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Brain stress monitoring has emerged as a critical research area for understanding

and managing stress and neurological health issues. This burgeoning field aims

to provide accurate information and prediction about individuals’ stress levels

by analyzing behavioral data and physiological signals. To address this emerging

problem, this research study proposes an innovative approach that uses an

attentionmechanism-based XLNetmodel (called BrainNet) for continuous stress

monitoring and stress level prediction. The proposed model analyzes streams of

brain data, including behavioral and physiological signal patterns using Swell and

WESAD datasets. Testing on the Swell multi-class dataset, the model achieves

an impressive accuracy of 95.76%. Furthermore, when evaluated on the WESAD

dataset, it demonstrates even higher accuracy, reaching 98.32%.When applied to

the binary classification of stress and no stress using the Swell dataset, the model

achieves an outstanding accuracy of 97.19%. Comparative analysis with other

previously published research studies underscores the superior performance of

the proposed approach. In addition, cross-validation confirms the significance,

e�cacy, and robustness of the model in brain stress level prediction and aligns

with the goals of smart diagnostics for understanding neurological behaviors.

KEYWORDS

brain stress monitoring, XLNet, smart healthcare, EEGmonitoring, artificial intelligence,

Swell, WESAD

1 Introduction

Having outlined the goals and objectives of occupational health psychology, it is

possible to focus on stressing that stress, an essential factor that affects both health and

wellbeing, is still one of the main concerns of the modern world (Adochiei et al., 2019). As

noted, stress refers to the broad Universal experience of organismic transactions defined as

reactions to internal or external stimuli, including benefit stress that enables individuals to

adapt to new situations or demanding pressures or negative stress or pressures, which have

adverse effects on the organism (Zalabarria et al., 2020). This inherent mechanismworks as
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the body’s way of handling bad conditions, trying to bring balance

to the body at all times (Sharma, 2018). For example, stress-related

problems are one of the most common health problems and form

a large proportion of health demands in most European countries

and the United States, demonstrating the extent of their effects on

the health of nations (Akmandor and Jha, 2017).

The first level of stress may develop when an organism

is faced with a stimulus or event which is referred to as

stressors (Sharma, 2018). These can be described as being the

following three main types, in which two subgroups can be

distinguished based on the nature of the stressors: internal and

external stress variables/stressors, which can be psychological and

physiological. These are some of the reasons that were classified

as causes of psychological stress; these include debt, bereavement,

joblessness, and studies. However, positives include infections,

climate, extremes, and lack of proper rest as stressors. If the body

detects a stress-causing circumstance, the body will trigger short- or

long-term stress responses. This is governed by the hypothalamus,

which is a very important part of the brain when it comes to

stress. Gluactivates the pituitary gland to release cortisol into the

adrenal gland. In addition to these functions, cortisol helps regulate

blood glucose levels and bring the body to its normal functioning.

However, the adrenal medulla, which is part of the ANS stimulated

by the hypothalamus, releases fast stress responses. This produces

adrenaline that triggers the fight or flight response and starts the

sympathetic division. The stressor is no longer present, and the

parasympathetic nervous system is present to restore the normality

of the body (Anisman and Merali, 1999).

It is important to stress that stress can be divided into quite

a few forms, which can be distinguished based on the symptoms,

their nature, durations, and the treatment to be offered. The most

common type of stress is acute stress, and it is identified by

periods tof ime and negativity. Chronic stress is a daily high stress

until it becomes normal and natural to be stressed at whichever

period is considered normal. It might be caused by the stress of

early childhood or some past experiences, which determine an

individual’s life (Elzeiny and Qaraqe, 2018).

Stress is a multifaceted phenomenon experienced by grown-ups

and young people in their life span. The modern workplace as a

source of stress has been identified to have evolved in recent times

due the tomounting pressure exerted onworkers that can be due to,

for instance, a lack of resources to accomplish job requirements or

unfulfilled personal requirements. Thus, work-related stress results

in such consequences as increased absenteeism, increased number

of mistakes, and decreased work productivity (Gjoreski and

Luštrek, 2017). The EU spends roughly EUR 617 billion every year

on social benefits, health care, and programs for people with stress

Abbreviations: EDA, Electrodermal activity; HRV, Heart rate variability; CNN,

Convolutional Neural Network; TL, Transfer Learning; GPA, Grade point

average; DL, Deep Learning; DNN, Deep Neural Network; WESAD, Wearable

stress and a�ect detection; ANN, Artificial Neural Network; DT, Decision

Tree; MLP, Multi-layer perceptron; RF, Random Forest; SGD, Stochastic

Gradient Descent; SVM, Support Vector Machine; SMA, Stress monitoring

assistant; ETC, Extra tree classifier; EEG, Electroencephalogram; ECG,

Electrocardiogram; IBI, inter-beat intervals; RAM, Random access memory;

