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Introduction: Adolescence is a fundamental period of transformation,

encompassing extensive physical, psychological, and behavioral changes.

E�ective health risk assessment during this stage is crucial for timely

intervention, yet traditional methodologies often fail to accurately predict

mental and behavioral health risks due to the intricacy of neural dynamics and

the scarcity of quality-annotated fMRI datasets.

Methods: This study introduces an innovative deep learning-based framework

for health risk assessment in adolescents by employing a combination of a

two-dimensional convolutional autoencoder (2DCNN-AE) with multi-sequence

learning and multi-scale asynchronous correlation information extraction

techniques. This approach facilitates the intricate analysis of spatial and temporal

features within fMRI data, aiming to enhance the accuracy of the risk assessment

process.

Results: Upon examination using the Adolescent Risk Behavior (AHRB) dataset,

which includes fMRI scans from 174 individuals aged 17–22, the proposed

methodology exhibited a significant improvement over conventional models. It

attained a precision of 83.116%, a recall of 84.784%, and an F1-score of 83.942%,

surpassing standard benchmarks in most pertinent evaluative measures.

Discussion: The results underscore the superior performance of the deep

learning-based approach in understanding and predicting health-related risks

in adolescents. It underscores the value of this methodology in advancing

the precision of health risk assessments, o�ering an enhanced tool for early

detection and potential intervention strategies in this sensitive developmental

stage.

KEYWORDS

adolescence, health risk assessment, functional magnetic resonance imaging, deep
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1 Introduction

Adolescence is a critical period of individual development, during which significant

physiological, psychological, and social changes occur, profoundly impacting long-term

health outcomes (Su et al., 2020; Tate et al., 2020). However, adolescents face increasing

health risks, including mental health issues such as depression and anxiety, behavioral

problems like substance abuse and violent tendencies, as well as other health-related

behaviors such as eating disorders and lack of physical activity (Bozzini et al., 2020;

Zink et al., 2020; Scardera et al., 2020). Early identification and intervention of these

risks are crucial for safeguarding the future health of adolescents. In recent years, the
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development of functional magnetic resonance imaging (fMRI)

technology has provided powerful tools for studying the neural

changes in adolescents and their relationship with health

risks (Baranger et al., 2021; Lee et al., 2023; Sripada et al., 2020).

However, acquiring and annotating high-quality fMRI data is often

challenging due to the high costs and technical expertise required,

limiting its use in large-scale population studies. Moreover, the rise

of deep learning and machine learning technologies has further

advanced health risk assessment research based on fMRI data.

By combining these technologies, researchers can more accurately

analyze brain function data in adolescents, predict their health

risks, and provide valuable support for clinical decision-making.

To address the challenges of limited fMRI data, autoencoders have

been introduced to reconstruct and reduce the dimensionality of

fMRI data, thereby reducing the cost and improving the efficiency

of model building.

Functional magnetic resonance imaging (fMRI) is widely

used in neuroscience research as a non-invasive imaging

technique that captures brain activity by detecting blood oxygen

level-dependent (BOLD) signals (Lauharatanahirun et al.,

2023; Agarwal et al., 2023). This allows researchers to study

the activity patterns of different brain regions under specific

tasks or psychological states, revealing the neural mechanisms

associated with health risks. However, the application of fMRI

technology faces several challenges. First, the high cost of

acquiring and processing fMRI data limits its use in large-scale

population studies. Second, fMRI is sensitive to noise and

individual differences, requiring careful interpretation of the

data, often necessitating additional data sources and expert

judgment (Viessmann and Polimeni, 2021; Bollmann and Barth,

2021). Additionally, the scanning process may cause discomfort for

some participants, particularly adolescents, potentially impacting

data reliability.

To address these issues, researchers have begun applying deep

learning and machine learning models to fMRI data analysis.

CNNs can automatically extract complex spatial features from

fMRI images, improving the efficiency and accuracy of feature

extraction without relying on traditional manual feature selection

methods (Yin et al., 2022; Lin et al., 2022). Autoencoders, on

the other hand, achieve dimensionality reduction and denoising

through unsupervised learning, reducing redundant information,

and enhancing model robustness (Kim et al., 2021; Qiang et al.,

2021). Despite the significant advantages thesemodels offer in fMRI

data analysis, they still face certain limitations. Firstly, deep learning

models typically require large amounts of labeled data for training,

and the high cost of acquiring and labeling fMRI data limits the

size of the training datasets. Secondly, the “black box” nature of

deep learning models makes them difficult to interpret, which

is particularly important in medical applications (Sheu, 2020).

