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This study aims to enhance the classification accuracy of adverse events

associated with the da Vinci surgical robot through advanced natural language

processing techniques, thereby ensuring medical device safety and protecting

patient health. Addressing the issues of incomplete and inconsistent adverse

event records, we employed a deep learning model that combines BERT

and BiLSTM to predict whether adverse event reports resulted in patient

harm. We developed the Bert-BiLSTM-Att_dropout model specifically for text

classification tasks with small datasets, optimizing the model’s generalization

ability and key information capture through the integration of dropout and

attention mechanisms. Our model demonstrated exceptional performance on

a dataset comprising 4,568 da Vinci surgical robot adverse event reports

collected from 2013 to 2023, achieving an average F1 score of 90.15%,

significantly surpassing baseline models such as GRU, LSTM, BiLSTM-Attention,

and BERT. This achievement not only validates the model’s effectiveness in

text classification within this specific domain but also substantially improves

the usability and accuracy of adverse event reporting, contributing to the

prevention of medical incidents and reduction of patient harm. Furthermore,

our research experimentally confirmed the model’s performance, alleviating the

data classification and analysis burden for healthcare professionals. Through

comparative analysis, we highlighted the potential of combining BERT and

BiLSTM in text classification tasks, particularly for small datasets in the medical

field. Our findings advance the development of adverse event monitoring

technologies for medical devices and provide critical insights for future research

and enhancements.
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1 Introduction

With the development of society and the progress of medical
science, medical devices have gradually become an indispensable
part of protecting people’s lives, and their safety has received more
and more widespread attention. Although medical devices undergo
strict safety assessment and supervision before they are put on
the market, there are still certain risks. After they are put on
the market, these devices may cause damage to human health.
Therefore, continuous quality monitoring and collection of adverse
events are necessary. The reporting and analysis of adverse events
provide key data for regulatory agencies and help monitor medical
devices after they are put on the market. In recent years, due to
the continuous improvement of the automation and intelligence of
the surgical process, the proportion of the use of da Vinci surgical
robots has continued to grow, and the resulting large amount of
adverse event texts carry rich data information. In order to obtain
valuable information from these adverse events in a timely manner,
it is of good practical value to quickly and accurately classify these
adverse event texts.

The primary objective of this study is to classify small datasets,
specifically focusing on adverse events associated with the da
Vinci surgical robot. We selected data from the FDA’s MAUDE
database as our main source. The novelty of this research lies
in the introduction of a deep learning model that combines
BERT and BiLSTM, referred to as Bert-BiLSTM-Att_dropout,
specifically tailored to the text classification of medical device
adverse events. This innovative approach leverages the powerful
contextual information capture capabilities of the BERT model
while enhancing the processing of sequential data through the
BiLSTM model, complemented by attention mechanisms and
dropout strategies to improve the model’s generalization ability and
sensitivity to key information.

Compared to existing studies, this research offers unique
contributions in several respects. First, it presents a novel
classification method specifically designed for the text data related
to the da Vinci surgical robot, an area that has not been thoroughly
explored in previous research. Second, by incorporating attention
mechanisms within the model, this study enhances the precision in
identifying and processing key information within the text, which
is particularly critical in complex medical text analysis. Lastly,
the experimental validation of the model’s efficacy demonstrates
outstanding classification performance on small datasets, achieving
an average F1 score of 90.15%, a result that stands out in
the literature. Moreover, the significance of this study extends
beyond improved accuracy and efficiency in classifying adverse
events related to medical devices; it alleviates the burdensome
data classification workload for healthcare professionals, allowing
them to focus more on patient care and surgical procedures.
Accurate classification of adverse events also facilitates the timely
identification and prevention of serious medical incidents that
may pose risks to patients, thereby enhancing the overall safety
of surgical procedures and the reliability of medical devices. By
advancing the technical capabilities of medical device monitoring,
this research makes a substantial contribution to the field
of medical safety.

In recent years, the effectiveness of machine algorithms in
natural language processing (NLP) has been widely demonstrated.