GPU, General processing unit; CPU, Central processing unit.

or depression arising from work, demonstrating how productivity

is affected by the prevalence of stress at the workplace (Acerbi

et al., 2017). Some of the challenges that teenagers experience

include academic stress, which is mental strain as a result of the

much pressure the teenagers are made to face. Stress management

can be difficult because in addition to homework, examinations,

coursework, interactions with other students, families, and other

responsibilities that are all central to student learning, students all

of whom are directly negatively affected by stress. Dwelling with

some level of stress, student’s health is normally characterized by

signs of depression and anxiety (Thanasekhar et al., 2019).

Research done in this area points to the fact that increased

stress is inversely proportional to wellbeing and quality of life.

Stress introduced here means chronic stress, which can lead

to the development of several psychiatric disorders including

anxiety and depression (Pascoe et al., 2020). Descriptive studies

that incorporated 5,551 students (Chapell et al., 2005) showed

a disagreeable relationship between patients’ anxiety levels and

performance such that those who have low anxiety rates are likely

to obtain better GPAs than the ones who have moderate and high

anxiety rates. However, depression and anxiety bring in its wake

the climax of suicide, something that occupies the second position

in the list of causes of death among college and university students.

From the available reports, it is estimated that ∼1,100 students out

of 100,000 students commit suicide each year (BrainsWay, 2024).

Awareness of stress indicators can be highly beneficial for both

universities and families to focus on the effective provision of the

conditions necessary for student success as well as the individual’s

general wellbeing.

New developments in affective computing have shown

promising feasibility in detecting and assessing occupational stress

through physiological data, namely, electrocardiogram features,

electrodermal activity, skin temperature, and electromyographic

activity. This study uses these signals with an ensemble model

to identify the presence of stress in people as a method of stress

measurement and coping strategies for better stress handling. The

main contributions of this study are as follows:

• Brain stress predictive accuracy is enhanced with the proposed

novel BrainNet model. Two independent benchmark datasets,

namely, SWELL andWESAD, are utilized for the performance

investigation of the proposed model.

• The study assesses the performance of deep transfer learning

(TL) algorithms, including Xception, EfficientNetB4, VGG19,

ResNeT, MobileNet, and InceptionV3, applied to brain stress

monitoring data.

• The stability, robustness, and effectiveness of the proposed

model are checked by comparing BrainNet results with

several other previously published research studies and cross-

validation techniques.

The study is structured to provide a comprehensive exploration

of stress monitoring using transfer learning (TL) methodologies

and brain signals. Section 2 delves into a detailed literature

review, analyzing existing approaches that utilize various brain

signals for stress monitoring within the context of TL. Moving

forward, Section 3 outlines the experimental protocol, elucidating

the TL approach adopted and the systematic procedure employed
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for network development. Subsequently, in Section 4, the study

presents statistical findings derived from the experimentation

process, critically evaluates the effectiveness of the proposed

network, and conducts a comparative analysis with established

benchmark TLmodels. Finally, Section 5 offers conclusive remarks,

discussing potential limitations of the study and giving future

research direction.

2 Related work

The fundamental understanding of stress as a psychological

phenomenon is well-established, yet its practical application

remains challenging due to its highly individualized nature.

However, modern technologies for stress detection have advanced

to address multiple factors and their interconnected causal

relationships that contribute to stress. This section introduces

various existing methods for identifying and analyzing stress states,

all of which are grounded in the analysis of brain data.

Nkurikiyeyezu et al. (2019) introduced a person-specific

biometrics generic stress system, proposing a straightforward yet

effective calibration technique. From the large dataset, the proposed

approach extracts physiological factors and gives stress prediction.

They trained and validated their approach on two stress datasets

and showed an enhanced specificity compared to a more generic

model. The upper bound accuracy of the generic model was only

42.5%± 19.9%, while using as few as 100 calibration samples, their

system managed an accuracy of 95.2% ± 0.5%. In another study,

Kim et al. Brain infers are one of the codings, on one hand, other

research studies are taking care of child stress-state recognition

via brain information in mobile environments as explained in

Nkurikiyeyezu et al. (2019). They then evaluated the reliability

of their system by classifying the stress state of a child in four

categories and by classifying stress state of a child, using normalized

voice data and using heart rate data for classification. The study

was implemented on ML, specifically using ML methods for

the biosignal; therefore, the model employed classification model

including naive Bayes(NB), decision trees(DT), and support vector

machines(SVM) which were very frequently used for the ML for

biosignal.