Additionally, issues such as overfitting and high computational

Abbreviations: AHRB, Adolescent Health Risk Behavior; fMRI, Functional

Magnetic Resonance Imaging; BOLD, BloodOxygen Level-Dependent; CNN,

Convolutional Neural Network; LSTM, Long Short-Term Memory; 2DCNN-

AE, Two-Dimensional Convolutional Autoencoder; MID, Monetary Incentive

Delay.

complexity may limit the performance of these models in practical

applications.

Despite the potential demonstrated by the integration of

fMRI technology with deep learning models in health risk

assessment, there are still several challenges in practical application.

Firstly, developing efficient and accurate models with limited

data remains a pressing issue (Allen et al., 2022). Secondly,

improving the interpretability of the models is crucial for enabling

clinicians to understand and trust the predictions made by

these models. Moreover, the lack of standardized assessment

methods and criteria makes it difficult to generalize these

models across different populations and settings. Therefore, the

motivation of this paper is to develop an adolescent health

risk assessment method that combines fMRI and deep learning.

This method aims to efficiently extract and analyze brain

function data while improving the accuracy and interpretability

of predictions, thereby better serving the health management of

adolescent populations.

This paper proposes a method for adolescent health risk

prediction that integrates multi-sequence two-dimensional

convolutional autoencoders (2DCNN-AE) with multi-scale

asynchronous correlation information extraction. Initially, raw

fMRI data is preprocessed using the PyReliMRI toolkit, including

head motion correction, slice timing correction, and spatial

normalization. The 2DCNN-AE model is then employed to extract

spatial and temporal features from the preprocessed fMRI data.

This model consists of an encoder and a decoder, where the input

data is feature-encoded and reconstructed through convolutional

layers and upsampling layers. Additionally, a multi-sequence

and multi-scale asynchronous correlation information extraction

method is introduced, mapping brain partition maps under

three-dimensional spatial coordinates to specific brain functional

areas and extracting the probability distribution of synchronous

expression between different time series. Finally, the extracted

multi-scale asynchronous correlation information is used as feature

inputs to train and construct the adolescent health risk prediction

model.

The contributions of this paper are as follows:

• The proposed multi-sequence two-dimensional convolutional

autoencoder (2DCNN-AE) method efficiently extracts

spatial and temporal features from fMRI data,

significantly improving the efficiency and accuracy of

feature extraction.

• By introducing a multi-scale asynchronous correlation

information extraction technique, the proposed method

captures complex temporal relationships between different

brain regions, thereby enhancing the robustness and

predictive capability of the health risk assessment model.

• The use of autoencoders allows for the reconstruction of fMRI

data samples, reducing the cost and challenges associated with

acquiring large-scale annotated datasets, and thereby making

the model more feasible for practical applications.

• The proposed method not only enhances the accuracy of

model predictions but also improves model interpretability,

making the predictions easier to understand and apply in

clinical practice.
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2 Related work

2.1 Functional magnetic resonance
imaging techniques

The application of functional magnetic resonance imaging

(fMRI) in adolescent health risk assessment represents a cutting-

edge advancement in this field. By detecting blood oxygen

level-dependent (BOLD) signals, fMRI indirectly reflects brain

activity, offering rich spatial and temporal information (Stiernman

et al., 2021). This technology is extensively used to study

neurodevelopmental processes in adolescents and to identify brain

function characteristics related to mental health issues, such as

depression, anxiety, and attention deficit hyperactivity disorder

(ADHD) (Wang et al., 2023; McNorgan et al., 2020). For example,

fMRI can help pinpoint brain activity patterns associated with these

common adolescent mental health challenges.

However, despite the non-invasive nature and high spatial

resolution of fMRI, there are certain limitations in its practical

application. First, the high cost of fMRI data acquisition and

analysis restricts its use in large-scale studies. Second, fMRI is

sensitive to noise and individual differences, which necessitates

careful interpretation of the results (Uyulan et al., 2023).

Additionally, the fMRI scanning process may cause discomfort

in some participants, especially adolescents, potentially affecting

the accuracy of the data. Therefore, improving data quality

while reducing participant discomfort, as well as simplifying the

complexity of fMRI data processing, remain significant challenges

in this area.

2.2 Deep learning in network magnetic
resonance imaging techniques

With the advancement of deep learning, researchers have

increasingly integrated it with fMRI data to enhance the precision

and efficiency of health risk assessment (Liu et al., 2022).