Bacanin et al. (2021) introduced a novel chaotic firefly algorithm
that enhances the original firefly algorithm through improved
exploration mechanisms and chaotic local search strategies. The
paper first validates the theoretical performance of the new
algorithm on the CEC benchmark test function suite, subsequently
applying it to the dropout regularization problem in deep neural
networks (DNNs). The results demonstrate that the Chaotic Firefly
Algorithm with Enhanced Exploration (CFAEE) exhibits superior
performance in identifying the optimal dropout rate, leading to
improved classification accuracy in convolutional neural networks
(CNNs).Similarly, Malakar et al. (2020) proposed a hierarchical
feature selection model based on genetic algorithms to optimize
both local and global features extracted from handwritten word
images. This model was experimentally validated on a dataset
containing 12,000 samples of handwritten Bengali words. The
research not only enhanced the efficiency of feature selection
by reducing the feature dimensionality by nearly 28%, but also
improved the performance of handwritten word recognition
techniques through the optimization of the feature set (González-
Carvajal and Garrido-Merchán, 2020). BERT is able to leverage
pre-trained knowledge to improve performance. Yu et al. (2019)
conducted a series of experiments to improve the performance
of the BERT-based text classification model and proposed the
BERT4TC model, which achieved significant results on multi-
class classification data sets when using appropriate auxiliary
sentences. Significant performance improvement, compared with
typical feature-based methods and fine-tuning methods, reaching
new best performance. By constructing auxiliary sentences and
utilizing domain knowledge, the performance of the BERT model
in text classification tasks can be effectively improved. Khadhraoui
et al. (2022) successfully demonstrated the effectiveness and
superiority of the CovBERT model on specific NLP tasks by
creating new data sets, preprocessing data, fine-tuning the BERT
model, and conducting detailed evaluation and comparative
analysis. Mohammadi and Chapon (2020) are exploring the
performance of different fine-tuning models based on BERT
in text classification tasks. By comparing different fine-tuning
strategies and model structures, they concluded that the BERT-
Base model has a variety of performance capabilities. superiority
in text classification tasks and provides guidance on how to
effectively utilize BERT for fine-tuning. Chen et al. (2022)
aimed to verify the effectiveness of their proposed long text
classification method (LFCN model) based on BERT and CNN
in the Chinese news text classification task. The proposed long
text classification method based on BERT and CNN was used
in It shows high accuracy and effectiveness in Chinese news
text classification tasks. Çelıkten and Bulut (2021) used the text
classification method based on the BERT model to deal with
the classification problem of Turkish medical texts. Cai et al.
(2020) conducted experiments to verify the performance of their
proposed hybrid BERT model (HBLA) combined with label
semantics in multi-label text classification tasks. The experimental
results showed that the HBLA model outperformed the major
evaluation indicators in terms of major evaluation indicators.
most existing methods and achieve new optimal performance.
Li et al. (2022) the validation further proves the effectiveness
and stability of the model. The software sub-classification method
proposed by Bu et al. (2023). Cai et al. (2020) has shown
obvious advantages and high accuracy in automatic software label
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construction, automatic update of classification labels, and fine-
grained software classification. Zhonghao et al. (2022) pointed out
that the Bert-BiLSTM model improved by 2 percentage points
compared with the traditional Bert model method, and could
effectively and accurately determine the category of earthquake
news, thereby helping earthquake emergency rescue decisions.
Ge et al. (2021) proposed the Bert-BiLSTM-ATT model uses
the Transformer mechanism in BERT to analyze text. Compared
with the traditional LSTM, BiLSTM, BiLSTM-ATT, and Bert-
BiLSTM models, the experimental results are better. Xiong et al.
(2024) proposed that the Bert-BiLSTM model performed well in
identifying consumption intentions. Compared with the single
BERT model, the average accuracy, recall rate and Micro-F1 value
were increased by 3.67, 4.51 and 3.87 %, indicating that the model
is very suitable for consumer intention recognition in short text
classification tasks. Mithun and Jha (2023) employed an LSTM
model augmented with dropout regularization to selectively hide or
deactivate certain neurons, thereby reducing the risk of overfitting.
This approach was applied to the classification of a small dataset
in lung cancer imaging research. Zivkovic et al. (2022) proposed
a novel hybrid firefly algorithm designed for the adjustment and
optimization of hyperparameters in the XGBoost classifier, aimed at
enhancing the accuracy of network intrusion detection. The paper
initially validates the improved firefly algorithm on the CEC2013
benchmark instances and conducts a comparative analysis with
other metaheuristic algorithms. Experimental results demonstrate
the proposed metaheuristic algorithm’s potential in addressing
the challenges of machine learning hyperparameter optimization,
thereby improving the classification accuracy and average precision
of network intrusion detection systems. Similarly, Jovanovic et al.
(2023) explored how to tackle IoT security challenges through
the optimization of extreme learning machines (ELMs) using
metaheuristic algorithms. They introduced an improved arithmetic
optimization algorithm for the hyperparameter optimization and
tuning of ELMs, enhancing IoT security. The results indicate that
the proposed ELM-HAOA method achieved optimal outcomes in
both the best and average scenarios.

In summary, we propose a novel classification optimization
algorithm, the Bert-BiLSTM-Att_dropout fusion model, which
facilitates the efficient handling of small datasets. To streamline the
representation of adverse events and contextual features associated
with the da Vinci surgical robot, we utilize the BERT model for
training text vectors of adverse events, employing the output of
the BERT model as input for the BiLSTM network. Additionally,
we incorporate attention mechanisms and dropout strategies to
achieve effective classification of adverse events related to the da
Vinci surgical robot. This approach presents a new integrated
model for the extraction and classification of adverse events
associated with the da Vinci surgical robot.

The main contributions of this paper can be summarized as
follows:

1. We focus on the first step of medical device adverse
event monitoring and use NLP technology to classify text,
which improves classification efficiency and saves a lot of
manpower and cost.

2. We propose a fusion model of Bert model, BiLSTM model,
attention mechanism and Dropout regularization processing

for classifying long documents in medical device adverse
event monitoring.

3. We have completed experimental verification on real datasets,
and our model has achieved state-of-the-art performance.

2 da Vinci surgical robot

2.1 Features of the da Vinci surgical robot

The specificity and regulatory nature of medical devices are
determined by their inherent characteristics. The da Vinci surgical
robot is an advanced medical device with a wide range of
applications, an extensive history of use, and certain associated
risks (Intuitive Surgical, 2020). It is employed across various
surgical fields, including but not limited to urology, gynecology,
thoracic surgery, and gastrointestinal surgery. Its design flexibility
and multifunctionality render it a powerful assistant for surgeons
performing complex procedures (Aronson, 2001). The da Vinci
surgical robot began its integration into medical practice in 2000,
and with ongoing technological advancements, its functionalities
and performance have continually improved. Years of clinical
practice have yielded extensive experience and data, demonstrating
its efficacy and reliability in surgical applications (Garg et al.,
2021). Despite the significant achievements of the da Vinci surgical
robot in the medical field, certain risks remain in practical
applications. Robotic operation necessitates specialized training
and skills for surgeons; otherwise, it may lead to operational
errors or complications (Patel and Tully, 2020). Additionally,
technical failures or equipment malfunctions can adversely impact
the surgical process.

2.2 da Vinci surgical robot label dataset

The data utilized in this study is sourced from the FDA’s
MAUDE database, comprising 4,568 adverse event reports related
to the da Vinci surgical robot from 2013 to 2023. This
dataset includes five annotated FDA medical device adverse
event labels: death, injury, device malfunction, other, and not
provided. Following consultations with experts in the field of
medical regulation, it was determined to classify the data into
two categories: those that did not result in patient harm and
those that did. This classification includes 2,484 reports of no
harm to patients and 2,084 reports of harm. The classification
of each entity and its corresponding rationale are detailed in
Table 1.

