes, or if the power in the network nodes

corresponding to f̃ increases1.

To enforce phase synchronization in a network irrespective of

the oscillation frequency, we replace FP in Equation 2 by either the

cross-correlation cost or the variance cost. The cross-correlation

cost (Chouzouris et al., 2021) is defined as

Fcc = −
2

N(N − 1)(T − t0)

∫ T

t0

N
∑

n=1
l=n+1

(xn(t)− xn)(xl(t)− xl)

σ (xn)σ (xl)
dt, (11)

1 If network nodes oscillate entirely anti-phase, the Fourier components

cancel out, and an increase in power will not improve the synchronization

Fourier cost.

where x = 1
T−t0

∫ T
t0
x(t) dt is the temporal mean of x(t), and

σ 2(x) = 1
T−t0

∫ T
t0
(x(t) − x)2 dt is its variance. The computation

of the adjoint state using Equation 5 requires

(

gcc(Ex)
)

k
=

2

N(N − 1)(T − t0)

N
∑

l=1
l 6=k

(xl(t)− xl)

σ (xk)σ (xl)

−
(xk(t)− xk)Ikl

(T − t0)σ (xk)3σ (xl)
, (12)

with Ikl =
∫ T
t0
(xk(t) − xk)(xl(t) − xl) dt. The derivation of

Equation 12 is provided in the Supplementary Section 2.3.

The variance cost is defined as

Fvar =
1

N(T − t0)

∫ T

t0

N
∑

n=1

(

xn(t)− x(t)
)2

dt, (13)

where x(t) = 1
N

∑N
n=1 xn(t) is the network mean of x(t). The

computation of the adjoint state using Equation 5 requires

(

gvar(Ex)
)

k
=

2(xk(t)− x(t))

N(T − t0)
. (14)

The derivation of Equation 14 is provided in the

Supplementary Section 2.4.

Both Fcc and Fvar are defined for networks with N ≥ 2 and

cannot be applied to a single-node system.

2.2.1 Control weights
When replacing FP in Equation 2 by one of the abovementioned

cost functionals, we also introduce the respective weights, w
sync
F ,

wosc
F , wcc, or wvar replacing wP in Equation 2. By using a

negative weight, we can suppress a specific oscillation mode

(oscillation Fourier cost) and enforce desynchronization instead

of synchronization (synchronization Fourier cost), enforce a small

cross-correlation, or enforce a large variance (e.g., in the case of a

desynchronization task).

2.3 Models of neural population dynamics

We apply our methods to two models of neural population

dynamics, the WC model (see Section 2.3.1) and the mean-field

EIF model (see Section 2.3.2). The former is a simple, two-

dimensional system of ordinary differential equations (ODEs),

while the latter is a high-dimensional system of delay differential-

algebraic equations (DDAEs).

2.3.1 The Wilson-Cowan model
The WC model describes the activity of coupled excitatory and

inhibitory neural populations (Wilson and Cowan, 1972, 1973).

The dynamics are defined by
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TABLE 1 Parameters of the WCmodel.

Parameter Explanation Value

τE decay constant of E 2.5

τI decay constant of I 3.75

γ gain 1.5

µ firing threshold 3.0

cEE E to E coupling 16

cEI I to E coupling 12

cIE E to I coupling 15

cII I to I coupling 3

FIGURE 1

Cartoon of a single node of the WC network model. Static external

inputs are indicated by Eext and Iext, network inputs by Enw, and

control inputs by u(t).

τEĖn(t) = −En(t)+ (1− En(t)) · S
(

cEEEn(t)

− cEIIn(t)+ Eext + un(t)+ cgl

N
∑

m=1

CnmEm(t − Dnm)
)

τI İn(t) = −In(t)+ (1− In(t)) · S
(

cIEEn(t)− cII In(t)+ Iext
)

.