Deep learning models, particularly convolutional neural networks

(CNNs) and Long Short-Term Memory network (LSTM) (Saurabh

and Gupta, 2024), have shown immense potential in processing and

analyzing fMRI data. CNNs, with their hierarchical structure, can

effectively extract complex spatial features from fMRI images (Chen

et al., 2020), while AEs use unsupervised learning to achieve data

dimensionality reduction and reconstruction, thereby alleviating

the computational burden associated with high-dimensional data.

The application of deep learning in fMRI data analysis

offers several significant advantages. For instance, CNNs can

automatically extract brain activity features related to adolescent

mental health risks without relying on traditional manual feature

selection methods. This not only improves the efficiency of

feature extraction but also captures a wider range of potential

brain function patterns. Additionally, AEs excel in denoising and

feature selection, making the models more robust and stable when

handling fMRI data.

However, the application of deep learning in network magnetic

resonance imaging also faces challenges. First, deep learningmodels

typically require large amounts of labeled data for training, and the

high cost of acquiring and labeling fMRI data limits the scale of

training datasets. Second, the “black box” nature of deep learning

models makes them difficult to interpret, which is particularly

important in medical applications (Iravani et al., 2021). Moreover,

issues such as overfitting and high model complexity may lead

to suboptimal performance in practical applications. Therefore,

balancing model complexity and interpretability, and training

efficient models on small sample datasets, remain key areas of focus

in this field.

2.3 Adolescent health risk assessment
criteria

Adolescent health risk assessment criteria are a critical

application area for combining fMRI techniques with deep

learning (Ernst et al., 2015). Existing health risk assessment

standards are typically based on a variety of factors, including

biomarkers, behavioral assessments, and psychological

questionnaires, providing essential tools for identifying at-risk

adolescents (Bjork et al., 2010). However, traditional assessment

methods often rely on expert judgment, which can introduce bias

and inconsistency.

In recent years, researchers have sought to develop health risk

assessment criteria based on fMRI data and deep learning models.

For example, some studies have utilized deep learning models

to automatically analyze fMRI data, extracting features related to

health risks and predicting individual mental health risks based

on these features (Mueller et al., 2010). This approach not only

improves the objectivity and accuracy of assessments but also

enables early detection of potential health issues, providing critical

information for intervention and treatment.

The integration of fMRI and deep learning technologies

provides powerful tools for health risk prediction. Despite the

significant potential demonstrated by current research and

applications, challenges remain in terms of data acquisition,

model interpretability, and the standardization of assessment

criteria. Future research should focus on developing more

efficient, accurate, and scalable health risk assessment

models to better serve the health management needs of

adolescent populations.

3 Method

This paper proposes a method for predicting adolescent

health risks by combining multi-sequence, two-dimensional

convolutional autoencoder (2DCNN-AE) and multi-scale

asynchronous correlation information extraction. The algorithm

flow of two-dimensional convolutional autoencoder and multi-

sequence asynchronous correlation is shown in Figure 1. First,

the original fMRI data was preprocessed using the PyReliMRI

toolkit, including head motion correction, slice timing correction

and spatial normalization. Next, the 2DCNN-AE model was used

to extract spatial and temporal features from the preprocessed

fMRI data. The model consists of an encoder and a decoder,

and the input data is feature encoded and reconstructed through

convolutional layers and upsampling layers. At the same time,

we introduced a multi-sequence and multi-scale asynchronous

correlation information extraction method to map the brain
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partition map under three-dimensional spatial coordinates

to specific brain functional areas and extract the probability

distribution of synchronous expression between different time

series. The preprocessed numerical sequence data was state

mapped by dynamic thresholding, and the dynamic correlation

between time series was calculated. Finally, we used the extracted

multi-scale asynchronous correlation information as the feature

input model to train and construct an adolescent health risk

prediction model.

3.1 2D convolutional autoencoder

An autoencoder (AE) is a neural network model primarily used

for unsupervised learning. It achieves dimensionality reduction

and feature extraction by learning to encode input data. The basic

structure consists of two parts: the encoder and the decoder. The

encoder maps the input data to a hidden representation, while the

decoder attempts to reconstruct the original input from this hidden

representation. Byminimizing the error between the input data and

the reconstructed data, the autoencoder learns useful features of the

data.

We utilize a convolutional autoencoder model with the

proposed number of layers to extract features from the Adolescent

Health Risk Behaviors (AHRB) dataset (Demidenko M. I. et al.,

2024). Initially, we preprocessed the raw data using the PyReliMRI

toolkit (Demidenko M. et al., 2024), which includes standardized

steps such as head motion correction, slice timing correction, and

spatial normalization.