An example snippet from the dataset. Each drug package insert
has a corresponding.txt file containing the raw text. The goal of our
system is to automatically identify the cause of each word in the da
Vinci surgical robot adverse event label and infer that information
to determine its appropriate adverse event category.
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TABLE 1 da Vinci surgical robot FDA label dataset.

Category Quantity Description

No harm to patients 2,484 The endoscope’s lens was broken
before the da Vinci procedure began.
No patient injuries were reported.

Harm to patients 2,084 The surgeon inadvertently severed
the atrial artery due to incorrect
anatomical identification, and the
patient subsequently died.

3 Materials and methods

We employed five methods for the identification and
classification of adverse events associated with the da Vinci
surgical robot: the GRU model, LSTM model, BiLSTM-Attention
model, BERT model, and our own developed Bert-BiLSTM-
Att_dropout model. These models were trained on the description
sections of the data, inferring candidate categories of no harm
to patients and harm to patients from the predictions based
on these descriptions. Our deep learning approach utilizes word
and character embeddings to represent potential mentions. In
this section, we will provide a more detailed description of the
models and their ensemble. Our BERT-based method enhances
contextualized word embeddings.

3.1 Bert model

As illustrated in Figure 1, the BERT pre-trained language model
leverages its bidirectional Transformer architecture to dynamically
generate contextual semantic representations of vocabulary. This
approach effectively captures sentence features more efficiently
than traditional word vector representations, thereby enhancing
semantic understanding accuracy (Wang et al., 2019). In 2018,
Google introduced BERT, an innovative language model that
achieved outstanding results across multiple NLP tasks (Yao
et al., 2019). The BERT model employs a Transformer encoder
design, characterized by a multi-head self-attention mechanism.
This model utilizes a bidirectional encoder to capture contextual
information within the text. The input to BERT is a text sequence,
formed by combining word embeddings and position embeddings
to create input vectors. These input vectors are then stacked
through multiple layers of Transformer encoders, resulting in word
vectors closely related to their context.

Furthermore, during the pre-training phase, the BERT model
performs two key tasks: Masked Language Model (MLM) and
Next Sentence Prediction (NSP). The MLM task aims to enhance
contextual memory by encoding language. In this process,
approximately 85% of the words remain unchanged, 12% are
masked using a masking mechanism, 1.5% are replaced with
other words, and the remaining 1.5% undergo self-replacement.
BERT employs these strategies to construct a bidirectional language
model, optimizing language representations by randomly replacing
a small number of words through the masking mechanism
(Clark and Schmidt, 2013).

To obtain accurate data, studies typically integrate the
contextual background of adverse events associated with the da

FIGURE 1

Bert model structure.

Vinci surgical robot with the internal text content. By incorporating
relevant aspects of the BERT model into the adverse event data
for the da Vinci surgical robot, research has demonstrated a
significant enhancement in model performance (Wolf et al., 2020).
Consequently, as shown in Figure 2, each input token comprises
a 768-dimensional token vector, a position vector, and a segment
vector. The segment vector has two possible values, indicating
whether the segment belongs to sentence A or sentence B. At each
token position, these three 768-dimensional vectors are summed to
form an input vector, which also has a length of 768; this vector is
the actual input to the transformer model (Ni et al., 2020).

As illustrated in Figure 3, the input dimensions of 768 × 11
are processed through 12 layers of Transformer encoder layers,
resulting in a new representation of the same dimensions
(Hausladen et al., 2020). During this process, the vector of the
CLS token is utilized for the Next Sentence Prediction (NSP) task,
which serves as a binary classifier to predict whether sentence B is a
subsequent sentence to sentence A (Moirangthem and Lee, 2021).

For tokens that have been masked, their 768-dimensional
vectors are passed to the Masked Language Model (MLM) classifier,
which maps them to a vocabulary of size 30,000. This mapping
produces a probability distribution containing 30,000 elements
through a softmax layer. This probability distribution can be
utilized to infer the possible original forms of the masked words,
as well as other potential words at the corresponding positions
(Devlin et al., 2019).

3.2 Bert-BiLSTM fusion model

Long Short-Term Memory (LSTM) networks, as a specialized
form of Recurrent Neural Networks (RNNs), are designed to
address the issue of long-term dependencies and are widely adopted
due to their excellent capability to handle large samples. Figure 4
illustrates the structure and operational principles of LSTM in
detail (Barman and Chowdhury, 2020). LSTM models long-term
dependencies through its unique chain-like structure, which, in
contrast to traditional RNN models, incorporates four interacting
recurrent modules. Each module possesses a specific structural
design, distinguishing it from a single neural network layer
(Hug and Weil, 2019).
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FIGURE 2

Bert model input flow chart. ##Indicates character separation.

FIGURE 3

Bert model training flow chart.

Long Short-Term Memory (LSTM) networks utilize gated
structures to precisely regulate the addition and removal of
information in the cell state. These gates comprise mechanisms that
include sigmoid neural network layers and pointwise multiplication
operations, allowing for selective modulation of information flow.
LSTM features three key gate structures: the forget gate, the input
gate, and the output gate, which serve to protect and control the
contents of the cell state.

First, LSTM uses the forget gate to decide which information
to discard from the cell state. The output vectorft of the forget
gate is mapped nonlinearly by sigmoid, reads the output ht−1 of
the previous time step and the current input Xt , and multiplies it
with the cell state Ct−1 to decide whether to keep or discard the
information in the cell state.

ft = σ(Wf ∗
[
ht−1, xt

]
+ bf

The next step is to decide which updates to store in the cell state,
which has two parts. First, a sigmoid layer, called the input gate
layer, decides which values to update.

it = σ(wi ∗
[
ht−1, xt

]
+ bi

Next, the LSTM decides which parts of the cell state to update from
the new candidate value C′t through the input gate. The sigmoid
layer of the input gate it evaluates ht−1 and xt while C′t is generated
by the tanh layer.

