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Functional connectivity (FC) refers to the activation correlation between different 
brain regions. FC networks as typically represented as graphs with brain regions 
of interest (ROIs) as nodes and functional correlation as edges. Graph neural 
networks (GNNs) are machine learning architectures used to analyze FC graphs. 
However, traditional GNNs are limited in their ability to characterize FC edge 
attributes because they typically emphasize the importance of ROI node-based 
brain activation data. Line GNNs convert the edges of the original graph to nodes 
in the transformed graph, thereby emphasizing the FC between brain regions. 
We hypothesize that line GNNs will outperform traditional GNNs in FC applications. 
We investigated the performance of two common GNN architectures (GraphSAGE 
and GCN) trained on line and traditional graphs predicting task-associated FC 
changes across two datasets. The first dataset was from the Human Connectome 
Project (HCP) with 205 participants, the second was a dataset with 12 participants. 
The HCP dataset detailed FC changes in participants during a story-listening task, 
while the second dataset included the FC changes in a different auditory language 
task. Our findings from the HCP dataset indicated that line GNNs achieved lower 
mean squared error compared to traditional GNNs, with the line GraphSAGE model 
outperforming the traditional GraphSAGE by 18% (p  <  0.0001). When applying the 
same models to the second dataset, both line GNNs also showed statistically 
significant improvements over their traditional counterparts with little to no 
overfitting. We believe this shows that line GNN models demonstrate promising 
utility in FC studies.
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1 Introduction

The interconnectivity of the human brain is a critically important component in the 
understanding of the neural basis of behavior, in general, and in linguistic behavior in particular. 
Patients with strokes that disrupt the pathways between designated ROIs have been reported to 
have specific language deficits, such as Broca’s and Wernicke’s aphasia as well as conduction and 
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global aphasia. However, understanding the mechanisms by which these 
language deficits arise has been elusive but may be  essential in 
developing novel approaches in neurorehabilitation. Therefore, the 
development of neurocomputational models of the neural basis of 
language processing in the healthy human brain may be an important 
step in better understanding the mechanisms that result in specific 
language deficits following brain injury. With the advancements in 
biotechnology over the last 30 years, neuroscientists have been able to 
image the human brain in action. The advancements of computational 
power over the last decade have the tremendous potential to advance 
our understanding of language processing following brain injury 
through the use of computer simulations. For these reasons, the merger 
of machine learning algorithms and non-invasive neuroimaging 
techniques that analyze brain activity in real time is a crucial step in the 
convergence of cognitive and behavioral neurology and computational 
neuroscience towards the burgeoning modern field of clinical 
neuroscience. Often, neuroimaging studies divide the brain into regions 
of interest (ROIs). Functional connectivity (FC) studies look at the 
relationships between those different brain regions by calculating the 
correlations in activation between them (Bullmore and Sporns, 2009; 
He and Evans, 2010). Functional magnetic resonance imaging (fMRI) 
is a non-invasive neuroimaging method in which MRI images are 
combined with blood oxygen level-dependent (BOLD) signals, allowing 
us to map BOLD effects in different parts of the brain and thus measure 
brain activity on a per-ROI basis.

Previous fMRI-based static FC studies have shown that language 
related connection strengths between ROIs change during language tasks 
(Tran et al., 2018; Doucet et al., 2017). Certain neurological conditions, 
such as strokes, are known to both impact the patient’s FC and their 
language abilities (Tao and Rapp, 2020; Berthier, 2005; Boes et al., 2015). 
This makes the neurocognitive modeling of FC processes underlying 
language crucial to understanding and predicting functional neural 
responses under conditions of central nervous system (CNS) injury 
(Kamarajan et al., 2020; Nebli et al., 2020). One area of mathematics 
which is particularly important in modeling FC is graph theory, which 
has traditionally allowed us to view ROIs as nodes and functional 
correlations as edges (Bullmore and Sporns, 2009; He and Evans, 2010).