The goal of the autoencoder is to encode the input x into

a hidden representation h, and then reconstruct the input x

from h. The encoding and decoding processes are shown in

Equations 1, 2, respectively:

h = f (W1x+ b1), (1)

x̂ = g(W2h+ b2), (2)

where W1 and W2 are the weight matrices of the encoder and

decoder, respectively, b1 and b2 are the bias terms, and f and g are

activation functions (typically nonlinear functions such as ReLU).

The loss function for the reconstruction error is typically the

mean squared error (MSE), as shown in Equation 3:

L(x, x̂) = ‖x− x̂‖2, (3)

In the analysis of functional magnetic resonance imaging

(fMRI) data, convolutional autoencoders can be used to extract

spatial and temporal features for assessing adolescent health

risks. The convolutional autoencoder comprises an encoder and a

decoder. The encoder consists of three convolutional layers, each

followed by a ReLU activation function and a max-pooling layer.

The decoder consists of four convolutional layers, the first three

layers are the upper sampling layer, and the last layer generates an

image with the same shape as the input, as shown in Figure 2 and

Table 1 for details.

For the input connectivity matrix data, features are first

extracted through convolutional layers. The final layer of

the encoder provides the hidden representation, as shown in

Equation 4:

h = f (W1x+ b1), (4)

The hidden representation h is fed into the decoder, which

reconstructs the input data through convolution and upsampling

layers, as shown in Equation 5:

x̂ = g(W2h+ b2), (5)

Finally, the model optimizes its parameters by minimizing

the reconstruction error, thereby learning useful features from the

fMRI data for subsequent adolescent health risk assessment.

3.2 Multi-sequence multi-scale
asynchronous correlation information
extraction

We map the voxels in three-dimensional spatial coordinates to

specific brain functional regions using a brain partition map. The

voxel values within each brain region are averaged to represent

the overall fluctuation of blood oxygen concentration levels in that

region, focusing our research on regions of interest (ROIs). This

process is illustrated in Figure 3.

The state sequence mapping process converts the preprocessed

numerical sequence data into state sequences. This study uses a

dynamic threshold set by the rule of thumb (Figure 4), marking

data above the threshold as active (1) and below as inactive (0). The

threshold is defined as follows:

mT(Hk
n, η) = µ(Hk

n)+ η · σ (H
k
n), (6)

whereµ(Hk
n) denotes themean and σ (Hk

n) denotes the standard

deviation of the time series Hk
n, see Equations 7, 8 for details.

µ(Hk
n) =

∑L
i=1 m

k
n,l

|Hk
n|

, (7)

σ (Hk
n) =

∑L
i=1(m

k
n,l

− µ(Hk
n))

2

|Hk
n| − 1

, (8)

We define the mapping function f (mk
n,l
, η) to map each time

slice η andmk
n,m to a state u:

f (mk
n,l, η) =















































Stateu1, mk
n,m < mh(Hk

n, η1)

Stateu2, mh(Hk
n, η1) ≤ mk

n,l
< th(Hk

n, η2)

· · ·

Stateus, mh(Hk
n, ηs) ≤ mk

n,l
< mh(Hk

n, ηs+1)

· · ·

StateuS, mh(Hk
n, ηS) ≤ mk

n,l

,

(9)
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FIGURE 1

Flow chart of multiple sequence asynchronous correlation algorithm for 2D convolutional auto-encoding.

FIGURE 2

A 2DCNN-AE model for extracting features from fMRI images.

3.3 Probability statistics of synchronous
expression between brain regions

We extract discrete probability distributions of

synchronous expression between brain regions. First, we

define a function φ(·) to calculate the dynamic temporal

relationship between two time series. The state sequence

mapping step has successfully converted the fMRI data

from a numerical sequence to a state sequence. Next, we

use a measure function ψ(·) to evaluate the degree of

synchronous expression between two time series, defined as

in Equation 10:

φ(mk
n1 ,l1

,mk
n2 ,l2

) = ψ(f (mk
n1 ,l1

, ηk), f (tkn2 ,l2 , η
k)), (10)
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TABLE 1 Depth information for our 2DCNN-AE model.