C′t = tanh (Wc ∗
[
ht−1, xt

]
+ bC

Combining these two pieces of information, LSTM updates the cell
state Ct by multiplying the old state Ct−1 by the forget gate ft and
addingit ∗ C′t to achieve the state update:

Ct = ft ∗ Ct−1 + it ∗ C′t

Frontiers in Computational Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fncom.2024.1476164
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-18-1476164 December 11, 2024 Time: 19:9 # 6

Li et al. 10.3389/fncom.2024.1476164

FIGURE 4

LSTM structure diagram.

Finally, LSTM decides the output ht based on the updated cell state
Ct The output gate ot determines which parts of the cell state to
output through the sigmoid layer, and converts the cell state to
[−1, 1] through the tanh layer and multiplies it by the output of
the output gate:

ot = σ(Wo
[
ht−1, xt

]
+ bo

ht = ot ∗ tanh (Ct)

In this way, LSTM effectively manages and regulates the cell
state through the gating mechanism, thus solving the long-term
dependency problem in the traditional RNN model.

The BiLSTM neural network structure comprises two
independent LSTM input sequences, which are fed into two LSTM
networks in both forward and reverse order for feature extraction.
Subsequently, the extracted feature vectors are combined to form
a single word vector, serving as the final feature representation
of that word (Bhavsar and Ganatra, 2016). BiLSTM possesses the
capability to train on both past and future information, allowing it
to connect output data from the same layer, thereby enabling it to
retain historical and prospective context. This approach effectively
addresses the issue of traditional LSTM models’ inability to capture
contextual information during sequential processing, theoretically
enhancing classification accuracy (Jiang et al., 2022).

As shown in Figure 5, in BiLSTM, X1X2X3 is defined as an
independent word in a sentence, and its encoding process can
be expressed as follows: First, “X1,” “X2,” and “X3” are input to
the forward LSTML in sequence, and then three vectors {hl0, hl1,
hl2} are obtained. “X1,” “X2,” and “X3” are input to the backward
LSTMR in sequence, thereby obtaining three vectors {hr0, hr1, hr2}.

As illustrated in Figure 6, this study employs a BERT-
related language model to train Chinese word vectors, thereby
preserving the semantic information of adverse events associated
with the da Vinci surgical robot comprehensively. This approach
enhances the model’s ability to extract features within context. By
utilizing attention mechanisms to encode semantic information,
the BiLSTM model can more effectively leverage this information,
thereby improving the model’s accuracy in text classification tasks.

3.3 Bert-BiLSTM-Att_dropout fusion
model

Figure 7 illustrates the process of extracting and classifying
adverse events associated with the da Vinci surgical robot using the
BERT-based word vector training and the BiLSTM-Att_dropout
model. The preprocessed textual content is input into the BERT
model. Following the two pre-training tasks of the BERT model,
the adverse event content related to the da Vinci surgical robot
is transformed into vector representations. The model’s output
consists of the character vectors, text vectors, and position vectors
from the adverse event data, integrated to form a comprehensive
vector representation of the semantic information. This output
is then fed into the LSTM model. The LSTM model combines
word vector mapping with a fully connected layer to extract
abstract features of the textual information, incorporating an
attention mechanism before the fully connected layer to enhance
the weight of critical attributes within the text, facilitating feature
extraction. This experiment primarily focuses on the binary label
text classification task for adverse event categories associated with
the da Vinci surgical robot. To address the issue of overfitting in
the neural network on the small-scale dataset of adverse events,
a Dropout layer is added at the end of the model to extract deep
semantic features for classification.

To address the issues of gradient vanishing and contextual
significance neglect inherent in the dual LSTM framework, this
study incorporates an attention mechanism. By differentiating the
importance of various features, the model ignores less significant
features while focusing on those that are critical, thereby enhancing
classification accuracy. To tackle the challenges faced by BiLSTM,
we first compute the similarity and key values of the sequences
to establish their weights; subsequently, we apply the Softmax
function to normalize these weights. Ultimately, we obtain the
final attention values by performing a weighted sum of the weights
and the key values.

The Dropout mechanism aims to address the issue of overfitting
in neural networks, thereby enhancing the generalization
performance of deep neural networks. Figure 8 illustrates the
conditions before and after the application of the Dropout
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FIGURE 5

BiLSTM model flow chart.

FIGURE 6

Bert-BiLSTM fusion model diagram.

mechanism; the left panel displays the standard neural network
structure, while the right panel depicts the layout of the neural
network adjusted by the Dropout mechanism. The operational
process of the Dropout mechanism is as follows: while ensuring
that the input and output neurons remain unchanged, half of
the neurons are randomly omitted, and forward propagation
is conducted through the adjusted network with the remaining
input neurons. Subsequently, the loss results are backpropagated
to the respective neurons. After training with a limited number
of samples, we utilize stochastic gradient descent to update the
parameters of the neurons that were not removed. The neurons

that remain are updated, and the previously omitted, unchanged
neurons are restored, continuously executing these two steps.

4 Experiments

4.1 Data preprocessing

The adverse event data related to the da Vinci surgical robot
is sourced from the MAUDE database maintained by the US
Food and Drug Administration (FDA), comprising a total of 4,568
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FIGURE 7

Bert-BiLSTM-Att_dropout model structure diagram.

FIGURE 8

Comparison of before and after using dropout.

entries. These data are categorized into two groups: incidents that
did not result in harm to patients and those that did. In this
study, 20% of the experimental data is designated as validation
data, 30% as test data, and 50% as training data, resulting in 913
entries for validation, 1,371 entries for testing, and 2,284 entries for
training. The training set constitutes 50% of the total data, ensuring
that the model has sufficient data to learn the characteristics and
patterns of adverse events. The size of the training set is directly
related to the model’s learning capability and performance; a
larger training set can aid the model in capturing the complex
relationships and patterns present in the data. The validation set
accounts for 20% of the data, providing ample information for
model selection and hyperparameter tuning. This validation set is
used to assess the model’s performance during training, helping
to identify the optimal model architecture and parameters while
avoiding overfitting to the training set. The test set comprises
30% of the data, offering sufficient information to evaluate the
performance of the final model. It is essential that the test set closely
resembles unknown data encountered in practical applications to
effectively assess the model’s generalization capabilities.