(15)

The activity variables En(t) and In(t) denote the fraction of

excitatory and inhibitory neurons that are active at time t in

node n in a network of N nodes. τE and τI are the decay time

constants of the excitatory and inhibitory activity, respectively.

cβα denotes the coupling from population α to population β with

α,β ∈ {E, I}. Eext and Iext are static external inputs that serve

as order parameters for the network. un(t) is the time-dependent

control, cgl denotes the global coupling strength, and C and D are

the N × N coupling and delay matrices. The transfer function

S(x) = (1 + exp−γ (x− µ))−1 computes a synaptic input to

En or In from the sum of all inputs. Numerical values for the

parameters are given in Table 1. Figure 1 sketches the dynamical

interactions between the excitatory and inhibitory populations of a

single WC node in a network. Excitatory and inhibitory population

are recurrently coupled. Only the excitatory population receives

network and control inputs.

Figure 2A shows a slice of the state space of the one-node

WC model with parameters as given in Table 1. Depending on the

external inputs Eext and Iext, the system exhibits a state of constant

low activity (“down state”), a state of constant high activity (“up

state”), an oscillatory state, or a bistable state, where stable states

of constant low and high activity coexist. Points (A)–(E) mark

locations in state space, for which control tasks are studied (see

Section 3).

2.3.2 The mean-field EIF model
The mean-field EIF model (Augustin et al., 2017; Cakan and

Obermayer, 2020) captures the dynamics of a network of randomly

and sparsely connected exponential excitatory and inhibitory

integrate-and-fire neurons (Brette and Gerstner, 2005) in the limit

of infinitely many neurons. In this limit, a dimensionality reduction

can be performed, and the mean firing rates rE and rI of the

excitatory and inhibitory populations can be obtained as the activity

state variables. rE and rI are functions of the mean membrane

currents and their variances. The model dynamics are described by

a 16-dimensional system of delay differential-algebraic equations

(DDAEs), which is provided in the Supplementary Section 3.

Schematically, the dynamical interactions of the mean-field EIF

model can be represented similarly as shown in Figure 1. Note that

external inputs are denoted differently as µext
E and µext

I .

Figure 2B shows a slice of state space of the one-node mean-

field EIF model. Depending on the external inputs µext
E and µext

I ,

the system exhibits a state of constant low activity (“down state”),

a state of constant high activity (“up state”), an oscillatory state,

or a bistable state, where stable states of constant low and high

activity coexist. Beyond that, there is a small region between the

oscillatory and bistable regimes where we find bistability between

an oscillatory and a down state (marked in blue). Points (A)–(C)

mark locations in state space, for which control tasks are studied

(see Section 3).

2.3.3 Parameters for network control
We study two control tasks for a WC network with nodes

coupled via the excitatory population. In a preliminary state-space

exploration for various combinations of network and coupling

parameters, we hand-picked adequate parameters such that the

desired control tasks can be studied.

For the two-node network studied in Section 3.2.2, coupling

and delay matrices are given by

C =

(

0 1

1 0

)

, D =

(

0 9.5

9.5 0

)

. (16)

The coupling scheme is sketched in Figure 3A. We set cgl =

1.8 (cf. Equation 15) and find a bistable state at point (C) (see

Figure 2A), where a stable in-phase oscillation (IP) with period

f−1
IP = 13.89 coexists with a stable out-of-phase oscillation (OOP)

with period f−1
OOP = 22.72.

For the six-node network studied in Section 3.3, coupling and

delay matrices are given by

C =











0 1 0 0 0 1

1 0 1 0 1 0

0 0 0 0 0 1

0 0 1 0 0 1

1 1 0 1 0 1

0 1 1 0 0 0











, D =











0 12 0 0 0 8

8 0 13 0 1 0

0 0 0 0 0 9

0 0 4 0 0 11

5 17 0 14 0 18

0 0 3 0 0 0











. (17)

The coupling scheme is sketched in Figure 3B. We set cgl = 0.8

(cf. Equation 15) and find a state of asynchronous oscillation at
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FIGURE 2

(A) Slice of state space of one node of the WC model. The horizontal (vertical) axis corresponds to the external input Eext (Iext). The four dynamical

regimes are separated by black lines. Red markers indicate the points in state space at which control tasks are studied. Their coordinates are (1, 1) for

point (A); (3, 1) for point (B); (1.8, 0.8) for point (C); (1.6, 0.4) for point (D); (1, 0.4) for point (E). (B) Slice of state space of one node of the mean-field EIF

model. The horizontal (vertical) axis corresponds to the external input µext
E

(µext
I

). The five dynamical regimes are separated by black and blue lines. In

the inset, we zoom into the regime bounded by the blue line, where stable oscillations coexist with a stable up state. Red markers indicate the points

in state space at which control tasks are studied. Their coordinates are (0.2nA, 0.2nA) for point (A); (0.4nA, 0.04nA) for point (B); (0.38nA, 0.3nA) for

point (C).