Architecture Layers
Output shape

Stride Kernel size Activation Param
Depth Width

Encoder

Input layer 1 (96,96) – – – 0

Conv2D 24 (96,96) 1 24 ReLU 480

Max pooling 24 (48,48) 1 – – 0

Conv2D 24 (48,48) 1 24 ReLU 8,046

Max pooling 24 (24,24) 1 – – 0

Conv2D 1 (24,24) 1 24 ReLU 420

Max pooling 1 (12,12) 1 – – 0

Decoder

Conv2D 1 (12,12) 1 24 ReLU 10

Upsampling 1 (24,24) 1 – – 0

Conv2D 24 (24,24) 1 24 ReLU 420

Upsampling 24 (48,48) 1 – – 0

Conv2D 24 (48,48) 1 24 ReLU 8,046

Upsampling 24 (96,96) 1 – – 0

Zero pad 1 (94,94) – – – 0

Conv2D 1 (94,94) 1 1 Tanh 480

FIGURE 3

Transforming brain partition map targets into regions of interest (ROIs). (A) Three-dimensional coordinates of the brain partition map; (B) ROI

distribution of fluctuation values of blood oxygen concentration levels in the brain area.

where f (·) represents the mapping function under certain

prior conditions, converting data from a numerical sequence to

a state sequence, and ηk denotes the mapping parameter. We

then statistically analyze the frequency information of synchronous

expression between brain regions. The function ψ(·) calculates

the concurrent activation of two brain regions given a time slice

parameter. This concurrent activation could be coincidental or

indicative of potential interactions between these regions. With

a sufficient number of time slices, we can obtain the probability

distribution of whole-brain synchronous activity, distinguishing

between coincidental and genuinely related phenomena, as shown

in Equation 11:

ψ(f (mk
n1 ,l1

, ηk), f (mk
n2 ,l2

, ηk))

=

{

1, mk
n1 ,l1

> mh(Hk
n, η

k) and mk
n2 ,l2

> mh(Hk
n, η

k)

0, else
, (11)

For a multivariate time series data Hk, the interaction between

any two time seriesHk
i andH

k
j is defined as follows in Equation 12:
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FIGURE 4

Rule of thumb and schematic diagram of state sequence mapping.

Xk
φ(·)(i, j) =

L
∑

i=1

φ(mk
i,l,m

k
j,l), (12)

where Xφ(·)(i, j) represents the cumulative sum of function

values for each time slice pair. Based on this, the interaction

between any two time series Hk
i and Hk

j is further defined with a

time interval parameter It = [rt, st] as shown in Equations 13, 14:

Xk
φ(·)(i, j, Im) =

L
∑

i=1

s′m
∑

g=rt

φ(mk
i,l, t

k
j,g+l), (13)

s′t = min(st ,M −m), (14)

This computes the interaction of custom asynchronous

intervals with active-passive relationships. Note thatXk
φ(·)

(i, j, Im) 6=

Xk
φ(·)

(j, i, Im), indicating that the resulting interaction matrix

Xφ(·) is asymmetric, as the interactions have active-passive

relationships.

The comprehensive multivariate time series interactions,

Xk
φ(·)

∈ R
N×N×T , represent multi-scale interval asynchronous

synchronous expression values. Here, Xk
φ(·)

is a third-order tensor,

where N denotes the number of time series, and T denotes the

number of time slices of any time series. We convert the tensor

Xk
φ(·)

into a discrete probability distribution form Qk
φ(·)

, defined as

follows in Equation 15:

Qk
φ(·) = {qk

φ(·)(i, j, Im)|i, j ∈ [1,N], Im ∈ I}, (15)

where qk
φ(·)

(i, j, Im) denotes the discrete probability value

between the i-th and j-th time series under interval parameter Im
and mapping function φ(·), defined as follows in Equation 16:

qk
φ(·)(i, j, Im) =

Xk
φ(·)

(i, j, Im)
∑N

i=1

∑N
j=1

∑T
m=1 X

k
φ(·)

(i, j, Im)
, (16)

Finally, we use the extracted multi-scale asynchronous

correlation information as features to train the model, resulting in

an adolescent health risk prediction model.

4 Experiment

4.1 Dataset

The Adolescent Risk Behavior (AHRB) study

dataset (Demidenko M. I. et al., 2024) recruited participants

from diverse backgrounds to ensure a representative sample of

the adolescent population. Each participant underwent a series

of assessments, including neuroimaging, behavioral tests, and

self-reported questionnaires. The primary focus of the study is to

capture the dynamic changes in behavior and brain function as

participants transition from late adolescence to early adulthood.

The dataset includes two main cohorts from different years: Year 1

consists of approximately 108 participants aged 17–20, and Year 2

consists of approximately 66 participants aged 19–22. This study

aims to track the developmental trajectory of risk behaviors and

their underlying neural mechanisms.