There are examples of machine learning models using resting state 
FC data in predicting medical or demographic information, such as 
identifying depression in people with Parkinson’s disease and 
identifying an infant’s age; or classifying static FC changes in 
neurodegenerative diseases (Lin et  al., 2020; Kardan et  al., 2022). 
Graph neural networks (GNNs) are a type of neural network 
architecture designed to incorporate graph structures as data (Scarselli 
et al., 2009). Given the inherent graph-based nature of the brain, GNNs 
– including those that incorporate less-traditional definitions of nodes 
as edges, as are found in hypergraphs – are an intuitive step in analyzing 
network neuroscience data (Nebli et al., 2020; Kardan et al., 2022; Zong 
et al., 2024; Zuo et al., 2024). We assessed the use of GNNs in predicting 
FC changes for a language task, specifically an auditorily presented 
language comprehension task as proof of concept that GNN can serve 
as a powerful computational tool in predicting language related static 
functional connectivity spatial neuronal changes. We  specifically 
included the comparison of traditional GNNs and line GNNs to 
predict changes in auditory language comprehension based FC.

A line graph is a type of derivative graph in which the edges of the 
original graph are treated as nodes in the line graph (Cai et al., 2022) 
(Figure 1A). In computational chemistry and biomolecular interaction 

analysis, the use of line graphs in GNNs has proven effective in edge 
prediction, as line graphs permit the user to explicitly incorporate 
relational data into their models (Choudhary and DeCost, 2021; 
Zheng et al., 2022; Han and Zhang, 2023). In computational chemistry, 
line graphs allow researchers to represent atomic bond angles as nodes, 
whereas in biomolecular interaction analysis, they allow researchers 
to represent individual interactions as nodes (Choudhary and DeCost, 
2021; Zheng et  al., 2022; Han and Zhang, 2023). Given that FC 
analyses are edge-based, we also investigated the effectiveness of using 
line graph-based GNNs to predict changes in FC that occur during an 
auditory language task. We  chose to utilize two common GNN 
architectures: a graph-based version of convolutional neural networks 
called graph convolutional networks (GCN) proposed by Kipf and 
Welling (2017) (Figure 1B) and an extension of this architecture called 
GraphSAGE (Kipf and Welling, 2017; Hamilton et  al., 2017). 
We  hypothesize that GNNs trained on FC line graphs (that is, 
functional correlations as nodes connected by ROIs) will show 
improved performance over GNNs trained on traditional FC networks.

2 Methods

2.1 Data collection

We performed cross-validation on two datasets to assess model 
performance: dataset #1, which included 205 participants, and dataset 
#2, which included 12 participants from a different experiment.

2.1.1 Dataset #1
Task-based fMRI data for 205 healthy adult individuals were 

queried from the Human Connectome Project (HCP) database. The 
subjects were matched for age, education, and handedness and 
performed an auditory language comprehension task.

Subjects were asked to perform an experimental task in which they 
listened to a story and answered questions about the story’s topic. For 
example, after auditorily listening to a story about an eagle rescuing a 
man after he had done the same for the eagle, the participant may 
be asked “Was the story about revenge or reciprocity?” They were asked 
to register their responses by pressing a button box. Similarly, as a 
baseline control study, subjects were asked to solve an auditorily 
presented mathematical problem, such as “Four plus twelve minus two 
plus nine. Does this equal twenty-two or twenty-three?” The 
mathematical and language tasks are described in further detail in 
Binder et al. (2011) and Barch et al. (2013), with the examples adapted 
from Binder et al. (2011). For this data collection, there were two 3.8 min 
imaging acquisition sessions (a total of 7.6 min). Each session contained 
four ~1 min epochs in which story stimuli were presented and four 
~1 min epochs of math calculations as described above. The authors 
reported that in cases in which subjects completed the math calculations 
with residual time remaining within the epoch, additional math 
calculations were performed in order to fill the time as needed. They 
used the mathematical task data as control to negate the neuroactivational 
contributions from nonlinguistic cognitive resources such as attention 
and executive memory as well as scanner and physiologic noise.