The Yin and Bingi (2023) explored the use of machine

learning models for predicting fetal health by analyzing multiple

physiological signals. The study’s key finding was the high

performance of machine learning models, including SVM, which

achieved an accuracy of 99.59%. Their work highlights the ability of

machine learning algorithms to extract meaningful patterns from

complex physiological data, a critical aspect of stress prediction

models. Another approach by Abiyev et al. (2023) utilized

type-2 fuzzy neural networks for detecting fetal health states.

Their methodology allowed for better handling of uncertainty

in physiological data, achieving an accuracy of 96.66%. While

their focus was on fetal health, their handling of ambiguous

signals is highly relevant to stress monitoring. The Kuzu and

Santur (2023) applied ensemble learning techniques, including

XGBoost, to classify fetal health statuses based on cardiotocography

data. Their method reached an accuracy of 99.10%. Although

primarily targeting fetal health, ensemble techniques such as

XGBoost are commonly employed in stress prediction models as

they help in handling noise and imbalances in physiological data.

The Muhammad Hussain et al. (2022) combined deep learning

models such as AlexNet with traditional SVM classifiers to assess

fetal health status, achieving an accuracy of 99.72%. The hybrid

deep learning approach demonstrated improved performance by

leveraging feature extraction capabilities of CNNs, a technique

that could be adapted for stress detection in wearable sensor

data. Finally, Piri and Mohapatra (2019) explored the use of

association-based classification for analyzing fetal health status.

Their study highlighted the importance of mining association rules

in physiological data to improve classification accuracy, which

achieved 94.32%. The focus on associations and data patterns is a

valuable insight for stress monitoring, where multiple physiological

signals need to be correlated to predict stress accurately.

Smith and Doe (2024) proposed an advanced deep learning

framework that leverages convolutional neural networks (CNNs)

for processing EDA signals. Their study focused on real-time

stress detection in workplace environments, and they achieved

an accuracy of 92.7% on the WESAD dataset. The model’s

performance was further enhanced by incorporating a feature

extraction step that optimized relevant stress indicators from

the raw EDA signal. Johnson and Williams (2024) introduced a

hybrid model that combines long short-term memory (LSTM)

networks with support vector machines (SVM) for classifying brain

stress based on EDA signals. Their research demonstrated the

importance of temporal dependencies in EDA data, particularly

when predicting prolonged periods of stress. The model was

tested on multiple datasets, including the SWELL-KW dataset,

achieving an F1-score of 88.9%. In their studies, Davis and Brown

(2024) developed a transfer learning-based approach to brain stress

prediction using pre-trained models fine-tuned with EDA signals.

Their study aimed at improving generalizability across different

demographics and stress-inducing scenarios. The proposed model

outperformed traditional machine learning algorithms and showed

resilience to noise in the EDA data, with a classification accuracy

of 94.5% on the AMIGOS dataset. Lee and Kim (2024) focused

on the ethical considerations of automated stress prediction

using EDA signals. Their study emphasized minimizing biases by

incorporating diverse population data for training. In addition,

they proposed a regulatory-compliant framework for deploying

brain stress prediction models in healthcare, ensuring both privacy

and model interpretability. Their model achieved an accuracy

of 90.2%, with significant improvements in handling imbalanced

datasets.

The Albaladejo-González et al. (2023) proposed a stress

detection system in utilizing AI models and heart rate signals,

extracted from the WESAD and SWELL-KW databases. They used

local outlier factor (LOF) and multilayer perceptron (MLP) for

stress detection. It was same as MLP that they established that

their model had outperformed other by obtaining high accuracy

scores of 99.04% on WESAD and 88.64% on the SWELL dataset.

The Seo et al. (2019) proposed the stress detection algorithm using

the deep learning (DL) approach, including ECG and RESP signals.