The functional magnetic resonance imaging (fMRI) component

of the AHRB study includes tasks designed to probe emotional and

reward processing. Specifically, the study utilizes the Emotional

Faces task and the Monetary Incentive Delay (MID) task. For

our analysis, we use the raw Blood Oxygen Level-Dependent

(BOLD) data from the MID task, which aligns with similar tasks

used in the MLS and ABCD studies. The MID task requires

participants to respond to cues indicating potential monetary

rewards or losses. During the anticipatory phase, participants

receive cues that indicate whether they can win or lose money based

on their performance. The BOLD response during this phase is

particularly interesting as it reflects the neural processes involved

in anticipation, a critical component of reward-based decision-

making. Understanding the neural basis of reward processing is

crucial, as it is a key aspect of adolescent risk behavior.

4.2 Evaluation metrics

The evaluation metrics used in this study include accuracy

(Acc), Precision (Prec), Recall (Rec), and F1−score. These metrics

are defined as follows in Equations 17–20:

Acc =
TP + TN

TP + TN + FN + FP
, (17)
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TABLE 2 Experimental setup.

Parameter Value

Threshold parameter (η) 1

L2 regularization 0.01

Dropout rate 0.5

Cross-validation 10-fold cross-validation

Dataset division 10 subsets (9 for training, 1 for validation),

repeated 10 times

Time interval set (I) [0, 0], [1, 1], [2, 2], [3, 6], [7, 12]

Prec =
TP

TP + FP
, (18)

Rec =
TP

TP + FN
, (19)

F1-score =
2× Prec× Rec

Prec+ Rec
. (20)

Here, True Positive (TP) represents the correctly classified

positive samples, True Negative (TN) represents the correctly

classified negative samples, False Positive (FP) represents the

incorrectly classified positive samples, and False Negative (FN)

represents the incorrectly classified negative samples.

4.3 Model parameters

We first consider the threshold parameter η in Equation 6,

which distinguishes the active or inhibitory states of the brain in

fMRI imaging. A dynamic threshold converts a numerical sequence

into a 0/1 sequence, where larger η values make the active state

determination more stringent, resulting in fewer data points, while

smaller values capture more data but may introduce noise. For all

experiments, we set η = 1, as it balances avoiding overfitting while

maintaining sufficient data points.

To improve model generalization given the limited data, we

reduced the complexity of the 2DCNN-AE model by decreasing

the number of layers and parameters in the convolutional layers.

Additionally, we applied L2 regularization with a weight decay of

0.01 and used a Dropout rate of 0.5 in the fully connected layers to

further prevent overfitting.

For model evaluation, we conducted a 10-fold cross-validation.

The dataset was divided into 10 subsets, with the model trained on

9 subsets and validated on the remaining subset. This process was

repeated 10 times, and the final performance metrics were averaged

across all folds to ensure robust assessment of the model’s stability

and generalization. The experimental Settings are shown in Table 2.

The primary goal of this study is to explore asynchronous

functional connectivity between different regions of the

adolescent brain. We extracted discrete probability distributions

of synchronous expression at varying time intervals

between brain regions. The interval set I was defined as

[0, 0], [1, 1], [2, 2], [3, 6], [7, 12], with smaller intervals capturing

short time delay interactions and larger intervals representing

longer delays. This setup helps balance the sensitivity to

synchronous information while minimizing the risk of overfitting

due to excessively large delay parameters. The pseudocode for our

algorithm is shown in Algorithm 1:

Input: Multivariate Time Series

Tk = {Hk
1 , . . . ,H

k
n, . . . ,H

k
N } where

Hk
n = {mk

n,1, . . . ,m
k
n,l
, . . . ,mk

n,L} and

H
g
n = {m

g
n,1, . . . ,m

g

n,l
, . . . ,m

g
n,L}; Interval Set

I = {I1, . . . , Im, . . . , IM}, Im = [rt , st]

Output: Qk
φ(·)

∈ RN×N×T

for i = 1 to N do

for j = 1 to N do

for m = 1 to H do

Calculate the interaction value Xk
φ(·)

(i, j, Im)

between Hi and Hj with interval parameter

Im:

Xk
φ(·)(i, j, Im) =

L
∑

i=1

s′t
∑

g=rt

φ(mk
i,l , t

k
j,g+l),

end

end

end

Compute the discrete probability distribution

Qk
φ(·)

for the i-th and j-th time series under

interval parameter Im:

qk
φ(·)(i, j, Im) =

Xk
φ(·)

(i, j, Im)
∑N

i=1

∑N
j=1

∑T
m=1 X

k
φ(·)

(i, j, Im)
,

Qk
φ(·) = {qk

φ(·)(i, j, Im)|i, j ∈ [1,N], Im ∈ I}

Algorithm 1. Training process of 2DCNN-AE net with multi-scale

asynchronous correlation information extraction and synchronous

expression probability statistics.