BOLD neuroactivation data were acquired noninvasively using 
gradient-echo EPI on a 3 T MRI with a FOV of 208-x 180 mm; slice 
thickness of 2.00×2.00×2.00 mm voxels and multiband factor of 8. The 
TR was 720-ms and TE of 33.1 ms and a Flip angle of 52 degrees.
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FIGURE 1

(A) Graphical representation of a line graph transformation. Note how each edge in graph G corresponds to a node in graph L(G). (B) Graphical 
representation of the difference between GNNs and CNNs, with CNNs integrating information from adjacent cells while GNNs integrate information 
from adjacent nodes. (C) Architecture of line GNNs (top) and the architecture of traditional GNNs for FC analyses (bottom).
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2.1.2 Dataset #2
To assess the model’s generalizability, task-based fMRI data for 

twelve healthy controls recruited from the NINDS Epilepsy Unit 
under IRB approved protocol 14-N-0061 were included in this 
secondary retrospective analyses. The twelve subjects were matched 
for education, age, and handedness. Further demographic information 
can be found in Table 1.

These subjects performed a different auditory language 
comprehension task from the one performed in the HCP dataset. In 
this task, called an auditory description decision task (ADDT), 
subjects listened to a descriptive sentence of an item from the Boston 
Naming Test which was either true (“a large gray animal is an 
elephant”) or false (“spaghetti is something you sit on”) (Rolinski et al., 
2020). Subjects answered yes or no using a button box. The baseline 
task for the second task was also different from the HCP dataset in 
that subjects were asked to listen to sentences played in reverse order. 
By using reversed speech as the baseline control, no syntactic or 
semantic information is conveyed when the subject listens to the 
stimuli. The associated neuroactivation in the control task, therefore, 
only represents listening to sound that is devoid of linguistic content.

Similar to the first dataset, the paradigm for the second dataset 
also followed a block design. Five epoch cycles where each cycle 
consists of an alternating block of task and control task was performed. 
Each epoch was repeated for a 30 s duration followed by the control 
task for a total scanning time of 2.5 min for the experimental task and 
2.5 min for the control task.

Imaging acquisition was performed on a 3 T MRI scanner at the 
National Institutes of Health NMR Center using a 32-channel head 

coil. Imaging parameters were flip angle: 65 degrees; TR: 2000 ms, TE: 
30; Voxel size: 3 mm x 3 mm x 4 mm; FOV: 216 × 216 mm; slice 
thickness of 4 mm. During resting state fMRI, participants lay still in 
the scanner while staring at a fixation mark in the display for the 
duration of the scan. During task based fMRI, participants were asked 
to perform an ADDT in which they listened to an auditorily presented 
sentence and then decided whether the following word matched the 
description. The detail of the tb-fMRI procedure has been described 
elsewhere (Rolinski et al., 2020; Gaillard et al., 2007).

2.2 MRI preprocessing

MRI preprocessing was performed per previously reported 
techniques (RaviPrakash et al., 2021). Specifically, we preprocessed the 
anatomical data to achieve accurate surface segmentation. 
We performed surface parcellation using T1 weighted MPRAGE and 
fluid-attenuated inversion recovery (FLAIR) images using FreeSurfer 
(RaviPrakash et al., 2021; Fischl, 2012). We registered the MPRAGE 
volume with the MNI-305 atlas using an AFNI registration to perform 
the cortical surface parcellation. We then performed skull stripping. 
We then followed the intensity gradients between the white- and gray-
matter to generate surface segmentations for each hemisphere. Similarly, 
we generated the pial surface using the intensity gradients between the 
gray matter and cerebral spinal fluid. We used the different contrast in 
the FLAIR images to further define the pial surface segmentation, after 
which surface labeling was done as in Desikan et al. (2006).