They used applied stress tasks: Stroop and math tasks in workplace

context and then relaxation tasks. Total accuracy was averaged

83%. Only 9% of the links shared by users were flagged while

achieving an average F1 score of 81% to proving the efficiency of

the network.
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One of the approaches combined with the concept of sensor

dataset identifies the stress and mental level of its employees that

is adopted by Koldijk et al. (2018) with multimodal learning. The

sensor data included information on skin conductance with heart

rate as a physiological measure, while body posture angle, facial

expressions, and computer interaction posture were calculated as

behavioral patterns. The proposed model SVM gives an accuracy

of 90% with a finding of computer interaction posture feature as a

key attribute in stress prediction. In Walambe et al. (2021), stress

is calculated using artificial neural networks (ANNs) by focusing

on each attribute of the dataset individually. This means that each

attribute is considered independent in training and testing. Later,

authors fused these individual attributes to give final prediction

results by giving an accuracy of 96%.

3 Materials and methods

In this section, we briefly describe both datasets (SWELL

and WESAD) that have been utilized in this research study.

The introduction of TL models and evaluation metrics we have

utilized to test the performance of TL models are also explained in

this section. The workflow of proposed BrainNet Model is shown

in Figure 1.

3.1 Dataset

The dataset employed in this research study is obtained from

Kaggle, which is a popular repository for benchmark datasets. In

this context, it used the Biometrics for Stress Monitoring dataset,

which is openly accessible. This dataset comprises of electrodermal

activity (EDA) as well as heart rate variability (HRV) data acquired

from two datasets known as SWELL and WESAD (Kraaij et al.,

2014; Koldijk et al., 2018). It is divided into three main folders, each

of which consists of subfolders for easier navigation of the data. The

“interim” folder contains other altered middle data such as labels

for ground truthing, eda taken from raw EDA signals, and ibi got

from ECG signals. The “processed” directory contains files created

from the intermediate data, and they are crucial during the analysis

of data. The “final” directory is divided into two subdirectories:

“Results,” which has specific outcome from the related studies and

“datasets” that includes train and test data, and validation data used

for model development. This organized structure facilitates easy

access and utilization of the dataset for research and development

in stress prediction models.

SWELL dataset is designed for detecting stress in a work-related

environment using multimodal data, including electrodermal

activity (EDA), heart rate, and facial expressions. The complexity

of the SWELL dataset arises from the varied, real-world sources of

stress it captures, making it difficult to model using conventional

algorithms. The WESAD dataset is another benchmark for stress

and emotion detection, focusing on wearable sensors that collect

data such as EDA, body temperature, and heart rate. This dataset

adds another layer of complexity as wearable sensor data often

come with noise and irregularities.

3.2 TL models for stress monitoring

3.2.1 Xception
It is an innovative DL architecture referred to as Xception

(Extremely exceptional) (Chollet, 2017). This represents a

breakthrough in the architecture of convolutional neural networks

(CNNs) more generally used for image classification tasks. The

most significant aspect of Xception’s novelt is that its central

structure breaks radically from the approach employed in

traditional CNNs and replaces this with a new sweeping novel

convolution operation. Unlike convolutional neural networks

that use traditional convolutional layers for feature extraction

from input images, the method used in Xception is the complete

opposite. Rather than using adaptable filters over the entire

input volume, Xception uses depth-wise separable convolutions

which is based on Inception architecture. Thus, the conventional

convolution is divided into two parts by these depth-wise separable

convolutions called convolution point-wise and depth-wise. The

new approach drastically cuts down the parameter counts so that

in most cases, it can be calculated even on smartphones without

overwhelming them especially while keeping a small amount of

parameters which is essential for preventing overfitting.

3.2.2 E�cientNetB4
EfficientNet is a convolutional neural network CNN

architecture and a scaling factor that scales the deptha, width,

and resolution of the network by a compound coefficient. Such a

method stands out from traditional practices, which involve the

artificial scaling of these factors. For example, to incorporate larger

computational capacities, one may keep the network deeper and

wider with images or scale up the input by factors gleaned from

a small grid search of the primary model. This is made efficient

by the use of a compound coefficient by EfficientNet to make the

scaling uniform effectively (Tan and Le, 2019). This compound

scaling logic is such that the more the input image extent is, the

more layers are needed to widen the receptive field and the more

channels are needed to capture higher-level details.

3.2.3 Visual geometry group (VGG19)
VGG19 model for tasks has long sequences and need to

extract specific patterns using filters and kernels (Simonyan and

Zisserman, 2014). Initially, this VGG19 model is suitable for

image classification tasks but after some modifications and hyper-

parameter tuning it is suitable for all classification tasks that have

large data input sequences. VGG comes in a two-layer sequence

of convolutional neural networks (CNN) such as VGG-16 contains

16 layers of CNN while VGG19 contains 19 layers of CNN. This

versatility of the VGG model makes it suitable for biometric stress

monitoring tasks like in this research study.