4.2 Classification of adverse events of da
Vinci surgical robot

In the aforementioned Bert-BiLSTM model, to prevent
overfitting and its detrimental impact on the final model’s

performance, a dropout regularization operation is incorporated
following the Bert-BiLSTM model. This adjustment aims to reduce
the risk of overfitting, and its structure is depicted in Figure 9.

The Bert-BiLSTM-Att_dropout integrated model refers to the
BiLSTM model trained using BERT as the word vector. In the
BERT model, we conducted text preprocessing on the adverse event
data associated with the da Vinci surgical robot. The processed
dataset is then vectorized through the BERT model, which outputs
a vector representation that integrates the semantic information
of the entire text, subsequently inputting this representation into
the BiLSTM model. Next, the BiLSTM model is employed to
encode and fuse the features of each sequence, allowing for
the extraction of deep semantic features corresponding to each
sequence. Through the application of Dropout regularization,
we mitigate the overfitting issue of the model, and utilize a
Softmax classifier to categorize the obtained deep semantic features.
Figure 10 illustrates the detailed steps of the Bert-BiLSTM-
Att_dropout model. Overfitting is a common problem for limited
datasets, particularly when the model’s complexity is high. When
overfitting occurs, the model performs well on the training set
but exhibits significantly diminished performance on both the
validation and test sets. To mitigate the issue of overfitting, we
implemented the following measures:

1. Dropout Regularization: Dropout is an effective
regularization technique that reduces the model’s dependence
on the training data by randomly omitting a portion of the
neurons during the training process. This approach lowers the
risk of overfitting. In the Bert-BiLSTM-Att_dropout model, we
added a Dropout layer after the BiLSTM layer to further decrease
overfitting. 2. Attention Mechanism: The attention mechanism
enables the model to focus on key information within the text,
thereby enhancing its sensitivity to important features. This
mechanism not only improves the model’s performance but
also contributes to its generalization capability, as it reduces the
likelihood of the model relying on specific noise or details present
in the training data. 3. Model Selection: In addition to utilizing
the Bert-BiLSTM-Att_dropout model, we conducted comparative
analyses with several other models, including LSTM, GRU, BERT,
and Bi-LSTM Attention. This comparison aids in understanding
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FIGURE 9

Bert-BiLSTM-Att_dropout model.

FIGURE 10

Classification process of adverse events of da Vinci surgical robot.

the impact of different model architectures on overfitting and in
selecting the model best suited to our dataset.

Through these strategies, we effectively addressed the
overfitting problem, ensuring that the model maintains robust
generalization capabilities even with limited datasets.

5 Results

To verify the convergence of the proposed model during the
training process, experiments were conducted using the adverse
event dataset for the da Vinci surgical robot from the FDA’s
MAUDE database. The model underwent ten iterations during
training, and the loss values were recorded. These results were
compared with four baseline models: LSTM, GRU, BERT, and Bi-
LSTM Attention. The comparisons of loss curves and confusion
matrices are presented in Figures 11, 12.

We utilized LSTM, GRU, BERT, Bi-LSTM Attention, and
our own model, Bert-BiLSTM-Att_dropout, to validate the
classification effectiveness of the binary classification task on the
da Vinci surgical robot adverse event dataset. This evaluation
allowed us to report the accuracy, recall, and F1-score for each
classification category. Precision is defined as the ratio of correctly
predicted mentions to the total number of predicted mentions
for a specific entity; recall is the ratio of correctly predicted
mentions to the actual mentions; and the F1-score is the harmonic
mean of precision and recall. We also reported average values,
calculating metrics independently for each class and then averaging
them across all classes. Given the class imbalance in our binary
classification task, micro averaging is preferable. The experiments
compared five models, with performance metrics detailed in
Table 1; under the same conditions, a higher F1 score indicates
better model performance. The calculation formulas for these
metrics are defined as follows:

Precision: The ratio of positive samples predicted to be true
(TP) to all samples predicted to be true:

precision =
TP

TP+ FP

Recall: the ratio of predicted true positive examples (TP) to all
samples that are actually positive examples:

recall =
TP

TP+ FN

The calculation formula of F1 parameter is as follows:

F1 =
2TP

2TP+ FP+ FN

In this study, the dataset is divided into two categories, each
with independent precision, recall and F1 value. The evaluation
indicators used in this paper include average precision (P-value),
average recall (R-value) and average F1 value. The calculation
formulas of these indicators have been defined in the article, and
the corresponding calculation results have been shown in Table 2.
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FIGURE 11

Loss function curve.

The calculation formula for the average accuracy is as follows:

P =
(

1
n

) n∑
i = 1

precison

The calculation formula for the average recall is as follows:

R =
(

1
n

) n∑
i = 1

recall

The average F1 value is calculated as follows:

Average F1 =
(

1
n

) n∑
i = 1

2 ∗ precision ∗ recall
precision + recall

6 Discussions

We compared the classification performance of our model
with four benchmark models: LSTM, GRU, BERT, and Bi-LSTM
Attention on the da Vinci surgical robot adverse event dataset.
In this study, we employed the BERT model to construct word
vector representations for the text, serving as the input data for
effective classification analysis of adverse events related to the
da Vinci surgical robot. Our comparison of LSTM, GRU, BERT,
and Bi-LSTM Attention models revealed that the word vectors
generated by the BERT model had a significantly positive impact on
the classification task. The Transformer layers of the BERT model,
with their bidirectional encoder structure, greatly enhanced the
memory capacity for text context, thereby optimizing classification
performance. Furthermore, we improved the model by integrating
attention and dropout mechanisms into the architecture.

FIGURE 12

Confusion matrix.

By calculating time series vectors and applying weighted sums
with weighted attention techniques as feature vectors, our model
effectively addressed the gradient vanishing problem and the
neglect of contextual information that Bi-LSTM models may
encounter when processing long sequences. Additionally, the
introduced dropout mechanism helped mitigate overfitting,
enhancing the model’s generalization capability. Ultimately, the
model demonstrated precise categorization corresponding to
various selection criteria, underscoring its significant value in
practical applications.