2.3 fMRI preprocessing

We used Analysis of Functional NeuroImages toolbox (AFNI) to 
preprocess the fMRI data and used surface-based cortical analysis 
pipelines (Cox, 1996; Cox and Hyde, 1997). Pre-steady state volumes 
prior to reaching equilibrium magnetization were discarded. First, 
we conducted slice timing correction to synchronize timing across 
brain slices and then performed motion correction by setting the 
motion threshold to 0.3 mm. We censored BOLD signal that exceeded 
this threshold. We applied a regress bandpass filter tb-fMRI with a 
frequency of 0.01–0.10 Hz, to further surpass signal noise and then 
applied a 6 mm spatial smoothing kernel to further reduce the noise. 
We  then added up the coherent signals as previously described 
(RaviPrakash et al., 2021).

The rs-fMRI preprocessing was nearly identical to the tb-fMRI 
preprocessing, including the use of a 6 mm spatial smoothing kernel. 
We used regress bandpass filter for rs-fMRI, with a frequency range of 
0.01–0.5 Hz, to further eliminate noise.

2.4 Functional connectivity network 
analysis

The task network is generated by first concatenating the time-
series of all task trails/blocks in a single subject. We then computed 
Spearman correlation to generate the static FC. We included all 
statistically significant task correlations compared to baseline, 
providing that the functional correlations were present in at least a 
certain percentage of subjects. We  empirically calculated the 

TABLE 1 Demographics of study participants with percentages in 
parentheses.

Characteristic Dataset #1: n 
(%)

Dataset #2: n 
(%)

Age

22–25 73 (35.6) 6 (50.0)

26–30 75 (36.6) 1 (8.3)

31+ 57 (27.9) 5 (41.7)

Race

Asian/Hawaiian/Pacific Is. 36 (17.6) –

Black or African American 42 (20.5) 4 (33.3)

White 111 (54.2) 5 (41.7)

Other/Unknown 16 (8) 3 (25.0)

Ethnicity

Hispanic/Latino 24 (11.7) –

Not Hispanic/Latino 179 (87.3) –

Unknown 2 (1.0) –

Gender

Female 106 (51.7) 6 (50.0)

Male 99 (48.3) 6 (50.0)

Handedness

Left 21 (10.2) 2 (16.7)

Right 182 (88.8) 10 (83.3)

Neither 2 (1.0) –
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participation threshold to be  85%. The associated p-values are 
corrected using Bonferroni correction. Of note, many investigators 
apply an edge strength threshold to ensure the inclusion of robust 
functional correlations in the statistical analyses. However, this can 
inadvertently eliminate functionally relevant functional correlations 
from our analyses. In order to minimize this occurrence, 
we  included all significant (p < 0.05 post-Bonferroni correction) 
connections across sample dataset. But then applied a participation 
threshold to ensure that the correlations were robust and 
reproducible. This enables us to avoid arbitrarily cutting off the 
functional correlations with correlation strengths that may 
be relevant for a particular individual’s FC performance.

This left us with 32 ROIs connected by 71 functional correlations 
for the first dataset and 20 ROIs connected by 12 functional 
correlations for the second. The static FC graphs generated were then 
implemented as NetworkX objects in Python (Hagberg et al., 2008).

2.4.1 Model creation
Four machine learning architectures were assessed for their 

predictive capabilities. The first two were graph convolutional 
architectures implemented using a traditional GCN as well as the 
GraphSAGE architecture in which the nodes were embedded with 
per-timepoint ROI activity levels at baseline (Figure  1C). In the 
traditional GCN, the edges were embedded with functional correlation 
measurements at baseline (Figure  1C). These models use the 
traditional representation of FC networks as ROIs (nodes) connected 
by functional correlations (edges).

The final two compared GCN and GraphSAGE architectures that 
used a line graph configuration. In line graphs nodes (ROI) are 
converted to edges and FC network edges are represented as nodes. 
The line GCN included per-timepoint ROI activation data embedded 
in its edges, whereas the line GraphSAGE discarded this information 
because the architecture did not permit edge attributes to be 
incorporated. All neural networks were implemented using the 
PyTorch Geometric package (Fey and Lenssen, 2019).