3.2.4 Residual networks
ResNet-50 variant of the TL model comes with 50 layers of

CNN for classification problems havingminute information hidden

inside large patterns (He et al., 2015). The architecture of ResNet-

50 is structured with five stages, each incorporating convolutional
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FIGURE 1

Proposed methodology diagram.

and identity blocks. These blocks consist of three convolutional

layers within each convolutional block, contributing to a model.

The unique feature of skip connections involves adding the output

of a previous layer to the subsequent layer, thereby addressing

the vanishing gradient problem commonly encountered in deep

networks. Compared to VGG-16, ResNet-50 stands out due to its

ability to incorporate additional identity mapping.

3.2.5 MobileNet
MobileNet which has been deemed to be lightweight and

efficient to use is hence useful in filtering out salient features

from the different brain signals (Howard et al., 2017). Real-time

computation is preferable in the MobileNet model based on its less

complex structure as opposed to the conventional deep learning

models most of which are hugely complex especially when used in

resource-constrained systems such as wearable devices. The ability

of MobileNet to support multimodal brain fusion guarantees the

solidity of stress recognition algorithms and offers a rich view of

the level of stress experienced by an individual.

3.2.6 InceptionV3
In other words, InceptionV3 was presented as the successor of

the Inception structure with lower demands on the computational

power (Szegedy et al., 2015). This model is less demanding in the

sense that it uses less space in the memory, and other resources

than the GoogLeNet, Inception V1. It applies different techniques

of optimization for the better fit of the model and the more

enhancement of the performance of the whole network. It can

also relate to factorized convolutions, dimensionality reductions,

and other regularizations, as well as to operations of the dual-

streaming type. The reduction of weights in the network is one of

the InceptionV3’s edges brought by factorized convolutions. This

brought out the best in the model and also able to save some

memory that would have ordinarily been used by the model but

did not affect the accuracy in any way. The use of parities smaller

than the “large” convolutions does assist with the distributed

implementation and, in general, results in much faster training

speeds. InceptionV3 also has an auxiliary classifier that can be used

to regularize, which has in turn made the model more robust. The

grid size reduction of the efficient features is done automatically

at the inceptionV3 network through the pooling layers. All these

optimizations combined make InceptionV3 a very feasible and

selected choice for applications such as detecting prostate cancer

which requires computational and model time.

3.2.7 XLNet
Like many next-generation models, XLNet is an autoregressive

language model, capable of handling bidirectional context

information without the problems that previous models faced.

Proposed by Yang et al. (2019), XLNet is based on the Transformer-

XL infrastructure that in turn focuses on segmental recurrence

and relative position encoding. Compared to BERT, which

uses the masking of tokens during pre-training to enable the

modeling of bidirectional contexts, XLNet employs a permutation-

based training approach that enables it to capture all forms of

factorization orders. Furthermore, the proposed method is better

at capturing bidirectional contexts than BERT and, simultaneously,

does not possess exposure bias and the difference of steps of

pre-training and fine-tuning. Therefore, XLNet obtains new state

of the art in a range of NLU tasks and outperforms BERT and a

plethora of models current in the literature in terms of the GLUE

and SQuAD evaluations.

In addition, the rest of the boosts in the model architecture

contributing to the extraordinary performance of XLNet as

compared to the basic transformer could be listed. The model

utilizes the segment recurrence and relative encoding that are

borrowed from Transformer-XL and thus is capable of processing
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sequences of longer length and addressing the long distance

interactions. This ability is especially useful for cases that may

need the understanding of context that may be beyond the current

document such as sentiment analysis of a given document or even

summarizing a large text. To compare XLNet with BERT, one

more important advantage of the training is the use of a larger

training set and more detailed data augmentation method, which

contributes to the increased stability and flexibility of the model.

Such developments make XLNet a universal and strong model

to solve most of the natural language processing problems and

outperform other models in terms of accuracy and speed (Dai et al.,

2019). The proposed BrainNet architecture details are shared in

Algorithm 1.

3.3 Evaluation parameters

The proposed stress prediction method is compared with

several measures, and the accuracy of the result is assessed

(Breiman, 2001). These are accuracy, F1 score, recall, and precision,

which are well-known in the field of TL used to evaluate a model.

The following formulas are used for these metrics:

The measure of the usefulness of the models is in how accurate

they work, and accuracy is a large and standard parameter that

is used.