Table 2 presents the Precision, Recall, and F1-score metrics.
From the Precision section, it is evident that in the category
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TABLE 2 Performance indicators of the models.

No harm to
the patient

Harm to the
patient

Precision LSTM 75.14 77.23

GRU 77.86 78.59

Bert 78.03 80.09

BiLSTM-
Attention

84.31 87.11

Our 91.71 88.31

Recall LSTM 74.01 77.29

GRU 74.34 78.56

Bert 75.13 80.43

BiLSTM-
Attention

88.75 83.07

Our 90.59 91.07

F1-score LSTM 73.12 79.16

GRU 73.89 80.43

Bert 74.77 82.45

BiLSTM-
Attention

81.19 89.55

Our 91.46 89.84

TABLE 3 Comparison of evaluation indicators of models.

Model P-value R-value Average F1

LSTM 76.19 75.65 76.14

GRU 78.23 76.45 77.16

Bert 79.06 77.78 78.61

BiLSTM-
Attention

85.71 85.91 85.37

Our 90.01 90.83 90.15

of “no harm to patients,” the Precision of the LSTM and GRU
models is slightly lower than that of the BERT model, while the
Precision of the Bi-LSTM Attention model and our proposed
model is comparatively higher. This indicates that our model is
more inclined to accurately predict positive cases when forecasting
samples that do not cause harm to patients. In the category of “harm
to patients,” the Precision values among the three models are quite
similar, with our model showing a slight advantage over the other
four models. This suggests that our model demonstrates better
accuracy when predicting samples that cause harm to patients. In
the Recall section, it can be observed that the Bi-LSTM Attention
model achieves the highest Recall in the “no harm to patients”
category, while the Recall of the BERT model is marginally lower
than that of the other three models. This implies that the Bi-LSTM
Attention model is more effective in capturing positive cases in
this category. Conversely, our model exhibits the highest Recall in
the “harm to patients” category, whereas the LSTM model records
the lowest Recall, indicating that our model performs better in
identifying samples that cause harm to patients. The F1-score
section reveals that the F1-score, which integrates both Precision
and Recall performance, serves as a comprehensive evaluation

metric. Our model attains the highest F1-score in the “no harm to
the patients” category, demonstrating a favorable balance between
Precision and Recall. Similarly, in the “harm to the patients”
category, our model also achieves the highest F1-score, indicating
its superior overall performance in this category. Overall, our
model exhibits the best performance in both “no harm to patients”
and “harm to patients” categories. This illustrates that across
different categories and performance metrics, our model possesses
significant advantages and broad applicability, necessitating the
selection of an appropriate model based on specific tasks and
requirements.

From Table 3, the Precision, Recall, and Average F1 scores
indicate that our model outperforms the other models across all
metrics. The experimental results demonstrate that the average
F1 score on the test set for the single LSTM model is 76.14%,
while the proposed model based on GRU achieves an average F1
of 77.16%. The BERT model yields an average F1 of 78.61%, and
the Bi-LSTM Attention model reaches an average F1 of 85.37%. In
contrast, our model achieves an impressive average F1 of 90.15%.
When utilizing word vector models to obtain sentence vectors, the
training outcomes for the Bi-LSTM Attention model and our model
differ significantly, with our model showing a marked improvement
in performance. The Precision section reveals that our model has
the highest Precision at 90.01, clearly surpassing other models. This
indicates that our model has the highest accuracy in predicting
positive cases while maintaining the lowest false positive rate. In the
Recall section, our model also demonstrates the highest Recall at
90.83, significantly exceeding the other models. This highlights our
model’s superior performance in identifying positive cases, coupled
with the lowest false negative rate. Regarding the Average F1 scores,
our model achieves the highest Average F1 of 90.15, effectively
integrating the performance of Precision and Recall, and thus
serving as a comprehensive evaluation metric. This demonstrates
that our model strikes an excellent balance between Precision and
Recall. Overall, the experimental results confirm that our model
outperforms the other models, particularly after the incorporation
of the dropout layer, which has led to a significant enhancement
in performance. This indicates that our model possesses substantial
advantages and broad applicability across different categories and
performance metrics.

7 Conclusion

The safety of medical devices is a critical factor in ensuring
patient health, necessitating ongoing monitoring and evaluation
even after these devices are brought to market. However,
adverse events related to medical devices remain inevitable.
To address the challenges posed by the limited sample
size of adverse event data, low utilization of classification
information, and difficulties in information extraction, we
propose a short text classification model based on the BERT
model, specifically the Bert-BiLSTM-Att_dropout integration.
Initially, we preprocess the adverse event data related to
the da Vinci surgical robot, categorizing it into two groups:
events that did not harm patients and those that did. We
allocate 30% of the experimental data for testing and 70% for
training, followed by sorting and cleaning the annotated data.
This study evaluates and compares the performance of the
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models. For the BiLSTM-Attention model, we utilize BERT
word vectors to obtain the text representations of the da Vinci
surgical robot’s adverse events, which serve as inputs for the
BiLSTM model, ultimately yielding classification results. In
the case of the Bert-BiLSTM-Att_dropout model, we describe
the training process within the BiLSTM-Att_dropout text
classification framework. The experimental results indicate
that the Bert-BiLSTM-Att_dropout model achieves the highest
average F1 score of 90.15% in classification performance.
Furthermore, a comparison with four other models reveals that
the classification effectiveness of the Bert-BiLSTM-Att_dropout
model is significantly enhanced.