FIGURE 3

(A) Cartoon of the neural mass model with two WC nodes studied in Section 3.2.2. Static external inputs are indicated by Eext and Iext and control

inputs by u0,1(t). The nodes are coupled via the excitatory population with a global coupling strength cgl. (B) Six-node system studied in Section 3.3.

point (D) and a state of synchronous oscillation at point (E) (see

Figure 2A).

Note that the state-space diagram in Figure 2A only shows

the bifurcations boundaries of the one-node system. Bifurcation

boundaries change depending on the choice of network and

coupling parameters.

Parameters were chosen such that relevant control problems

could be defined for evaluating the proposed cost functionals. Note,

however, that the presented method can be applied to any choice of

coupling and delay matrices.

2.4 Implementation and numerical
simulations

2.4.1 Open-source implementation
Numerical computations are based on the neurolib

simulation framework (Cakan et al., 2023). neurolib is an

open-source library that contains several models of neural

population dynamics and enables to combine them to network

models of arbitrary size and structure. Beyond that, methods

to compute OC in its standard formulation (see Section 2.1)

are included. In this study, we expand neurolib by an

extension that enables to compute OC signals for oscillation

and synchronization tasks. This extension is openly available

on GitHub at https://github.com/lenasal/neurolib/tree/OC_osc_

sync.

2.4.2 Simulation accuracy
All simulations in this study have a duration of several hundred

time units (dimensionless in the WC model, ms in the mean-

field EIF model). We chose an integration step size dt = 0.1

(WC) or dt = 0.1ms (mean-field EIF) and validated that there

are no qualitative differences if a smaller integration time step

is used.
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2.4.3 Fourier cost in limited-time simulations
When evaluating the Fourier spectrum of a trajectory obtained

in a limited-time simulation, the spectral peaks are the sharper,

the longer the simulation duration. If, however, the simulation

time is relatively short (as in the control tasks considered in this

study), the Fourier spectrum of any oscillation shows broad peaks

(see Supplementary Figure S1). For tasks, in which we want to

switch to a specific oscillatory state (Section 3.2), this leads to a

tolerance against variations in the frequency f̃ compared to the

natural frequency of the target state.

2.4.4 Initialization
As an initial control guess, we use u0 = 0 in most tasks

investigated in Section 3, with two exceptions.

First, in Section 3.1, we control the mean-field EIF model in

its stationary down state. In this state, we encounter numerical

problems when the gradient of the cost functional
∂f
∂Eu is computed.

This is due to the fact that the activity, the excitatory firing

rate rE(t), is not given in terms of an analytical function, but

in terms of a transfer function, for which no analytical closed-

form expression exists (for details on the mathematical model, see

also Supplementary Section 3). In simulations, rE(t) is, therefore,

interpolated using a pre-computed table. In the down state,

gradients almost vanish, preventing an effective OC computation

if the control is not initialized reasonably. Hence, we initialize the

OC algorithm with a sinusoidal initial control u0 which oscillates at

the target frequency f̃ .

Second, in Section 3.2.2, we study a control task where all

network nodes exhibit the exact same time evolution in the

uncontrolled, initial state. When applying the variance cost, both

cost and cost gradient vanish (see Equations 13 and 14), and

the gradient descent cannot be performed. To circumvent this

problem, we initialize the OC algorithm with an initial control that

randomly fluctuates around zero with a small amplitude.

2.4.5 Choice of weights
The numerical values of the weights wF, wcc, or wvar determine

how accuracy and control strength are traded against each other.

On the one hand, when choosing the weight below a certain

threshold value, which is individual for each cost functional and

task, the OC equals zero, Eu∗(t) = 0. Any finite input would

increase the total cost via FE more than it might improve FF,

Fcc, or Fvar. This threshold value is a lower limit to the choice of

weights. On the other hand, when choosing a very large weight,

the algorithm will return very strong control signals, and the

controlled activity will reach its upper limits determined by the

system dynamics. Physically, such results might be difficult to

interpret. Computationally, the numerical integration might fail

when the activity variable is continuously pushed against its upper

bound. Hence, too large weight values must be avoided.