4.4 Experimental results

First, the experiment utilized a two-sample t-test as a

feature selection method for dimensionality reduction. Next, the

significance level parameter p-value was set to 0.05, 0.01, 0.005, and

0.001 respectively, with the results shown in Table 3.

The results show that as the significance level parameter

decreases, the number of extracted features also decreases. Initially,

the experimental results improve with fewer features, but when

the number of features is reduced too much (e.g., p = 0.001),

the performance drops sharply. The best classification results were

obtained with a significance level parameter of p = 0.005, achieving

an accuracy, precision, recall, and F1-score of 70.142%, 66.276%,

71.946%, and 68.995%, respectively.

Frontiers inComputationalNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fncom.2024.1478193
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Gao et al. 10.3389/fncom.2024.1478193

TABLE 3 Feature reduction parameter validation results.

Parameter(p) Number Acc(%) Prec(%) Rec(%) F1-score(%)

0.001 66 62.745 65.162 63.849 58.769

0.005 252 66.287 64.281 54.127 52.939

0.01 485 63.961 54.312 51.634 62.325

0.05 1102 65.254 61.361 64.395 62.841

0.1 1320 70.142 66.276 71.946 68.995

0.5 224 65.125 62.457 62.194 64.499

The best performance is shown in bold.

TABLE 4 Dynamic threshold µ parameter validation results.

µ Acc(%) Prec(%) Rec(%) F1-score(%)

0.1 59.47 58.16 61.28 59.683

0.4 61.85 59.64 63.87 61.686

0.7 68.47 66.51 70.48 68.441

1.0 70.81 68.64 73.41 70.950

1.3 68.73 66.75 71.76 69.170

1.6 67.12 65.81 69.46 67.591

1.9 66.82 64.11 68.85 66.400

2.2 64.59 63.15 66.17 64.628

2.5 62.47 61.56 64.23 62.870

2.8 59.47 58.16 61.28 59.683

3.1 58.84 56.91 60.14 58.483

3.4 58.77 56.58 60.76 58.600

3.7 58.05 56.23 60.28 58.186

4.0 58.31 56.72 60.19 58.405

The best performance is shown in bold.

After selecting features with a significance level of p = 0.005,

we further validated the parameter for the dynamic threshold µ in

the state sequence transition. The experimental parameter µ was

tuned within the range [0, 2] via grid search, with the results shown

in Table 4.

As shown in Table 4, using the full temporal mean value as the

high activity threshold (µ = 0) yields poor results. This might be

due to the low threshold being too broad, defining half of the time

points as active, which introduces a lot of noise. As the threshold

increases, the results improve. The best classification accuracy is

achieved at µ = 1.0 and µ = 1.2, as a tighter definition of “active

state” can effectively distinguish important activities. Beyond µ >

1.2, the performance declines as the threshold becomes too high,

leaving few points defined as active. The optimal default choice for

the dynamic threshold parameter µ is 1.0. The experimental results

for different parameters p are shown in Figure 5.

Next, we compare our model with methods using Pearson

correlation coefficient, higher-order statistics (Wee et al., 2016),

and dynamic functional connectivity models (Harlalka et al., 2019).

Other popular methods include those by Zhang and Wang (2020),

Brown et al. (2019), Abraham et al. (2017), and Yang et al. (2020).

The results on the AHRB dataset are summarized in Table 5.

As shown in Table 5, our proposed method achieves precision,

recall, and F1-score results of 83.116%, 84.784%, and 83.942%,

respectively. Compared to the aforementioned methods, our

method ranks highly in precision, recall, and F1-score. Although

the accuracy is slightly lower than the method by Abraham

et al. (2017) (83.366%), our method excels in the other three

metrics. The experimental results demonstrate that our approach,

incorporating 2D convolutional autoencoders and multi-sequence,

multi-scale asynchronous information extraction, uncovers more

asynchronous correlation information, yielding good classification

accuracy in adolescent health risk assessment applications.

To validate our proposed improvements, we conducted three

groups of ablation experiments. We added complex convolution

and channel attention mechanisms to the 2DCNN network, along

with phase smoothness and coil sensitivity smoothness as physical

priors. The ablation experiments are summarized in Table 6, where

coil sensitivity smoothness is denoted as S, phase smoothness as P,

complex convolution as C, and channel attention mechanism as A.

The baseline model is 2DCNN.

As shown in Table 6, each proposed improvement brought

about performance enhancements. Individually adding coil

sensitivity prior and phase prior led to considerable improvements,

while the combination of channel attention mechanism and

complex convolution resulted in significant gains. Combining all

improvements achieved the best results.