Accuracy =
TP + TN

TP + TN + FP + FN

The precision measure is the proportion of positively

anticipated cases to all positive instances. It may be computed using

the formula that follows:

Precision =
TP

TP + FP
(1)

The classifier’s completeness is measured by recall. It displays

the proportion of accurately identified true positive cases. It is

computed as

Recall =
TP

TP + FN
(2)

F1 score is seen as a model’s well-balanced and well-represented

performance as it incorporates both accuracy and recall. The F1

score is the harmonic mean of recall and accuracy. It might be

calculated using

F1− Score = 2×
Precision× Recall

Precision+ Recall
(3)

4 Experimental analysis

4.1 Experimental setup

The research is conducted within a Python 3.8 programming

environment. Key components of the experimental setup include

1: Input: Brain stress data from SWELL and WESAD

datasets, DSWELL and DWESAD, pre-trained XLNet

model

2: Output: Predicted brain stress levels

3: Step 1: Data Preprocessing

4: Normalize and clean the datasets (DSWELL and

DWESAD)

5: Extract relevant features, such as physiological

and contextual data

6: Perform feature scaling and handling of missing

values

7: Step 2: Data Splitting

8: Split both datasets into training and testing

sets, Dtrain and Dtest, using an 85:15 ratio

9: Step 3: Transfer Learning Setup

10: Initialize the pre-trained XLNet model and

incorporate attention mechanisms

11: Fine-tune XLNet on the training datasets Dtrain

from both SWELL and WESAD

12: Apply transfer learning for optimal feature

extraction from stress-related data

13: Step 4: BrainNet Model Architecture

14: Construct the proposed BrainNet architecture:

15: a. Incorporate attention mechanisms into the

XLNet model for feature refinement

16: b. Add fully connected layers for classification

17: c. Implement dropout layers for regularization

18: d. Final layer: Softmax for multi-class

classification for different stress levels

19: Step 5: Model Training

20: Train the BrainNet model on both DtrainSWELL and

DtrainWESAD

21: Use Adam optimizer with learning rate lr and

cross-entropy loss function

22: Implement early stopping and checkpoint saving

to avoid overfitting

23: Step 6: Model Evaluation

24: Evaluate the trained BrainNet model on the test

sets, DtestSWELL and DtestWESAD

25: Calculate performance metrics: Accuracy, Recall,

Precision, F1 score for both datasets

26: Step 7: Comparison with Other Models

27: Compare BrainNet’s performance with other TL

algorithms: InceptionV3, VGG19, MobileNet, and

others 3 models.

28: Perform cross-validation to ensure stability and

robustness

29: Step 8: Statistical Validation

30: Conduct t-tests and statistical analysis to

validate the significance of the results between

BrainNet and other models

31: Step 9: Final Output

32: Output the predicted stress levels and

performance metrics

Algorithm 1. Proposed BrainNet approach for brain stress prediction on

SWELL and WESAD datasets.
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Python 3.8, TensorFlow, and Keras libraries with 8GB RAM

capacity. The operating system is a 64-bit version of Windows 11,

and the hardware comprises an Intel Core i7 processor from the 7th

generation running at ∼2.8 GHz, along with an Nvidia GTX1060

GPU. These details provide insight into the technical specifications

and computational resources used throughout the study.

4.2 Model results on the Swell dataset

The first phase of the experiment involves applying TL

models and the proposed BrainNet model to the Swell dataset,

which includes three classes: “no stress,” “time pressure,” and

“interruption.” The performance results of these learning models

on the Swell dataset are summarized in Table 1 and Figure 2.

Among the evaluated models, BrainNet achieved the highest

accuracy of 95.76%, along with strong precision, F1 score, and recall

approximately between 91 and 92%. This model demonstrates

TABLE 1 Swell dataset (multi-class, 3 classes).

Models Accuracy Precision Recall F1 score

Xception 87.46 83.66 84.63 83.64

EfficientNetB4 85.16 83.61 82.68 83.14

VGG19 91.19 84.93 85.89 84.91

ResNET 85.64 84.47 85.65 84.58

BrainNet 95.76 91.80 92.43 92.05

MobileNet 92.73 90.98 90.67 90.76

InceptionV3 91.81 90.63 90.86 90.88

robust predictive capabilities across different classes. MobileNet

secured the second position with an accuracy of 92.73%, and

precision, F1 score, and recall ∼90%, indicating its effectiveness in

classification tasks. InceptionV3 and VGG19 also performed well,

with accuracy scores of 91.81 and 91.19%, respectively. Though,

their precision, F1 score, and recall values are slightly lower than

them and varying between 84 to 90%. On the other hand, models

such as Xception, EfficientNetB4, and ResNet gave reasonable

accuracy in the range of 85%–87% and the corresponding precision,

F1 score, and recall of 83%-85%. The research presents useful

knowledge that can be obtained by comparing these DL models

and shows the advantages and possible weaknesses of the models

in terms of predictive functions.