Thus, the proposed Bert-BiLSTM-Att_dropout integrated
model demonstrates significant application value in the extraction
and classification of adverse events related to the da Vinci
surgical robot. However, this study presents certain limitations
both theoretically and practically. From a theoretical perspective,
while the Bert-BiLSTM-Att_dropout model exhibits impressive
performance on small datasets, its effectiveness in handling larger-
scale datasets remains inadequately validated. Additionally, the
model’s generalizability across diverse domains and languages
requires further investigation. From a practical standpoint, the
model’s computational complexity is relatively high, necessitating
substantial computational resources, which may restrict its
application in resource-constrained environments. Furthermore,
the model’s heavy reliance on data quality and annotation
can pose challenges in real-world scenarios. To address these
limitations, future work could involve training and testing
the model on larger datasets to assess its performance and
generalizability across various scales. Additionally, exploring
the model’s applicability to different domains and languages
through cross-domain and multilingual experiments could
enhance its versatility. Furthermore, research should focus
on optimizing the model’s architecture and training process
to reduce computational complexity, thereby facilitating
deployment in resource-limited settings. Finally, enhancing the
model’s robustness against fluctuations in data quality and its
performance under conditions of inaccurate annotations should
also be prioritized.

Data availability statement

The original contributions presented in this study are included
in this article/supplementary material, further inquiries can be
directed to the corresponding author.

Author contributions

TL: Writing – original draft, Visualization, Validation,
Software, Methodology, Investigation, Formal analysis, Data
curation, Conceptualization. WZ: Writing – original draft,
Investigation, Formal analysis, Data curation. WX: Writing –
original draft, Investigation, Formal analysis, Data curation. LW:
Writing – review and editing, Supervision, Resources, Project
administration, Funding acquisition, Conceptualization. WL:
Writing – review and editing, Supervision, Conceptualization.
PZ: Writing – review and editing, Validation, Supervision,
Resources, Project administration, Methodology, Formal analysis,
Conceptualization.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This study
was sponsored by the National Natural Science Foundation of
China (Grant No. 12302417) and Shanghai Pujiang Program
(23PJ1409200).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Aronson, A. R. (2001). Effective mapping of biomedical text to the UMLS
metathesaurus: The metamap program. Proc AMIA Symp. 2001:17–21.

Bacanin, N., Stoean, R., Zivkovic, M., Petrovic, A., Rashid, T. A., and Bezdan, T.
(2021). Performance of a novel chaotic firefly algorithm with enhanced exploration
for tackling global optimization problems: application for dropout regularization.
Mathematics 9:2705. doi: 10.3390/math9212705

Barman, D., and Chowdhury, N. (2020). A novel semi supervised approach for text
classification. Int. J. Inform. Technol. 12, 1147–1157.

Bhavsar, H., and Ganatra, A. (2016). EuDiC SVM: a novel support vector machine
classification algorithm. Intell. Data Anal. 20, 1285–1305.

Bu, W., Shu, H., Kang, F., Hu, Q., and Zhao, Y. (2023). Software subclassification
based on BERTopic-BERT-BiLSTM model. Electronics 12:3798. doi: 10.3390/
electronics12183798

Cai, L., Song, Y., Liu, T., and Zhang, K. (2020). A Hybrid BERT model that
incorporates label semantics via adjustive attention for multi-label text classification.
IEEE Access 8, 152183–152192. doi: 10.1109/ACCESS.2020.3017382

Frontiers in Computational Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fncom.2024.1476164
https://doi.org/10.3390/math9212705
https://doi.org/10.3390/electronics12183798
https://doi.org/10.3390/electronics12183798
https://doi.org/10.1109/ACCESS.2020.3017382
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-18-1476164 December 11, 2024 Time: 19:9 # 13

Li et al. 10.3389/fncom.2024.1476164

Çelıkten, A., and Bulut, H. (2021). “Turkish medical text classification using BERT,”
in Proceedings of the 2021 29th Signal Processing and Communications Applications
Conference (SIU), Istanbul, Turkey, (Istanbul), 1–4. doi: 10.1109/SIU53274.2021.
9477847

Chen, X., Cong, P., and Lv, S. (2022). A long-text classification method of Chinese
news based on BERT and CNN. IEEE Access 10, 34046–34057. doi: 10.1109/ACCESS.
2022.3162614

Clark, T. C., and Schmidt, F. H. (2013). Robot-assisted navigation versus computer-
assisted navigation in primary total knee arthroplasty: efficiency and accuracy. ISRN
Orthop. 2013:794827. doi: 10.1155/ 2013/794827

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). “BERT: pre-training
of deep bidirectional transformers for language understanding,” in Proceedings of
NAACL-HLT, (Minneapolis, MN), 4171–4186.

Garg, T., Young, A. J., and Agrawal, N. (2021). Robotic Surgery. Treasure Island, FL:
StatPearls Publishing.

Ge, H., Zheng, S., and Wang, Q. (2021). “Based BERT-BiLSTM-ATT model of
commodity commentary on the emotional tendency analysis,” in Proceedings of
the 2021 IEEE 4th International Conference on Big Data and Artificial Intelligence
(BDAI), Qingdao, China, (Qingdao), 130–133. doi: 10.1109/BDAI52447.2021.951
5273

González-Carvajal, S., and Garrido-Merchán, E. C. (2020). Comparing BERT
against traditional machine learning text classification. arXiv [Preprint]. doi: 10.48550/
arXiv.2005.13012

Hausladen, C. I., Schubert, M. H., and Ash, E. (2020). Text classification of
ideological direction in judicial opinions. Int. Rev. Law Econ. 62:105903.

Hug, D., and Weil, W. (2019). Determination of boolean models by densities of
mixed volumes. Adv. Appl. Probab. 51, 116–135. doi: 10.1017/apr.2019.5

Intuitive Surgical (2020). Da Vinci Surgical System. Sunnyvale, CA: Intuitive
Surgical.

Jiang, X., Song, C., Xu, Y., Li, Y., and Peng, Y. (2022). Research on sentiment
classification for netizens based on the BERT-BiLSTM-TextCNN model. PeerJ
Comput. Sci. 8:e1005.