All models were trained using the mean squared error (MSE) loss 
function. All neural networks were trained using the Adam optimizer 
over the course of 100 epochs, or training cycles. Apart from the line 
graph GCN, which had a learning rate of 1×10-3, all neural networks 
had a learning rate of 2×10-6. A higher learning rate was chosen for 
the line graph GCN because it was found to train far more slowly than 
the other models otherwise.

Each model had either five GCN or five GraphSAGE convolutional 
layers depending on model type with 512 neurons per layer, and there 
was a negative slope Leaky ReLU activation function of 0.05 between 
each layer. The models without line graph transformations also 
included a two-layer linear perceptron at the end to convert node 
embeddings to edge embeddings. A Tanh activation function was 
applied at the end of each model to transform the output to a (−1.0, 
1.0) range.

The performance of each model was assessed using five-fold cross-
validation. Benchmark error was calculated by creating a set of 
predicted values for a set of participants in the training set and 
applying this prediction to the validation set. We decided to use this 
metric to determine whether the models were creating truly 
personalized predictions, or they were simply converging on an 
average value for each functional correlation. The accuracy was 
quantified using MSE.

2.4.2 Statistical methods
Statistical testing was performed using SciPy version 1.9.0, and 

we  determined the significance level to be  p < 0.05. Comparisons 
between benchmark and validation performance for each model, as 
well as comparisons in performance between models, were performed 
through a Wilcoxon signed rank test. Comparisons in the time taken 
to train each model were performed using a paired t-test. Both analyses 
that involved comparing each model to each other model were 
corrected for multiple comparisons through Bonferroni correction.

3 Results

All four models were found to outperform their benchmarks with 
the HCP dataset and the second dataset, indicating that all of them 
were making individualized predictions (Figure  2; Table  2). After 
comparing each model’s validation performance to its benchmark 
performance, we examined their performance relative to one another. 
In the HCP dataset, we  found that the line graph-based GCN, 
traditional GCN, and traditional GraphSAGE models did not show 
any statistically significant differences from each other; however, 
we  did find that the line GraphSAGE showed a significant 
improvement – defined as a decrease in MSE – over all other tested 
architectures (p < 0.0001 in all cases).

When applied to the second dataset, using a different set of 
auditory language tasks, similar patterns emerged. The line GCN and 
the line GraphSAGE models demonstrated significantly improved 
performance over their traditional counterparts, with notable 
reductions in MSE and significant p-values (line GCN: p = 0.0005; line 
GraphSAGE: p = 0.0068), underscoring their robustness across varied 
datasets (Table 2; Figure 2). We performed paired t-tests comparing 
the validation MSEs across each fold. The p-value between traditional 
GCN and line GCN was 0.004953, indicating a statistically significant 
difference in their performance, with the line GCN model consistently 
outperforming the traditional GCN. Similarly, the paired t-test 
comparing traditional GraphSAGE and line GraphSAGE models 
yielded a p-value <0.003.

With the HCP dataset, both line graph-based neural networks 
immediately show a divergence between validation and benchmark 
performance early on in their training, and this difference in MSE only 
grows as more training epochs are completed (Figure 2). Additionally, 
these models show a striking resistance to overfitting, as their training 
error remains only marginally lower than their validation error even as 
the number of epochs increases. This is in stark contrast to the models 
without line graph transformations, both of which show an increase in 
training accuracy coupled with a decrease in validation accuracy in 
their later epochs – a widely recognized hallmark of overfitting.