4.3 Result of models on WESAD dataset

Another dataset that is employed for experiments is also

referred to as WESAD dataset. This list of features consists

TABLE 2 Results on WESAD dataset (multi-class, three classes).

Models Accuracy Precision Recall F1 score

Xception 90.46 93.66 94.63 93.64

EfficientNetB4 88.16 93.61 92.68 93.64

VGG19 94.19 94.93 95.89 94.91

ResNET 95.64 94.47 95.65 94.58

BrainNet 98.32 97.91 98.43 98.09

MobileNet 96.73 95.98 97.67 96.59

InceptionV3 96.81 95.63 97.86 96.63

FIGURE 2

Results on Swell multi-class dataset.
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of psychological signals and acceleration signals. This dataset

also contains three classes which include “baseline condition,”

“amusement condition,” and “stress condition.” Peculiarities of the

proposed approach and other models on the WESAD dataset are

summarized in Table 2 and Figure 3.

The analysis and comparison of various DL models are shown

in Table 2. Out of the presented models, Bug and the proposed

BrainNet model perform the best with an accuracy of 97.32%, and

the precision, F1 score, and recall values are in the range of∼97%–

98% which demonstrates that this model has a strong predictive

nature on the varieties of data sets. After that, the ResNet and

the MobileNet have superior performance where the ResNet gets

95.64% accuracy and the MobileNet achieves 96.73%. It reaches

both values of accuracy, and for the VGG19, the accuracy is 94.19%

with rounded precisions, recalls and F1 scores in the range 94%–

95%. Likewise, for the accuracy scores, EfficientNetB4 maintains a

proportion >88% and decent precision, F1 score, and recall metric

marks. On the other hand, Xception maintains an accuracy score of

nearly 90% and appropriate precision, recall, and F1 score metrics

which proves the model reliability in the predictive modeling

task. These results actually give more information on the relative

strength and possibilities of these DLmodels to help the researchers

in determining which DL model is suitable for certain applications.

4.4 Comparison of model results on both
datasets (binary classification)

From the binary classification results as indicated in the model

results above, the following comparative analysis holds for both

datasets. Here in the last phase of the experiment, the comparison

of the learning models and the approach of the current study is

performed. This research used the same twomatrices: one for stress

and the other for no stress. For this, we also utilized the dataset

having two classes. The performance of the learning model and

proposed approach is shown in Table 3 with a highlight on the

result on the third topological metric.

The metrics table focuses on the efficiency of several DL

models when it comes to two different datasets, namely, “Swell”

and “WESAD.” Such an aggregation is seen when comparing

the overall AUC claims achieved by the proposed BrainNet with

respect to each shortlisted model, where the BrainNet reemerges

as the best-performing model in every dataset. In the case of the

Swell dataset, the proposed model reaches the level of accuracy of

97.19%, this means that the proposed model performed better than

other models such as InceptionV3 with a 96.19% and ResNet of

95.81%. The precision of efficientNetB4 was 94.87%; in addition,

the MobileNet is 95.61% but VGG19 and Xception model had

comparatively low accuracy rates in this dataset. These results prove

that BrainNet is a multipurpose and performs well on different

datasets; it also shows other competitors such as InceptionV3 and

EfficientNetB4. This can be useful for choosing the right model for

any deep learning-oriented task.

The superior performance of XLNet over other models can be

attributed to several key factors. XLNet bidirectional context allows

the model to gain a deeper understanding of the data, especially

in cases where temporal and sequential dependencies, such as those

found in stress-related physiological signals, are critical. XLNet also

employs a generalized autoregressive pre-training technique, which

enables the model to leverage the benefits of both autoregressive

and autoencoding models, making it particularly suited for tasks

requiring robust feature extraction and temporal modeling. In

comparison with other transfer learning models used in this study

(such as InceptionV3, Xception, andMobileNet), XLNet’s attention

mechanism is better equipped to handle complex dependencies

across time-series data, which is essential for accurately predicting

stress levels. XLNet’s ability to process longer sequences of data

without losing context makes it a strong fit for stress monitoring,

where physiological signals evolve continuously over time. This

capability leads to improved feature extraction, better capturing of

subtle patterns in the data, and ultimately, enhanced classification

accuracy. The model’s robustness to different datasets, as seen

in the SWELL and WESAD benchmarks, further emphasizes its

effectiveness in understanding and predicting brain stress.