We study two different types of control tasks: First, there are

control tasks that force a system to behave in a way that cannot

be maintained naturally (driving oscillations from a stationary

state, Sections 3.1, and synchronization (desynchronization) of

desynchronized (synchronized) oscillations, Section 3.3). For these

tasks, the weights are chosen after preliminary investigations such

that control signals are reasonably strong. Second, there are control

tasks in which we initiate a switch between two stable states

(Section 3.2). For these tasks, we want to find the minimum-energy

transition. Therefore, we dynamically adjust the weights, starting

with a relatively large value of wF, wcc, or wvar, and decrease the

respective weight every few (hundred) iterations until convergence,

such that low-energy transitions are enforced. For these cases, we

only provide the initial and the final numerical weight value.

2.4.6 Measurement interval and control interval
In our simulations, we evaluate F

sync
F , FoscF , Fcc, or Fvar in the

time interval [t0,T] (“measurement interval”). Similarly, we enable

control only in a limited time interval, which we denote by [tC0 , t
C
1 ]

(“control interval”), i.e., u(t) 6= 0 only for t ∈ [tC0 , t
C
1 ]. Naturally, we

chose t0 ≥ tC0 .

For control tasks that force a system to behave in way that

cannot be maintained without control input (driving oscillations

from a stationary state, Section 3.1, and synchronization

(desynchronization) of desynchronized (synchronized)

oscillations, Section 3.3), we set t0 = tC0 and T = tC1 . For

such tasks, no sustainable, long-lasting effect can be achieved, and

we only consider the interval in which control is active.

For control tasks that initiate a switch between two stable states

(Section 3.2), the algorithm might fail if there is an overlap of

measurement interval and control interval as we might encounter

a (local) optimum at which the control reduces the cost for t ∈

[t0, t
C
1 ] without initiating the intended state switch. On the other

hand, the gradient computation with the adjoint method becomes

less precise if there is no overlap betweenmeasurement interval and

control interval. Preliminary simulations help to determine well-

suited values for tC0 , t
C
1 , t0, and T. We chose a setup with no overlap

between measurement interval and control interval for single-node

systems (Section 3.2.1), and a setup with overlap for multi-node

systems (Section 3.2.2).

2.4.7 Local optima
We use gradient descent to reach a minimum of the cost

functional. Hence, the algorithm is only assured to find a local

minimum in the cost landscape.We find evidence for multiple local

minima (for an example, see Supplementary Section 5), but the

results presented in the following are minimum-cost solutions that

were repeatedly obtained with different initializations and gradient

descent parameters. We will denote the control solutions therefore

as the “OC”. However, we want to emphasize that there is no way

to guarantee that the global minimum was found.

2.4.8 Translational invariance
If a control signal initiates a transition between two stable states,

we expect the success of the transition to be invariant under shifts

in time, since earlier or later control signals would lead to the same

state transition. If the initial state is a stationary state (see Section

3.2.1, up-to-oscillation task), time shifts can be continuous. If the

initial state is an oscillatory state (see Section 3.2.1, oscillation-to-

up-task, and Section 3.2.2), time shifts can only be a multiple of the

oscillation period. By shifting control signals back in time, wemight
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TABLE 2 Computational complexity of cost functional and cost derivative

computation.

F
sync
F ∼ NT F

sync
F ∼ N

dF
sync
F
du

∼ N2
T

dF
sync
F
du

∼ N

FoscF ∼ NT FoscF ∼ N
dFoscF
du

∼ N2
T

dFoscF
du

∼ N

Fcc ∼ NT Fcc ∼ N2 dFcc
du

∼ NT
dFcc
du

∼ N2

Fvar ∼ NT Fvar ∼ N dFvar
du

∼ NT
dFvar
du

∼ N

find solutions with smaller FF, Fcc, or Fvar, since an earlier transition

implies a longer transition time before inaccuracy is penalized,

while the control cost FE remains unchanged. The results presented

for the state switch in the mean-field EIF model (Section 3.2.2) are

obtained by shifting the originally obtained control signal back in

time. A repeated optimization does not change the results.