Jovanovic, L., Gajevic, M., Dobrojevic, M., Budimirovic, N., Bacanin, N.,
and Zivkovic, M. (2023). “Tackling IoT security challenge by metaheuristics
tuned extreme learning machine,” in Intelligent Sustainable Systems. ICoISS
2023. Lecture Notes in Networks and Systems, Vol. 665, eds J. S. Raj, I.
Perikos, and V. E. Balas (Singapore: Springer), doi: 10.1007/978-981-99-17
26-6_39

Khadhraoui, M., Bellaaj, H., Ammar, M. B., Hamam, H., and Jmaiel, M. (2022).
Survey of BERT-base models for scientific text classification: COVID-19 case study.
Appl. Sci. 12:2891. doi: 10.3390/app12062891

Li, X., Lei, Y., and Ji, S. (2022). BERT- and BiLSTM-based sentiment
analysis of online Chinese buzzwords. Future Internet 14:332. doi: 10.3390/fi1411
0332

Malakar, S., Ghosh, M., Bhowmik, S., Sarkar, R., and Nasipuri, M. (2020).
A GA based hierarchical feature selection approach for handwritten word
recognition. Neural Comput. Applic. 32, 2533–2552. doi: 10.1007/s00521-018-
3937-8

Mithun, S., and Jha, A. K. (2023). Development and validation of deep learning
and BERT models for classification of lung cancer radiology reports. Inform. Med.
Unlocked 40:101294.

Mohammadi, S., and Chapon, M. (2020). “Investigating the performance of fine-
tuned text classification models based-on Bert,” in Proceedings of the 2020 IEEE 22nd
International Conference on High Performance Computing and Communications; IEEE
18th International Conference on Smart City; IEEE 6th International Conference on
Data Science and Systems (HPCC/SmartCity/DSS), Yanuca Island, Cuvu, Fiji, (Cuvu),
1252–1257. doi: 10.1109/HPCC-SmartCity-DSS50907.2020.00162

Moirangthem, D. S., and Lee, M. (2021). Hierarchical and lateral multiple timescales
gated recurrent units with pre-trained encoder for long text classification. Expert Syst.
Applic. 165:113898.

Ni, P., Li, Y., and Chang, V. (2020). Research on text classification based on
automatically extracted keywords. Int. J. Enterprise Inform. Syst. 16, 1–16.

Patel, V. R., and Tully, A. S. (2020). da Vinci robotic prostatectomy: techniques and
outcomes. Open J. Urol. 10, 67–74.

Wang, Y., Wang, M., Zhang, S., and Du, W. (2019). BERT based alert text named
entity recognition [J/OL]. Comput. Applic. 1–7, 11.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., et al.
(2020). Hugging face’s transformers: state-of-the-art natural language processing.
arXiv [Preprint] doi: 10.48550/arXiv.1910.03771

Xiong, Y., Wei, N., Qiao, K., Li, Z., and Li, Z. (2024). Exploring consumption
intent in live E-commerce barrage: a text feature-based approach using BERT-
BiLSTM model. IEEE Access 12, 69288–69298. doi: 10.1109/ACCESS.2024.33
99095

Yao, L., Jin, Z., Mao, C., Zhang, Y., and Luo, Y. (2019). Traditional Chinese medicine
clinical records classification with BERT and domain specific corpora. JAMIA 26,
1632–1636.

Yu, S., Su, J., and Luo, D. (2019). Improving BERT-based text classification with
auxiliary sentence and domain knowledge. IEEE Access 7, 176600–176612. doi: 10.
1109/ACCESS.2019.2953990

Zhonghao, W., Chenxi, L., Meng, H., and Shuai, L. (2022). “Research on
intelligent classification method of seismic information text based on BERT-BiLSTM
optimization algorithm,” in Proceedings of the 2022 IEEE 2nd International Conference
on Computer Communication and Artificial Intelligence (CCAI), (Beijing), 55–59. doi:
10.1109/CCAI55564.2022.9807785

Zivkovic, M., Tair, M., K, V., Bacanin, N., Hubálovskı, Š, and Trojovskı, P.
(2022). Novel hybrid firefly algorithm: an application to enhance XGBoost tuning
for intrusion detection classification. PeerJ Computer Sci. 8:e956. doi: 10.7717/peerj-
cs.956

Frontiers in Computational Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fncom.2024.1476164
https://doi.org/10.1109/SIU53274.2021.9477847
https://doi.org/10.1109/SIU53274.2021.9477847
https://doi.org/10.1109/ACCESS.2022.3162614
https://doi.org/10.1109/ACCESS.2022.3162614
https://doi.org/10.1155/
https://doi.org/10.1109/BDAI52447.2021.9515273
https://doi.org/10.1109/BDAI52447.2021.9515273
https://doi.org/10.48550/arXiv.2005.13012
https://doi.org/10.48550/arXiv.2005.13012
https://doi.org/10.1017/apr.2019.5
https://doi.org/10.1007/978-981-99-1726-6_39
https://doi.org/10.1007/978-981-99-1726-6_39
https://doi.org/10.3390/app12062891
https://doi.org/10.3390/fi14110332
https://doi.org/10.3390/fi14110332
https://doi.org/10.1007/s00521-018-3937-8
https://doi.org/10.1007/s00521-018-3937-8
https://doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00162
https://doi.org/10.48550/arXiv.1910.03771
https://doi.org/10.1109/ACCESS.2024.3399095
https://doi.org/10.1109/ACCESS.2024.3399095
https://doi.org/10.1109/ACCESS.2019.2953990
https://doi.org/10.1109/ACCESS.2019.2953990
https://doi.org/10.1109/CCAI55564.2022.9807785
https://doi.org/10.1109/CCAI55564.2022.9807785
https://doi.org/10.7717/peerj-cs.956
https://doi.org/10.7717/peerj-cs.956
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/

	Research on adverse event classification algorithm of da Vinci surgical robot based on Bert-BiLSTM model
	1 Introduction
	2 da Vinci surgical robot
	2.1 Features of the da Vinci surgical robot
	2.2 da Vinci surgical robot label dataset

	3 Materials and methods
	3.1 Bert model
	3.2 Bert-BiLSTM fusion model
	3.3 Bert-BiLSTM-Att_dropout fusion model

	4 Experiments
	4.1 Data preprocessing
	4.2 Classification of adverse events of da Vinci surgical robot

	5 Results
	6 Discussions
	7 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