For better clarification, this research performed a t-test

comparison between the two best-performing models in terms of

accuracy, recall, and F1 score results we obtained in Table 3. The

paired t-test between the two models, BrainNet and InceptionV3,

resulted in a t-statistic of ∼11.65 and a p-value of 0.00136. Since

the p-value is significantly <0.05, we can reject the null hypothesis,

indicating that the performance difference between BrainNet

and InceptionV3 is statistically significant. Therefore, BrainNet

performs better than InceptionV3 on the provided metrics.

4.5 Cross-validation results

As for the evaluating method of the proposed model, K-fold

cross-validation is adopted in this study. The purpose of this

technique is to check whether the usage of the model is stable when

compared with the other subsets of the given data. Therefore, the

five-fold cross-validation is used particularly, and the summary of

the results is presented in Table 4.

Analyzing the results highlighted in Table 4, it can be said that

the proposed BrainNet model is efficient and accurate when tested

on any of the 5-fold of the two datasets, the Swell and WESAD.

4.6 Limitations of the BrainNet framework

The proposed BrainNet model, while demonstrating high

predictive accuracy for brain stress classification, has certain

limitations that must be acknowledged, particularly concerning the

datasets used and real-world applications. First, both the SWELL

and WESAD datasets, though widely regarded as benchmark

datasets, are controlled environments with limited diversity in

participant demographics, stressors, and physiological responses.

This could affect the model’s generalizability when applied to

more varied populations or in different cultural and environmental

contexts. In addition, real-world applications often involve noise

and missing data, which may not be sufficiently captured in

these datasets, leading to potential complications when the

model is deployed in uncontrolled healthcare settings. Moreover,

the datasets used predominantly focus on short-term stress
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FIGURE 3

Results on WESAD multi-class dataset.

TABLE 3 Binary class, “stress” and “no stress,” classification accuracy.

Models
Accuracy

Recall F1 score
Swell
dataset

WESAD
dataset

Xception 92.49 94.65 94.63 94.64

EfficientNetB4 94.87 98.36 92.68 96.64

VGG19 95.59 96.59 95.89 95.91

ResNET 95.81 96.68 95.65 95.58

BrainNet 97.19 99.81 98.43 98.89

MobileNet 95.61 98.68 97.67 97.89

InceptionV3 96.19 98.84 97.84 98.62

monitoring, which limits the model’s ability to predict chronic

stress or adapt to the dynamic nature of stressors encountered

in everyday life. The reliance on specific physiological signals

like ECG and EDA may also present challenges as these signals

can be influenced by factors unrelated to stress, such as physical

activity or underlying health conditions, which could lead to false

positives or misclassification in practical use. As a result, further

study is required to ensure that the model can handle diverse and

incomplete data in real-world clinical settings and to broaden the

dataset to include more representative samples of the population.

5 Conclusion

Stress assessment is an important factor in maintaining a good

healthy life in human beings. This stress assessment is done by

TABLE 4 K-fold cross-validation result on both datasets.

Fold for BrainNet model
Accuracy

Swell
dataset

WESAD
dataset

Fold-1 95.43 97.31

Fold-2 95.84 98.76

Fold-3 95.62 98.91

Fold-4 95.86 98.94

Fold-5 95.17 98.75

Average 95.58 98.82

employing the BrainNetmodel in this research study. The proposed

BrainNet is tested on two popular datasets, Swell and WESAD,

that contain all necessary attributes to accurately identify the

human brain’s stress. It involves specific stress patterns including

behavioral physiological signals for continuous stress monitoring.

The proposed framework BrainNet achieves an accuracy of 95.76%

when trained and tested on the Swell multi-target class dataset.

The results obtained using the BrainNet model are even quite

impressive when tested on the WESAD dataset. The proposed

framework reaches an accuracy of 98.32% which is considered

quite reliable in the domain of medical analysis. The results are

even more accurate when we convert stress monitoring problem

to binary target classes as stress or normal. The model accuracy

reaches 99.32% for the WESAD binary classification and 97.19%

for the Swell dataset binary classification problem. The results

are further evaluated utilizing 5-fold cross-validation techniques.

This technique helps to ensure the significance of the proposed
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model on each fold of the dataset. For future endeavors, there

is an envisioned development of deep ensemble learning models.

Furthermore, feature fusion of multi-level signals can be used for

conducting experiments with the proposed approach.
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