These results indicate that the introduced 2D convolutional

autoencoder and multi-sequence, multi-scale asynchronous

information extraction methods effectively capture asynchronous

correlation information, enhancing model performance in

adolescent health risk assessment applications. The proposed

modifications lead to significant improvements, as evidenced by

the comprehensive ablation studies.

In summary, our method demonstrates superior performance

in most metrics compared to existing methods, highlighting its

potential in adolescent health risk assessment based on rs-fMRI

data.

5 Discussion and conclusion

This study utilized fMRI and deep learning techniques to tackle

challenges in adolescent health risk assessment, aiming to enhance

the efficiency, accuracy, and interpretability of extracting features

from fMRI data. We introduced a novel method integrating multi-

sequence 2DCNN-AE with multi-scale asynchronous correlation

information extraction, designed to capture spatial and temporal

features and address the complex interactions between brain

regions. Our experimental evaluation on the AHRB dataset
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FIGURE 5

Experimental results with di�erent parameter (p) values.

TABLE 5 Comparison with existing methods on the AHRB dataset.

Method Acc(%) Prec(%) Rec(%) F1-
score(%)

Higher-order

statistics

76.225 74.222 78.168 76.144

Zhang and Wang

(2020)

80.051 82.450 80.577 81.503

Brown et al.

(2019)

80.234 80.281 81.571 80.921

Yang et al. (2020) 78.061 82.052 81.222 81.635

Abraham et al.

(2017)

83.366 82.775 83.665 83.218

Our 82.031 83.116 84.784 83.942

The best performance is shown in bold.

TABLE 6 Results of 2DCNN-AE network ablation experiments.

S P C A Acc(%) Prec(%) Rec(%) F1-score
(%)

63.127 68.365 66.124 67.226

X 69.125 63.452 68.045 65.668

X 70.058 68.716 70.098 69.400

X X 75.858 72.383 72.881 72.631

X 72.015 71.228 70.365 70.794

X 75.365 75.824 75.339 75.582

X X 78.334 79.361 78.581 78.969

X X X X 81.031 83.116 84.784 83.942

The best performance is shown in bold.

demonstrated the method’s superiority in accuracy, precision,

recall, and F1-score, highlighting its capability to identify critical

features and intricate temporal patterns often missed by traditional

methods.

However, the study is not without limitations. First, the

method’s reliance on a relatively small dataset, due to the high

cost and complexity of acquiring and processing fMRI data,

may limit its generalizability to larger populations. This issue is

particularly pronounced in deep learning models, which typically

require large amounts of labeled data for effective training. Second,

while the method improves interpretability compared to traditional

deep learning approaches, the “black box” nature of certain deep

learning components still poses challenges in clinical settings,

where understanding the rationale behind predictions is crucial.

The superior performance of the proposed model can be

attributed to its ability to capture both spatial and temporal

dynamics from fMRI data. Specifically, the integration of

multi-sequence 2DCNN-AE with multi-scale asynchronous

correlation extraction allows for a more nuanced understanding

of brain activity. This design choice helps to uncover latent

interactions between brain regions that are otherwise overlooked

in traditional models, leading to a more accurate assessment of

health risks. Moreover, the asynchronous correlation extraction

provides a mechanism to account for non-linear and time-shifted

relationships between brain regions, which may be critical in

identifying early indicators of health risks. These insights not

only demonstrate the efficacy of the proposed approach but also

open new avenues for exploring brain region connectivity in

health-related research.

Looking forward, future research should focus on addressing

these limitations. Expanding the dataset size through collaborative

efforts and leveraging transfer learning techniques could help

improve the model’s generalizability. Additionally, integrating

more interpretablemachine learningmethods or developing hybrid

models that combine deep learning with rule-based systems could

further enhance the clinical applicability of the proposed method.

These improvements would not only increase the accuracy and

robustness of the predictions but also make them more actionable

for healthcare providers.

In conclusion, the superior performance of the proposed

model can be attributed to its ability to capture both spatial and

temporal dynamics from fMRI data. Specifically, the integration

of multi-sequence 2DCNN-AE with multi-scale asynchronous

correlation extraction allows for a more nuanced understanding

of brain activity. This design choice helps to uncover latent

interactions between brain regions that are otherwise overlooked

in traditional models, leading to a more accurate assessment of

health risks. Moreover, the asynchronous correlation extraction
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provides a mechanism to account for non-linear and time-shifted

relationships between brain regions, which may be critical in

identifying early indicators of health risks. These insights not only

demonstrate the efficacy of the proposed approach but also open

new avenues for exploring brain region connectivity in health-

related research.
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