As observed with the HCP dataset, both line graph-based neural 
networks initially diverged from the benchmark performance when 
trained on the second dataset (Figure  2). However, the degree of 
divergence in MSE between the training and validation phases was less 
pronounced. The line graph-based networks maintained a certain 
degree of resilience against overfitting, with the line GCN and line 
GraphSAGE models consistently demonstrating smaller gaps between 
training and validation errors across epochs. This adaptability was less 
evident in the traditional models, which, despite improvements, 
exhibited a greater tendency towards overfitting in the second dataset 
compared to the HCP dataset.
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FIGURE 2

Training curves for each of the four neural networks tested when applied to dataset #1 (top) and dataset #2 (bottom). The x-axis shows the number of 
epochs (or training cycles) that have occurred, while the y-axis shows the mean squared error for each epoch. The shaded region represents the 95% 
confidence interval.
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Training times varied significantly across models, with line GNNs 
requiring more time compared to traditional models for the HCP 
dataset. We found that line GNNs took significantly more time to train 
than traditional GNNs (line GraphSAGE and line GCN vs. traditional 
GCN: p < 0.0001; line GraphSAGE vs. traditional GraphSAGE: 
p = 0.0004; line GCN vs. traditional GraphSAGE: p = 0.0002). The 
traditional GraphSAGE trained significantly slower than the 
traditional GCN (p = 0.0001); however, the line GraphSAGE and line 
GCN did not show a statistically significant difference in training time 
from each other (p = 0.5150) (Table 2).

The training times for the second dataset revealed additional 
insights. Line GCN and line GraphSAGE models did not exhibit 
significant differences in training duration compared to the traditional 
models (Table  2). The traditional GraphSAGE exhibited a slower 
training time compared to the traditional GCN; however, the contrast 
in training times between the line and traditional models was not as 
pronounced with the second dataset as with the HCP dataset.

4 Discussion

Specific language deficits in patients with acquired CNS injuries 
have been well documented in the literature, with the first reported 
cases dating back to the 19th century. Speech and language deficits 
have been reported in patients with lesions in Broca’s and Wernicke’s 
areas, for example. Aphasias have also been reported in patients with 
injuries that disrupt the pathways between designated ROIs such as in 
conduction aphasia or global aphasia. However, understanding the 
mechanisms by which these language deficits arise is essential in 
developing a robust mechanistic understanding of large scale 
integration of brain’s highly integrated structural but also functional 
networks. Understanding how the effects of local injury may permeate 
throughout the brain that can lead to novel approaches 
in neurorehabilitation.

The development of neurocomputational models of the neural 
basis of language processing in the healthy human brain may be an 
important step in eventually understanding these mechanisms. GNNs 
are a type of network architecture that serve as a natural deep learning 
tool by which to characterize the brain’s static functional connectivity 
changes associated with cognitive behavior. Although it is beyond the 
scope of this paper to evaluate the performance of all graph-based 

neural networks, we specifically compared the performance of four 
graph based models; namely two traditional graph based architectures 
versus two line graph network architectures using two specific 
cognitive tasks with two different baseline datasets as input. We were 
particularly interested in assessing line graph architectures because 
they enable one to emphasize the “connections” between ROIs, rather 
than on the ROIs themselves as is typical of traditional graph 
base models.

In both the HCP dataset and the second dataset, we found that 
line GNNs outperform traditional GNNs in predicting changes in FC 
when using baseline FC as its input. Of specific interest, both datasets 
used fundamentally different baseline data as its input. The HCP 
dataset used FC associated with word based mathematical decisions. 
The model successfully predicted the static FC changes associated 
with language related computations. It demonstrated gradual 
decreased error rates over time with little to no overfitting patterns 
when compared to traditional GNNs.

Even when the model architectures were trained on a second 
dataset using a nonlinguistic baseline, both line GCN and line 
GraphSAGE models showed statistically significant improvements in 
MSE compared to the traditional models, suggesting a improved 
model performance across diverse datasets. However, it is important 
to note that all models registered higher MSEs when applied to the 
second dataset, a testament to the influence of dataset size and 
heterogeneity on the model’s performance. That said, one of the 
important elements of the model’s performance was its consistency in 
modeling the FC changes with no overfitting.

More recent studies have applied GNN machine learning models 
to characterize ROI activation in fMRI where ROIs are indicated as 
nodes and the connections linking the nodes as edges. We compared 
traditional GCN models to a similar common architecture of GNNs, 
called GraphSAGE. In the case of traditionally constructed FC data, 
we found that the GraphSAGE model performed similarly to the GCN 
model. However, we found that both models trained on traditional FC 
suffered from the problem of overfitting; this was particularly true for 
the GraphSAGE model.