2.4.9 Computational complexity
Table 2 summarizes the computational complexity for

computing the cost functional and its derivative computation:

• The complexity for computing the synchrony and oscillation

Fourier cost computation scales linearly with the number

NT = T/dt of total integration time steps andwith the number

N of network nodes. The computation of its derivative scales

quadratically with NT and linearly with N.

• The computational complexity for computing the cross-

correlation cost scales linearly with NT and quadratically with

N. The same holds true for its derivative.

• The computational complexity for computing the variance

cost scales linearly with both NT and N. The same holds true

for its derivative.

For simulations of long time series, the Fourier cost is

outperformed in terms of computational costs by the other two cost

functionals. Similarly, for large networks, the cross-correlation cost

is outperformed by the other two cost functionals.

3 Results

3.1 Induction of oscillations

We first apply the Fourier cost defined in Equation 7 to induce

oscillations in a single-node system from a constant stationary (up

or down) state.

Figures 4, 5 show the computed OC and the time series of

the activity variables, E and I or rE and rI , respectively, of the

corresponding controlled system at the two points (A) and (B)

(cf. Figures 2A, B) for the WC and the mean-field EIF models.

The algorithm successfully computes a control input that creates

oscillations with the target frequency in all cases. We observe that

the shapes of the control signals are comparable for points (A)

and (B) within a model but do not transfer across models: For the

WC, the periodic OC signals for both tasks have almost vertical

slopes and for each period, a broad, secondary peaks follow a sharp,

initial peak but in opposite directions, Eudown→osc ≈ −Euup→osc. In

comparison, the mean-field EIF OC signals resemble a more or less

distorted sine curve. These observations hold true also for other

state-space locations within the up- and down-state regimes and

for other target frequencies (results not shown).

3.2 Switch between stable states

In this Section, we study tasks, in which the control initiates a

state switch between coexisting stable states, comparing the effects

of the cost functionals FF, Fcc, and Fvar.

3.2.1 Switch between stationary and oscillatory
states

The mean-field EIF model exhibits a regime in state space,

where a stable state of constant high activity and a stable oscillatory

state coexist (see Figure 2B). We apply the Fourier cost to initiate

a state switch between these stable states at point (C) in the

mean-field EIF state space. For the up-to-oscillations task, we first

measure the frequency fC of the oscillation at point (C) to then

enforce an oscillation at this frequency. For the oscillations-to-up

task, we suppress oscillations at frequency fC by setting wF < 0,

thus penalizing this Fourier mode. We compute the minimum-

energy control, i.e., the control with the smallest possible FE by

varying wF (see Section 2.4).

Figure 6 shows the OC and the corresponding activities of the

excitatory and inhibitory populations for the two control tasks. We

observe that the state switch is successful for both tasks and that the

control signal exhibits a short pulse close to the end of the control

interval. The control input is approximately equally strong for both

tasks (see Figure 6 for numerical values). For the oscillations-to-up

task, FE differs by less than 2% when we vary the oscillation phase

at which control is activated (results not shown).

3.2.2 Switch between in-phase and out-of-phase
oscillation

We consider a symmetric WC two-node network (coupling

scheme sketched in Figure 3A) at point (C) in state space (see

Figure 2A), where a stable IP oscillation coexists with a stable OOP

oscillation. We first apply the OC algorithm using F
sync
F , Fcc, and

Fvar to compute control signals to switch from OOP and IP. We set

the target frequency to f̃ = fIP for the synchronization Fourier cost.

We then use FoscF , Fcc, and Fvar to switch from IP to OOP. We set

the target frequency to f̃ = fOOP for the oscillation Fourier cost,

and chose negative weights wcc,wvar < 0 for cross-correlation and

variance cost to penalize synchrony. We compute the minimum-

energy control, i.e., the control with the smallest possible FE, by

varying wF (see Section 2.4). We find that all cost functionals

produce the same OC in this limit.

Figure 7 shows the results. For the switch from IP to OOP, the

total required energy input FE is less than half as strong as for

the switch from OOP to IP (see Figure 7 for numerical values).