When making predictions, GNNs tend to weight node-based data 
particularly heavily, with some common architectures (such as 
GraphSAGE) even omitting edge attributes altogether. This makes 
feature selection challenging when the most relevant features are edge-
based, as is the case with FC studies, which in turn prompted our 

TABLE 2 Performance of each machine learning architecture tested.

Traditional GCN Traditional GraphSAGE Line GCN Line GraphSAGE

Dataset #1

Benchmark MSE 0.0111 0.0116 0.0115 0.0122

Validation MSE 0.0103 0.0104 0.0099 0.0085

Difference −0.0007 −0.0013 −0.0016 −0.0036

P-value 0.0011 0.0005 <0.0001 <0.0001

Training time (s) 310.7 382 500.5 479.5

Dataset #2

Benchmark MSE 0.0271 0.0273 0.0418 0.0329

Validation MSE 0.027 0.025 0.0183 0.0187

Difference −0.0001 −0.0023 −0.0235 −0.0142

P-value 0.2324 0.1391 0.0005 0.0068

Training time (s) 20.1 26.3 17.1 20.8

One-way t-test used to determine significance. Significant p-values (<0.05) are listed in italics, while superior results for training time, validation MSE, and benchmark-validation MSE are 
listed in bold.
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investigation of line graph-based methods. Indeed, we found that line 
graph models – namely the line GraphSAGE model – resulted in 
improved modeling of our data compared to the traditional GNN 
models, regardless of the context of the specific language-based task. 
The line graph models for both types of very different data inputs 
resulted in accurate modeling of the FC changes for two very different 
types of language-related changes with little to no data overfitting. This 
supports our hypothesis that line graph models would better 
characterize connections between ROIs, possibly because of inherent 
feature selection, which is a common method to avoid overfitting 
(Lever et al., 2016). Because the line graph construction means that 
line GNNs discard much of the ROI-based activation and structural 
information in the original graph, and even omit this information 
entirely in the case of the line GraphSAGE model, the information 
that does remain is FC data which is more likely to be relevant to the 
target predictions. Thus, overfitting on less-relevant ROI data is 
mitigated with line graph models, which could explain the line GNNs’ 
improved performance with respect to overfitting.

Although our findings are encouraging vis a vis the potential for 
using line graph-based models to accurately model changes in cognitive 
states, several caveats warrant mentioning: (1) We only used static FC as 
our input source to generate the model. (2) Like most deep neural 
networks, line graph-based models are still “black box” architectures and 
for these reasons future research will be needed to future develop new 
research tools, such as the addition of GNN explainers to make line graph 
based modeling more interpretable and explainable (Yuan et al., 2020) 
because explainable AI models will be  essential in understanding 
structural perturbations that result from CNS injuries. (3) We found that 
line GNNs had longer training times than traditional GNNs when trained 
on the HCP dataset, which could imply a lack of scalability.

In conclusion, we found that line graph-based models can serve as 
powerful computational tools to model changes in static network 
correlations associated with different mental states as assessed here using 
two different tasks and to be able to do so with little to no overfitting, an 
important characteristic. That said, we think that the typology of graph-
based in general can be exploited to better understand the dysfunctional 
relationships between local clusters of locally vs. long-distance affected 
functional correlations in whole brain network connectivity datasets, 
especially as affected in individual patients and patient populations. 
Further research comparing the performance of line GraphSAGE 
modeling to other graph-based models such as Bayesian networks is still 
warranted followed by the use of computer simulations to assessing the 
model’s performance in predicting network connectivity changes 
following CNS injury. Importantly, these models suggest that novel 
computational approaches that not only classify patients but provide the 
basis for improved mechanistic understandings of local and long-
ranging network correlations changes following CNS injury may 
be possible. This provides the basis for a novel focus of research that uses 
these simulations to develop promising novel mechanistic therapeutic 
interventions in the future.
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