Similarly as in Section 3.2.1, control costs differ only marginally

when varying the oscillation phase at which control is activated

(results not shown).
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FIGURE 4

OC using the Fourier cost to induce oscillations at f̃ = 30Hz from a stationary state in the WC model. The bottom row shows the computed OC, and

the top row shows the resulting time series of the activity variables E and I. The activity of and the control inputs to the excitatory population are

plotted in red, and the activity of the inhibitory population is plotted in blue. The gray-shaded regions (t < 50 and t > 350) indicate the time intervals

during which the control is not active and inaccuracy is not penalized. The energy cost FE is provided in the top-left corner of the control plots. The

plot on the left-hand side relates to point (A), and the plot on the right-hand side relates to point (B) (cf. Figure 2A). The weight is wF = 8 · 104 for both

points.

FIGURE 5

OC using the Fourier cost to induce oscillations at f̃ = 30Hz from a stationary state in the mean-field EIF model. The bottom row shows the

computed OC, and the top row shows the resulting time series of the activity variables rE and rI. The activity of and the control inputs to the

excitatory population are plotted in red, and the activity of the inhibitory population is plotted in blue. The gray-shaded regions (t < 50ms and

t > 350ms) indicate the time intervals during which the control is not active and inaccuracy is not penalized. The energy cost FE is provided in the

top-left corner of the control plots. The plot on the left-hand side relates to point (A), and the plot on the right-hand side relates to point (B) (cf.

Figure 2B). The weight is wF = 0.555 for both points. We initialized the OC computation with an oscillatory control signal for point (A).

3.3 (De-) Synchronization of oscillating
networks

To study how networks can be synchronized or

desynchronized, we consider a six-node WC network

(coupling scheme sketched in Figure 3B), for which we find

a state of asynchronous oscillation at point (D) and a state

of synchronous oscillation at point (E) in state space (see

Figure 2A). We apply F
sync
F , Fcc, and Fvar with w

sync
F ,wcc,wvar > 0

to compute the OC to synchronize (at point (D)). To

desynchronize (at point (E)) the activity of the network, we

set w
sync
F ,wcc,wvar < 0. We evaluate the Fourier spectrum of

the network activity and use its peak frequency as f̃ for the

Fourier cost.

The results are shown in Figure 8. We observe that, while

all three cost functionals succeed to synchronize the network

at point (D), neither the synchronization Fourier cost nor the

variance cost can drive the system into an asynchronous state,

even though numerically, the cost contributions F
sync
F and Fvar

lead to considerably smaller total costs. For the Fourier-controlled

scenario, we analyze the spectrum of the controlled activity and

find that the control slightly increases the frequency. Hence, the

Fourier component of the original target frequency drops almost

to zero. For the variance-controlled scenario, the control shifts the

phases slightly, such that the activity of each node deviates from

the network mean, while increasing the oscillation amplitude, such

that the difference between node activity and mean increases. This

results in a considerable increase in Fvar.
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FIGURE 6

OC to switch between the up state and the oscillatory state in the mean-field EIF model at point (C) (cf. Figure 2B). The bottom row shows the

computed OC, and the top row shows the resulting activity variables rE and rI, when this control is applied. The activity of and control inputs to the

excitatory population are plotted in red, and the activity of the inhibitory population is plotted in blue. The control signals are shifted back in time by

two periods (see Section 2.4), and the original control signal and the corresponding original activity are plotted as a dotted line. The shift improves

the Fourier cost by 0.67% (left) and 99.36% (right). The Fourier cost FF corresponding to the control shifted back in time (solid line) is provided in the

top-left corner of the activity plots. The gray-shaded regions indicate the time intervals during which the control is not active (t < 100ms and

t > 500ms) and inaccuracy is not penalized (t < 600ms). The energy cost FE is provided in the top-right corner of the control plots. The switch from

the up state to the oscillatory state is shown on the left-hand side. Here, we initialize the system in the stationary up state and set the target

frequency to fC. The weight is initialized at wF = 1, 000 and decreased to wF = 0.0429 (cf. Section 2.4). The switch from the oscillatory state to the up

state is shown on the right-hand side. Here, we initialize the system in the oscillatory state and suppress the frequency FC with a negative weight

initialized with wF = −1 and increased to wF = −0.0502 (cf. Section 2.4). For this task, we initially enable control for 400 < t < 500 and set the control

interval as shown after a few iterations. Otherwise, we only find the local OC shown in the Supplementary Section 5.

FIGURE 7

OC switches between in-phase (IP) and out-of-phase (OOP) oscillations in the two-node WC network at point (C) (cf. Figure 2A). We use F
sync
F , Fcc,

and Fvar for OOP → IP and FoscF , Fcc, and Fvar for IP → OOP. For any of the cost functionals, the same OC is obtained in the minimum-energy limit.

The bottom row shows the computed OC, and the top row shows the resulting excitatory activity. Excitatory activity of and control inputs to node 0

(node 1) are plotted in solid red (dotted black). The control signals are shifted back in time by two periods (see Section 2.4). Control is enabled

between 50 and 350 (disabled in the gray-shaded regions in the control plots), Fourier, cross-correlation, or variance costs are evaluated between

200 and 600 (ignored in the gray-shaded region in the activity plots). The switch from OOP to IP is shown on the left-hand side, and the switch from

IP to OOP is shown on the right-hand side. The energy cost FE is provided in the top-left corner of the control plots. For the OOP-to-IP switch, the

weights are initialized as w
sync
F = 4000, wcc = 250, and wvar = 30000 and are dynamically reduced to w

sync
F = 17.01, wcc = 0.8361, and wvar = 12.47.

For the IP-to-OOP switch, the weights are initialized as wosc
F = 2000, wcc = −500, and wvar = −1000 and are dynamically adjusted to wosc

F = 7.284,

wcc = −2.260, and wvar = −3.979.

We compute the temporal mean of the Kuramoto order

parameter (Acebrón et al., 2005) of the network activity to

quantitatively compare the performance of the cost functionals

(equations are provided in the Supplementary Section 6). The

Kuramoto order parameter ranges from 0 (no synchronization)

to 1 (full synchronization). The numerical values are provided in
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TABLE 3 Temporal mean Kuramoto order parameter for the uncontrolled

and controlled network activity for the control tasks shown in Figure 8.

Cost functional Synchronization
task

Desynchronization
task

uncontrolled 0.32 0.81

F
sync
F 0.63 0.73

Fcc 0.99 0.33

Fvar 0.94 0.47

The values were computed for the period during which the control was active.

Table 3. All cost functionals succeed to improve the Kuramoto

order parameter compared to the uncontrolled activity. In

agreement with our observations from the activity plots

(see Figure 8), the Fourier cost performs worst, and the

cross-correlation cost performs best in terms of increasing

(synchronization task) or decreasing (desynchronization task) the

Kuramoto order parameter.

4 Discussion

We introduce novel cost functionals that enable to use OCT

to induce oscillations or synchrony in non-linear dynamical

systems without specifying a reference trajectory. We apply the

cost functionals FF, Fcc, and Fvar, to two models of neural

population dynamics to study different control tasks. We first

enforce oscillations from stationary states using FF (see Section 3.1)

and observe that OC signals drive oscillations at the given target

frequency for all investigated paradigms but that the shapes of the

control signals are not transferable across models. Next, we study

how one can switch between stable states using FF, Fcc, and Fvar
(see Section 3.2). First, we show that applying FF, one obtains OC

signals that switch between a stable up state and a stable oscillatory

state in a single-node mean-field EIF system (see Section 3.2.1).

Second, we show that all three cost functionals can produce control

signals that switch between stable states of IP and OOP oscillations

in a two-node WC network. We observe that all cost functionals

lead to the same OC in the minimum-energy limit. Moreover, we

use the cost functionals FF, Fcc, and Fvar, to (de-) synchronize

larger WC networks (see Section 3.3). We study an asynchronously

oscillating six-node WC network and try to synchronize its activity

using FF, Fcc, and Fvar and obtain effective control signals for all

cost functionals. Finally, we study a synchronously oscillating six-

node WC network and try to desynchronize its activity. Here, only

the cross-correlation cost functional creates a control signal that

effectively desynchronizes the network activity. Both Fourier and

variance costs improve numerically, but do so by either shifting

the oscillation frequency or by increasing the oscillation amplitude.

In summary, we find that the Fourier cost is well suited to drive

oscillations at a certain frequency. For the state-switching tasks,

all three cost functionals produce satisfactory results. The same

holds true for the synchronization tasks in the six-node network.

For the desynchronization task, only the cross-correlation cost

performs well.

Our results prove that the suggested methods enable to

include oscillatory phenomena into the framework of non-linear

OCT beyond (de-) synchronization of coupled phase oscillators.

However, the list of cost functionals provided in this study is not

exhaustive. In particular, we have evaluated further cost functionals

within the framework of the adjoint method and observed inferior

performances for at least one control task. A list of these

discarded cost functionals is given in the Supplementary Section 7.

In addition, we do not present a one-size-fits-all solution but a

toolbox of methods. Depending on the control task, one needs

to chose adequately from this toolbox, and one might have to

make educated guesses for initializations, and on the optimization

schedule (i.e., weight choices and changes, changes of the control

interval or measurement interval, or shifts of the control signals).

We hope that the presented examples help to pick appropriately

from the toolbox and tailor the choice for the respective task.

Future research may evaluate the applicability of our suggested cost

functionals in other optimization schemes.

Physical neural systems are often noisy. This property is not

covered here; however, the adjoint method of OCT can be extended

to enable the computation of OC in noisy systems (see, e.g.,

Chouzouris et al., 2021). In this case, the cost functional is defined

as the expected value,

F → E(F) = lim
M→∞

1

M

M
∑

m=1

F. (18)

In numerical computations, the expected value is replaced by

the mean value over a reasonably large number of realizationsM,

E(F) ≈
1

M

M
∑

m=1

F, M ∈ N,M < ∞. (19)

This affects the computation of the adjoint state and the

gradient. Preliminary studies suggest that reliable results can

be obtained for the presented cost functionals also in noisy

systems. The OC framework available within neurolib (Cakan

et al., 2023) includes modules for OC computations in a

noisy environment.

One apparent limitation of the presented Fourier cost method

is that it requires to define a target oscillation frequency. Otherwise,

the Fourier cost can neither drive oscillations nor synchronize a

system. However, as peaks in Fourier spectra are the broader, the

shorter the simulation duration (see Section 2.4), the requirement

for a very precise determination of a target frequency becomes less

strict. To drive synchronization, this limitation can be overcome by

using other cost functionals.

Furthermore, the presented cross-correlation and variance

costs do only enable phase synchrony but not frequency synchrony

with two or more network nodes oscillating with fixed phase shifts.

The oscillation Fourier cost FoscF is partially able to capture such

cases as it can induce phase-locked oscillations in a network.

The presented methods could improve our understanding

of the internal communication of neural circuits and offer new

approaches to design brain stimulation protocols. Natural selection

led to energy efficiency in neural communication (Quintela-López

et al., 2022), and optimality principles enforced by OCT result in

biologically plausible communication strategies. Hence, theoretical

studies could enable conclusions on, for example, the role of

single populations in controlling oscillatory patterns in the brain.
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FIGURE 8

OC to enforce synchrony (left, point (D)) or asynchrony (right, point (E)) in a six-node WC network. The six colors represent one network node each.

The top row shows the uncontrolled excitatory activity. Row three (five, seven) shows the computed OC, when the Fourier cost (cross-correlation

cost, variance cost) is applied, and row two (four, six) the resulting excitatory activity, if this control is applied. The gray-shaded regions indicate the

time intervals during which control is not active and inaccuracy is not penalized (t < 100 and t > 600). The energy costs FE are provided in the

top-left corners of the control plots. F
sync
F , Fcc, and Fvar are provided in the top-left corner of the activity plots. The weights are w

sync
F = 18600,

wcc = 4711, and wvar = 45000 (left) and w
sync
F = 1000, wcc = 500, and wvar = 2000 (right).

Our framework might also enter research on neurological diseases

in which synchrony and asynchrony play crucial roles (see, e.g.,

Jiruska et al., 2012; Sobayo et al., 2020; Uhlhaas and Singer, 2010;

Nimmrich et al., 2015). OCT might improve therapeutic brain

stimulation, as specific oscillatory brain dynamics can be targeted

optimally, simultaneously reducing unintended side effects.
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